# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                           |
| Core Size                  | 32-Bit Single-Core                                                         |
| Speed                      | 48MHz                                                                      |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, POR, WDT                                      |
| Number of I/O              | 26                                                                         |
| Program Memory Size        | 32KB (32K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                |
| Data Converters            | A/D 10x12b, 1x16b; D/A 1x10b                                               |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 32-VFQFN Exposed Pad                                                       |
| Supplier Device Package    | 32-VQFN (5x5)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsamc21e15a-mnt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# SAM C20/C21

| Bit    | 31 | 30   | 29     | 28 | 27 | 26   | 25     | 24 |
|--------|----|------|--------|----|----|------|--------|----|
|        |    |      |        |    |    |      |        |    |
| Access |    |      |        |    |    |      |        |    |
| Reset  |    |      |        |    |    |      |        |    |
|        |    |      |        |    |    |      |        |    |
| Bit    | 23 | 22   | 21     | 20 | 19 | 18   | 17     | 16 |
|        |    |      |        |    |    |      |        |    |
| Access |    |      |        |    |    | -    |        |    |
| Reset  |    |      |        |    |    |      |        |    |
|        |    |      |        |    |    |      |        |    |
| Bit    | 15 | 14   | 13     | 12 | 11 | 10   | 9      | 8  |
|        |    |      |        |    |    |      |        |    |
| Access |    |      |        |    |    |      |        |    |
| Reset  |    |      |        |    |    |      |        |    |
|        |    |      |        |    |    |      |        |    |
| Bit    | 7  | 6    | 5      | 4  | 3  | 2    | 1      | 0  |
|        |    | FKBC | C[3:0] |    |    | JEPC | C[3:0] |    |
| Access | R  | R    | R      | R  | R  | R    | R      | R  |
| Reset  | 0  | 0    | 0      | 0  | 0  | 0    | 0      | 0  |

# Bits 7:4 – FKBC[3:0]: 4KB Count

These bits will always return zero when read, indicating that this debug component occupies one 4KB block.

# Bits 3:0 – JEPCC[3:0]: JEP-106 Continuation Code

These bits will always return zero when read.

# 13.13.15 Peripheral Identification 0

 Name:
 PID0

 Offset:
 0x1FE0

 Reset:
 0x0000000

 Property:

#### 20.6.2 External Multipurpose Crystal Oscillator (XOSC) Operation

The XOSC can operate in two different modes:

- External clock, with an external clock signal connected to the XIN pin
- Crystal oscillator, with an external 0.4-32MHz crystal

The XOSC can be used as a clock source for generic clock generators. This is configured by the Generic Clock Controller.

At reset, the XOSC is disabled, and the XIN/XOUT pins can be used as General Purpose I/O (GPIO) pins or by other peripherals in the system. When XOSC is enabled, the operating mode determines the GPIO usage. When in crystal oscillator mode, the XIN and XOUT pins are controlled by the OSCCTRL, and GPIO functions are overridden on both pins. When in external clock mode, only the XIN pin will be overridden and controlled by the OSCCTRL, while the XOUT pin can still be used as a GPIO pin.

The XOSC is enabled by writing a '1' to the Enable bit in the External Multipurpose Crystal Oscillator Control register (XOSCCTRL.ENABLE).

To enable XOSC as an external crystal oscillator, the XTAL Enable bit (XOSCCTRL.XTALEN) must be written to '1'. If XOSCCTRL.XTALEN is zero, the external clock input on XIN will be enabled.

When in crystal oscillator mode (XOSCCTRL.XTALEN=1), the External Multipurpose Crystal Oscillator Gain (XOSCCTRL.GAIN) must be set to match the external crystal oscillator frequency. If the External Multipurpose Crystal Oscillator Automatic Amplitude Gain Control (XOSCCTRL.AMPGC) is '1', the oscillator amplitude will be automatically adjusted, and in most cases result in a lower power consumption.

The XOSC will behave differently in different sleep modes, based on the settings of XOSCCTRL.RUNSTDBY, XOSCCTRL.ONDEMAND, and XOSCCTRL.ENABLE. If XOSCCTRL.ENABLE=0, the XOSC will be always stopped. For XOSCCTRL.ENABLE=1, this table is valid:

| CPU Mode       | XOSCCTRL.RUNST<br>DBY | XOSCCTRL.ONDEM<br>AND | Sleep Behavior                 |
|----------------|-----------------------|-----------------------|--------------------------------|
| Active or Idle | -                     | 0                     | Always run                     |
| Active or Idle | -                     | 1                     | Run if requested by peripheral |
| Standby        | 1                     | 0                     | Always run                     |
| Standby        | 1                     | 1                     | Run if requested by peripheral |
| Standby        | 0                     | _                     | Run if requested by peripheral |

### Table 20-1. XOSC Sleep Behavior

After a hard reset, or when waking up from a sleep mode where the XOSC was disabled, the XOSC will need a certain amount of time to stabilize on the correct frequency. This start-up time can be configured by changing the Oscillator Start-Up Time bit group (XOSCCTRL.STARTUP) in the External Multipurpose Crystal Oscillator Control register. During the start-up time, the oscillator output is masked to ensure that no unstable clock propagates to the digital logic.

The External Multipurpose Crystal Oscillator Ready bit in the Status register (STATUS.XOSCRDY) is set once the external clock or crystal oscillator is stable and ready to be used as a clock source. An interrupt is generated on a zero-to-one transition on STATUS.XOSCRDY if the External Multipurpose Crystal Oscillator Ready bit in the Interrupt Enable Set register (INTENSET.XOSCRDY) is set.

| Value | Description |
|-------|-------------|
| 0000  | 48MHz       |
| 0001  | 24MHz       |
| 0010  | 16MHz       |
| 0011  | 12MHz       |
| 0100  | 9.6MHz      |
| 0101  | 8MHz        |
| 0110  | 6.86MHz     |
| 0111  | 6MHz        |
| 1000  | 5.33MHz     |
| 1001  | 4.8MHz      |
| 1010  | 4.36MHz     |
| 1011  | 4MHz        |
| 1100  | 3.69MHz     |
| 1101  | 3.43MHz     |
| 1110  | 3.2MHz      |
| 1111  | 3MHz        |

# 20.8.10 OSC48M Startup

| Name:     | OSC48MSTUP         |
|-----------|--------------------|
| Offset:   | 0x16 [ID-00001eee] |
| Reset:    | 0x07               |
| Property: | -                  |

| Bit    | 7 | 6 | 5 | 4 | 3 | 2   | 1            | 0   |
|--------|---|---|---|---|---|-----|--------------|-----|
|        |   |   |   |   |   |     | STARTUP[2:0] |     |
| Access |   |   |   |   |   | R/W | R/W          | R/W |
| Reset  |   |   |   |   |   | 1   | 1            | 1   |

# Bits 2:0 – STARTUP[2:0]: Oscillator Startup Delay

These bits select the oscillator start-up delay in oscillator cycles.

# Table 20-6. Oscillator Divider Selection

| STARTUP[2:0] | Number of OSCM48M Clock<br>Cycles | Approximate Equivalent Time |
|--------------|-----------------------------------|-----------------------------|
| 0x0          | 8                                 | 166ns                       |
| 0x1          | 16                                | 333ns                       |
| 0x2          | 32                                | 667ns                       |
| 0x3          | 64                                | 1.333µs                     |
| 0x4          | 128                               | 2.667µs                     |
| 0x5          | 256                               | 5.333µs                     |
| 0x6          | 512                               | 10.667µs                    |
| 0x7          | 1024                              | 21.333µs                    |

| Value | Description                                                                              |
|-------|------------------------------------------------------------------------------------------|
| 0     | The DPLL Lock signal is cleared, when the DPLL is disabled or when the DPLL is trying to |
|       | reach the target frequency.                                                              |
| 1     | The DPLL Lock signal is asserted when the desired frequency is reached.                  |

#### 20.8.18 OSC48M Calibration

This register (bits 0 to 21) must be updated with the corresponding data in the NVM Software Calibration Area: CAL48M 5V or CAL48M 3V3, depending on the VDD range. Refer to NVM Software Calibration Area Mapping.

Note: This register is only available for Rev D silicon.

Name:CAL48MOffset:0x38 [ID-00001eee]Reset:Calibrated value for VDD range 3.6 V to 5.5 VProperty:PAC Write-Protection

| Bit    | 31 | 30 | 29        | 28  | 27  | 26     | 25   | 24      |
|--------|----|----|-----------|-----|-----|--------|------|---------|
|        |    |    |           |     |     |        |      |         |
| Access |    |    |           |     | -   |        |      |         |
| Reset  |    |    |           |     |     |        |      |         |
| 5.4    |    |    | <i></i>   |     | 10  | 10     |      | 10      |
| Bit    | 23 | 22 | 21        | 20  | 19  | 18     | 17   | 16      |
|        |    |    |           |     | TCA | L[5:0] |      |         |
| Access |    |    | R/W       | R/W | R/W | R/W    | R/W  | R/W     |
| Reset  |    |    | x         | x   | x   | x      | x    | x       |
|        |    |    |           |     |     |        |      |         |
| Bit    | 15 | 14 | 13        | 12  | 11  | 10     | 9    | 8       |
|        |    |    |           |     |     |        | FRAN | GE[1:0] |
| Access |    | •  |           | •   |     |        | R/W  | R/W     |
| Reset  |    |    |           |     |     |        | x    | x       |
|        |    |    |           |     |     |        |      |         |
| Bit    | 7  | 6  | 5         | 4   | 3   | 2      | 1    | 0       |
|        |    |    | FCAL[5:0] |     |     |        |      |         |
| Access |    |    | R/W       | R/W | R/W | R/W    | R/W  | R/W     |
| Reset  |    |    | х         | х   | х   | х      | х    | х       |

Bits 21:16 – TCAL[5:0]: Temperature Calibration

Bits 9:8 – FRANGE[1:0]: Frequency Range

# **Bits 5:0 – FCAL[5:0]: Frequency Calibration** Related Links

NVM Software Calibration Area Mapping

| Value | Description                                             |
|-------|---------------------------------------------------------|
| 0     | In active mode, the BODVDD operates in continuous mode. |
| 1     | In active mode, the BODVDD operates in sampling mode.   |

#### Bit 6 – RUNSTDBY: Run in Standby

This bit is not synchronized.

| Value | Description                                    |
|-------|------------------------------------------------|
| 0     | In standby sleep mode, the BODVDD is disabled. |
| 1     | In standby sleep mode, the BODVDD is enabled.  |

#### Bit 5 – STDBYCFG: BODVDD Configuration in Standby Sleep Mode

If the RUNSTDBY bit is set to '1', the STDBYCFG bit sets the BODVDD configuration in standby sleep mode.

This bit is not synchronized.

| Value | Description                                                                     |
|-------|---------------------------------------------------------------------------------|
| 0     | In standby sleep mode, the BODVDD is enabled and configured in continuous mode. |
| 1     | In standby sleep mode, the BODVDD is enabled and configured in sampling mode.   |

#### Bits 4:3 – ACTION[1:0]: BODVDD Action

These bits are used to select the BODVDD action when the supply voltage crosses below the BODVDD threshold.

These bits are loaded from NVM User Row at start-up.

This bit field is not synchronized.

| Value | Name  | Description                       |
|-------|-------|-----------------------------------|
| 0x0   | NONE  | No action                         |
| 0x1   | RESET | The BODVDD generates a reset      |
| 0x2   | INT   | The BODVDD generates an interrupt |
| 0x3   | -     | Reserved                          |

#### Bit 2 – HYST: Hysteresis

This bit indicates whether hysteresis is enabled for the BODVDD threshold voltage.

This bit is loaded from NVM User Row at start-up.

This bit is not synchronized.

| Value | Description         |
|-------|---------------------|
| 0     | No hysteresis.      |
| 1     | Hysteresis enabled. |

# Bit 1 – ENABLE: Enable

This bit is loaded from NVM User Row at start-up.

This bit is not enable-protected.

| Value | Description                       |
|-------|-----------------------------------|
| 0     | The EIC is clocked by GCLK_EIC.   |
| 1     | The EIC is clocked by CLK_ULP32K. |

#### Bit 1 – ENABLE: Enable

Due to synchronization there is a delay between writing to CTRLA.ENABLE until the peripheral is enabled/disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable bit in the Synchronization Busy register will be set (SYNCBUSY.ENABLE=1). SYNCBUSY.ENABLE will be cleared when the operation is complete.

This bit is not Enable-Protected.

This bit is Write-Synchronized.

| Value | Description          |
|-------|----------------------|
| 0     | The EIC is disabled. |
| 1     | The EIC is enabled.  |

#### Bit 0 – SWRST: Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the EIC to their initial state, and the EIC will be disabled.

Writing a '1' to CTRLA.SWRST will always take precedence, meaning that all other writes in the same write operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the Reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the Reset is complete.

This bit is not Enable-Protected.

This bit is Write-Synchronized.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | There is no ongoing reset operation. |
| 1     | The reset operation is ongoing.      |

#### 26.8.2 Non-Maskable Interrupt Control

Name:NMICTRLOffset:0x01Reset:0x00Property:PAC Write-Protection

| Bit    | 7 | 6 | 5 | 4         | 3         | 2   | 1             | 0   |
|--------|---|---|---|-----------|-----------|-----|---------------|-----|
|        |   |   |   | NMIASYNCH | NMIFILTEN |     | NMISENSE[2:0] |     |
| Access |   |   |   | R/W       | R/W       | R/W | R/W           | R/W |
| Reset  |   |   |   | 0         | 0         | 0   | 0             | 0   |

#### Bit 4 – NMIASYNCH: Asynchronous Edge Detection Mode

The NMI edge detection can be operated synchronously or asynchronously to the EIC clock.

# 27.4 Signal Description

Not applicable.

# 27.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described in the following sections.

### 27.5.1 Power Management

The NVMCTRL will continue to operate in any sleep mode where the selected source clock is running. The NVMCTRL interrupts can be used to wake up the device from sleep modes.

The Power Manager will automatically put the NVM block into a low-power state when entering sleep mode. This is based on the Control B register (CTRLB) SLEEPPRM bit setting. Refer to the CTRLB.SLEEPPRM register description for more details. The NVM block goes into low-power mode automatically when the device enters STANDBY mode regardless of SLEEPPRM. The NVM Page Buffer is lost when the NVM goes into low power mode therefore a write command must be issued prior entering the NVM low power mode. NVMCTRL SLEEPPRM can be disabled to avoid such loss when the CPU goes into sleep except if the device goes into STANDBY mode for which there is no way to retain the Page Buffer.

#### **Related Links**

PM – Power Manager

# 27.5.2 Clocks

Two synchronous clocks are used by the NVMCTRL. One is provided by the AHB bus (CLK\_NVMCTRL\_AHB) and the other is provided by the APB bus (CLK\_NVMCTRL\_APB). For higher system frequencies, a programmable number of wait states can be used to optimize performance. When changing the AHB bus frequency, the user must ensure that the NVM Controller is configured with the proper number of wait states. Refer to the Electrical Characteristics for the exact number of wait states to be used for a particular frequency range.

### **Related Links**

Electrical Characteristics 85°C (SAM C20/C21 E/G/J)

### 27.5.3 Interrupts

The NVM Controller interrupt request line is connected to the interrupt controller. Using the NVMCTRL interrupt requires the interrupt controller to be programmed first.

# 27.5.4 Debug Operation

When an external debugger forces the CPU into debug mode, the peripheral continues normal operation.

Access to the NVM block can be protected by the security bit. In this case, the NVM block will not be accessible. See the section on the NVMCTRL Security Bit for details.

### 27.5.5 Register Access Protection

All registers with write-access are optionally write-protected by the Peripheral Access Controller (PAC), except the following registers:

- Interrupt Flag Status and Clear register (INTFLAG)
- Status register (STATUS)

has control over the output state of the pad, as well as the ability to read the current physical pad state. Refer to *I/O Multiplexing and Considerations* for details.

Device-specific configurations may cause some lines (and the corresponding Pxy pin) not to be implemented.

#### **Related Links**

I/O Multiplexing and Considerations

#### 28.5.2 Power Management

During Reset, all PORT lines are configured as inputs with input buffers, output buffers and pull disabled.

The PORT peripheral will continue operating in any sleep mode where its source clock is running.

#### 28.5.3 Clocks

The PORT bus clock (CLK\_PORT\_APB) can be enabled and disabled in the Main Clock module, and the default state of CLK\_PORT\_APB can be found in the *Peripheral Clock Masking* section in *MCLK – Main Clock*.

The EVSYS and APB will insert wait states in the event of concurrent PORT accesses.

The PORT input synchronizers use the CPU main clock so that the resynchronization delay is minimized with respect to the APB clock.

### **Related Links**

MCLK – Main Clock

# 28.5.4 DMA

Not applicable.

### 28.5.5 Interrupts

Not applicable.

#### 28.5.6 Events

The events of this peripheral are connected to the Event System.

#### **Related Links**

EVSYS – Event System

#### 28.5.7 Debug Operation

When the CPU is halted in debug mode, this peripheral will continue normal operation. If the peripheral is configured to require periodical service by the CPU through interrupts or similar, improper operation or data loss may result during debugging. This peripheral can be forced to halt operation during debugging - refer to the Debug Control (DBGCTRL) register for details.

### 28.5.8 Register Access Protection

All registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC).

**Note:** Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

When the CPU is halted in debug mode, all write-protection is automatically disabled. Write-protection does not apply for accesses through an external debugger.

#### **Related Links**

#### 31.5.8 Register Access Protection

Registers with write-access can be write-protected optionally by the peripheral access controller (PAC).

PAC Write-Protection is not available for the following registers:

- Interrupt Flag Clear and Status register (INTFLAG)
- Status register (STATUS)
- Data register (DATA)

Optional PAC Write-Protection is denoted by the "PAC Write-Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

#### **Related Links**

PAC - Peripheral Access Controller

#### 31.5.9 Analog Connections

Not applicable.

# 31.6 Functional Description

#### 31.6.1 Principle of Operation

The USART uses the following lines for data transfer:

- RxD for receiving
- TxD for transmitting
- XCK for the transmission clock in synchronous operation

USART data transfer is frame based. A serial frame consists of:

- 1 start bit
- From 5 to 9 data bits (MSB or LSB first)
- No, even or odd parity bit
- 1 or 2 stop bits

A frame starts with the start bit followed by one character of data bits. If enabled, the parity bit is inserted after the data bits and before the first stop bit. After the stop bit(s) of a frame, either the next frame can follow immediately, or the communication line can return to the idle (high) state. The figure below illustrates the possible frame formats. Brackets denote optional bits.



# SAM C20/C21

| Offset | Name   | Bit Pos. |       |        |           |        |        |            |           |       |
|--------|--------|----------|-------|--------|-----------|--------|--------|------------|-----------|-------|
| 0xB6   |        | 23:16    |       |        |           | I      | F1P    | [5:0]      |           |       |
| 0xB7   |        | 31:24    | DMS   | S[1:0] |           |        |        |            | RF1L      | F1F   |
| 0xB8   |        | 7:0      |       |        |           |        | F1A    | I[5:0]     |           |       |
| 0xB9   |        | 15:8     |       |        | _         |        |        |            |           |       |
| 0xBA   | RAFIA  | 23:16    |       |        |           |        |        |            |           |       |
| 0xBB   |        | 31:24    |       |        |           |        |        |            |           |       |
| 0xBC   |        | 7:0      |       |        | F1DS[2:0] |        |        |            | F0DS[2:0] |       |
| 0xBD   | BYESC  | 15:8     |       |        |           |        |        |            | RBDS[2:0] |       |
| 0xBE   | NALSC  | 23:16    |       |        |           |        |        |            |           |       |
| 0xBF   |        | 31:24    |       |        |           |        |        |            |           |       |
| 0xC0   |        | 7:0      |       |        |           | TBS    | A[7:0] |            |           |       |
| 0xC1   | TXBC   | 15:8     |       |        | _         | TBSA   | [15:8] |            |           |       |
| 0xC2   | TABO   | 23:16    |       |        |           |        | NDT    | B[5:0]     |           |       |
| 0xC3   |        | 31:24    |       | TFQM   |           |        | TFQS   | S[5:0]     |           |       |
| 0xC4   |        | 7:0      |       |        |           |        | TFFL   | _[5:0]     |           |       |
| 0xC5   | TXFOS  | 15:8     |       |        |           |        |        | TFGI[4:0]  |           |       |
| 0xC6   |        | 23:16    |       |        | TFQF      |        |        | TFQPI[4:0] |           |       |
| 0xC7   |        | 31:24    |       |        |           |        |        |            |           |       |
| 0xC8   |        | 7:0      |       |        |           |        |        |            | TBDS[2:0] |       |
| 0xC9   | TXESC  | 15:8     |       |        |           |        |        |            |           |       |
| 0xCA   |        | 23:16    |       |        |           |        |        |            |           |       |
| 0xCB   |        | 31:24    |       |        |           |        |        |            |           |       |
| 0xCC   |        | 7:0      | TRPn  | TRPn   | TRPn      | TRPn   | TRPn   | TRPn       | TRPn      | TRPn  |
| 0xCD   | TXBRP  | 15:8     | TRPn  | TRPn   | TRPn      | TRPn   | TRPn   | TRPn       | TRPn      | TRPn  |
| 0xCE   | _      | 23:16    | TRPn  | TRPn   | TRPn      | TRPn   | TRPn   | TRPn       | TRPn      | TRPn  |
| 0xCF   |        | 31:24    | TRPn  | TRPn   | TRPn      | TRPn   | TRPn   | TRPn       | TRPn      | TRPn  |
| 0xD0   |        | 7:0      | ARn   | ARn    | ARn       | ARn    | ARn    | ARn        | ARn       | ARn   |
| 0xD1   | TXBAR  | 15:8     | ARn   | ARn    | ARn       | ARn    | ARn    | ARn        | ARn       | ARn   |
| 0xD2   |        | 23:16    | ARn   | ARn    | ARn       | ARn    | ARn    | ARn        | ARn       | ARn   |
| 0xD3   |        | 31:24    | ARn   | ARn    | ARn       | ARn    | ARn    | ARn        | ARn       | ARn   |
| 0xD4   |        | 7:0      | CRn   | CRn    | CRn       | CRn    | CRn    | CRn        | CRn       | CRn   |
| 0xD5   | TXBCR  | 15:8     | CRn   | CRn    | CRn       | CRn    | CRn    | CRn        | CRn       | CRn   |
| 0xD6   |        | 23:16    | CRN   | CRn    | CRn       | CRN    | CRN    | CRN        | CRN       | CRn   |
|        |        | 31:24    | CRN   | CRN    | CRN       | CRN    | CRN    | CRN        | CRN       | CRN   |
|        |        | 15.9     | TOn   | TOn    | TOn       | TOn    | TOn    | TOn        | TOn       | TOn   |
|        | ТХВТО  | 23.16    | TOn   | TOn    | TOn       | TOn    | TOn    | TOn        | TOn       | TOn   |
|        |        | 23.10    | TOn   | TOn    | TOn       | TOn    | TOn    | TOn        | TOn       | TOn   |
|        |        | 7.0      | CEn   | CEn    | CEn       | CEn    | CEn    | CEn        | CEn       | CEp   |
|        |        | 15.8     | CEn   | CEn    | CEn       | CEn    | CEn    | CEn        | CEn       | CEn   |
|        | TXBCF  | 23.16    | CEn   | C.Fn   | C.Fn      | C.En   | C.Fn   | C.Fn       | CEn       | CEn   |
| 0xDF   |        | 31.24    | CEn   | CFn    | CFn       | CFn    | CFn    | CFn        | CFn       | CEn   |
| 0xF0   |        | 7:0      | TIFn  | TIFn   | TIFn      | TIFn   | TIFn   | TIFn       | TIFn      | TIFn  |
| 0xF1   |        | 15.8     | TIFn  | TIFn   | TIEn      | TIFn   | TIFn   | TIFn       | TIFn      | TIFn  |
| 0xF2   | TXBTIE | 23.16    | TIFn  | TIEn   | TIEn      | TIEn   | TIFn   | TIFn       | TIFn      | TIEn  |
| 0xE3   |        | 31.24    | TIFn  | TIFn   | TIEn      | TIFn   | TIFn   | TIFn       | TIFn      | TIFn  |
| 0xF4   | TXBCIE | 7:0      | CFIEn | CEIEn  | CEIEn     | CEIEn  | CFIEn  | CEIEn      | CFIEn     | CFIFn |
|        |        |          |       | 311211 |           | 311211 | 5.121  | 3.120      | 5.121     |       |

| Bit    | 31  | 30  | 29  | 28  | 27  | 26  | 25  | 24  |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|
|        | CFn |
| Access | R   | R   | R   | R   | R   | R   | R   | R   |
| Reset  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|        |     |     |     |     |     |     |     |     |
| Bit    | 23  | 22  | 21  | 20  | 19  | 18  | 17  | 16  |
|        | CFn |
| Access | R   | R   | R   | R   | R   | R   | R   | R   |
| Reset  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|        |     |     |     |     |     |     |     |     |
| Bit    | 15  | 14  | 13  | 12  | 11  | 10  | 9   | 8   |
|        | CFn |
| Access | R   | R   | R   | R   | R   | R   | R   | R   |
| Reset  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |
|        |     |     |     |     |     |     |     |     |
| Bit    | 7   | 6   | 5   | 4   | 3   | 2   | 1   | 0   |
|        | CFn |
| Access | R   | R   | R   | R   | R   | R   | R   | R   |
| Reset  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0   |

# Bits 31:0 – CFn: Cancellation Finished

Each Tx Buffer has its own Cancellation Finished bit.

The bits are set when the corresponding TXBRP bit is cleared after a cancellation was requested via TXBCR. In case the corresponding TXBRP bit was not set at the point of cancellation, CF is set immediately.

The bits are reset when a new transmission is requested by writing '1' to the corresponding bit of register TXBAR.

### 34.8.43 Tx Buffer Transmission Interrupt Enable

 Name:
 TXBTIE

 Offset:
 0xE0 [ID-0000a4bb]

 Reset:
 0x0000000

 Property:

Name:DBGCTRLOffset:0x0FReset:0x00Property:PAC Write-Protection



# Bit 0 – DBGRUN: Run in Debug Mode

This bit is not affected by a software Reset, and should not be changed by software while the TC is enabled.

| Value | Description                                                                |
|-------|----------------------------------------------------------------------------|
| 0     | The TC is halted when the device is halted in debug mode.                  |
| 1     | The TC continues normal operation when the device is halted in debug mode. |

#### 35.7.1.12 Synchronization Busy

| Name:     | SYNCBUSY   |
|-----------|------------|
| Offset:   | 0x10       |
| Reset:    | 0x00000000 |
| Property: | -          |

| Bit    | 31 | 30  | 29  | 28    | 27     | 26    | 25     | 24    |
|--------|----|-----|-----|-------|--------|-------|--------|-------|
|        |    |     |     |       |        |       |        |       |
| Access |    |     |     |       |        |       |        |       |
| Reset  |    |     |     |       |        |       |        |       |
|        |    |     |     |       |        |       |        |       |
| Bit    | 23 | 22  | 21  | 20    | 19     | 18    | 17     | 16    |
|        |    |     |     |       |        |       |        |       |
| Access |    |     |     |       |        |       |        |       |
| Reset  |    |     |     |       |        |       |        |       |
|        |    |     |     |       |        |       |        |       |
| Bit    | 15 | 14  | 13  | 12    | 11     | 10    | 9      | 8     |
|        |    |     |     |       |        |       |        |       |
| Access |    |     |     |       |        |       |        |       |
| Reset  |    |     |     |       |        |       |        |       |
|        |    |     |     |       |        |       |        |       |
| Bit    | 7  | 6   | 5   | 4     | 3      | 2     | 1      | 0     |
|        |    | CCx | PER | COUNT | STATUS | CTRLB | ENABLE | SWRST |
| Access |    | R   | R   | R     | R      | R     | R      | R     |
| Reset  |    | 0   | 0   | 0     | 0      | 0     | 0      | 0     |

# Bit 6 – CCx: Compare/Capture Channel x Synchronization Busy

For details on CC channels number, refer to each TC feature list.

This bit is set when the synchronization of CCx between clock domains is started.

hardware update is performed. After all the buffer registers are loaded correctly, the buffered registers can be unlocked.

This bit has no effect when input capture operation is enabled.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the LUPD bit.

| Value | Description                                                                            |
|-------|----------------------------------------------------------------------------------------|
| 0     | The CCBUFx and PERBUF buffer registers value are copied into CCx and PER registers on  |
|       | hardware update condition.                                                             |
| 1     | The CCBUFx and PERBUF buffer registers value are not copied into CCx and PER registers |
|       | on hardware update condition.                                                          |

#### Bit 0 – DIR: Counter Direction

This bit is used to change the direction of the counter.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the bit and make the counter count up.

| Value | Description                                        |
|-------|----------------------------------------------------|
| 0     | The timer/counter is counting up (incrementing).   |
| 1     | The timer/counter is counting down (decrementing). |

#### 35.7.3.3 Control B Set

This register allows the user to set bits in the CTRLB register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Clear register (CTRLBCLR).

Name:CTRLBSETOffset:0x05Reset:0x00Property:PAC Write-Protection, Read-synchronized, Write-Synchronized

| Bit    | 7   | 6        | 5   | 4 | 3 | 2       | 1    | 0   |
|--------|-----|----------|-----|---|---|---------|------|-----|
|        |     | CMD[2:0] |     |   |   | ONESHOT | LUPD | DIR |
| Access | R/W | R/W      | R/W | - |   | R/W     | R/W  | R/W |
| Reset  | 0   | 0        | 0   |   |   | 0       | 0    | 0   |

### Bits 7:5 - CMD[2:0]: Command

These bits are used for software control of the TC. The commands are executed on the next prescaled GCLK\_TC clock cycle. When a command has been executed, the CMD bit group will be read back as zero.

Writing 0x0 to these bits has no effect.

Writing a value different from 0x0 to these bits will issue a command for execution.

| Value | Name      | Description                         |
|-------|-----------|-------------------------------------|
| 0x0   | NONE      | No action                           |
| 0x1   | RETRIGGER | Force a start, restart or retrigger |
| 0x2   | STOP      | Force a stop                        |

# Figure 37-13. Edge Detector



# 37.6.2.7 Sequential Logic

Each LUT pair can be connected to the internal sequential logic which can be configured to work as D flip flop, JK flip flop, gated D-latch or RS-latch by writing the Sequential Selection bits on the corresponding Sequential Control x register (SEQCTRLx.SEQSEL). Before using sequential logic, the GCLK\_CCL clock and optionally each LUT filter or edge detector must be enabled.

**Note:** While configuring the sequential logic, the even LUT must be disabled. When configured the even LUT must be enabled.

# Gated D Flip-Flop (DFF)

When the DFF is selected, the D-input is driven by the even LUT output (LUT0 and LUT2), and the G-input is driven by the odd LUT output (LUT1 and LUT3), as shown in Figure 37-14.

# Figure 37-14. D Flip Flop



When the even LUT is disabled (LUTCTRL0.ENABLE=0 / LUTCTRL2.ENABLE=0), the flip-flop is asynchronously cleared. The reset command (R) is kept enabled for one APB clock cycle. In all other cases, the flip-flop output (OUT) is refreshed on rising edge of the GCLK\_CCL, as shown in Table 37-2.

| R     | G | D | Ουτ                    |
|-------|---|---|------------------------|
| 1     | Х | Х | Clear                  |
| 0 1 1 |   | 1 | Set                    |
|       |   | 0 | Clear                  |
|       | 0 | Х | Hold state (no change) |

### JK Flip-Flop (JK)

When this configuration is selected, the J-input is driven by the even LUT output (LUT0 and LUT2), and the K-input is driven by the odd LUT output (LUT1 and LUT3), as shown in Figure 37-15.

# 38.3 Block Diagram

Figure 38-1. ADC Block Diagram



# 38.4 Signal Description

| Signal   | Description  | Туре                       |
|----------|--------------|----------------------------|
| VREFA    | Analog input | External reference voltage |
| AIN[110] | Analog input | Analog input channels      |

Note: One signal can be mapped on several pins.

#### **Related Links**

Configuration Summary I/O Multiplexing and Considerations

# 38.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

# 38.5.1 I/O Lines

Using the ADC's I/O lines requires the I/O pins to be configured using the port configuration (PORT).

# SAM C20/C21

| Bit    | 31  | 30  | 29  | 28       | 27         | 26  | 25  | 24  |
|--------|-----|-----|-----|----------|------------|-----|-----|-----|
|        |     |     |     |          |            |     |     |     |
| Access |     |     |     |          |            |     |     |     |
| Reset  |     |     |     |          |            |     |     |     |
|        |     |     |     |          |            |     |     |     |
| Bit    | 23  | 22  | 21  | 20       | 19         | 18  | 17  | 16  |
|        |     |     |     | OFFSETCO | DRR[23:16] |     |     |     |
| Access | R/W | R/W | R/W | R/W      | R/W        | R/W | R/W | R/W |
| Reset  | 0   | 0   | 0   | 0        | 0          | 0   | 0   | 0   |
|        |     |     |     |          |            |     |     |     |
| Bit    | 15  | 14  | 13  | 12       | 11         | 10  | 9   | 8   |
|        |     |     |     | OFFSETC  | ORR[15:8]  |     |     |     |
| Access | R/W | R/W | R/W | R/W      | R/W        | R/W | R/W | R/W |
| Reset  | 0   | 0   | 0   | 0        | 0          | 0   | 0   | 0   |
|        |     |     |     |          |            |     |     |     |
| Bit    | 7   | 6   | 5   | 4        | 3          | 2   | 1   | 0   |
|        |     |     |     | OFFSETC  | ORR[7:0]   |     |     |     |
| Access | R/W | R/W | R/W | R/W      | R/W        | R/W | R/W | R/W |
| Reset  | 0   | 0   | 0   | 0        | 0          | 0   | 0   | 0   |

# Bits 23:0 – OFFSETCORR[23:0]: Offset Correction

The OFFSETCORR is a signed integer value.

A specific offset, gain and shift can be applied to SDADC by performing the following operation:

(RESULT + OFFSETCORR) \*GAINCORR/2^SHIFTCORR

### 39.8.15 Gain Correction

Name:GAINCORROffset:0x18 [ID-0000243d]Reset:0x0001Property:PAC Write-Protection, Write-Synchronized

| Bit    | 15 | 14 | 13 | 12     | 11       | 10       | 9 | 8 |
|--------|----|----|----|--------|----------|----------|---|---|
|        |    |    |    |        | GAINCO   | RR[13:8] |   |   |
| Access |    |    | R  | R      | R        | R        | R | R |
| Reset  |    |    | 0  | 0      | 0        | 0        | 0 | 0 |
|        |    |    |    |        |          |          |   |   |
| Bit    | 7  | 6  | 5  | 4      | 3        | 2        | 1 | 0 |
|        |    |    |    | GAINCO | DRR[7:0] |          |   |   |
| Access | R  | R  | R  | R      | R        | R        | R | R |
| Reset  | 1  | 0  | 0  | 0      | 0        | 0        | 0 | 0 |

# Bits 13:0 – GAINCORR[13:0]: Gain Correction

A specific offset, gain and shift can be applied to SDADC by performing the following operation:

(RESULT + OFFSETCORR) \*GAINCORR/2^SHIFTCORR

# 39.8.16 Shift Correction

# SAM C20/C21

| Bit    | 31 | 30 | 29  | 28  | 27        | 26     | 25  | 24  |  |
|--------|----|----|-----|-----|-----------|--------|-----|-----|--|
|        |    |    |     |     |           |        |     |     |  |
| Access |    |    |     |     |           |        |     |     |  |
| Reset  |    |    |     |     |           |        |     |     |  |
|        |    |    |     |     |           |        |     |     |  |
| Bit    | 23 | 22 | 21  | 20  | 19        | 18     | 17  | 16  |  |
|        |    |    |     |     |           |        |     |     |  |
| Access |    | ł  | I   |     | l         |        |     |     |  |
| Reset  |    |    |     |     |           |        |     |     |  |
|        |    |    |     |     |           |        |     |     |  |
| Bit    | 15 | 14 | 13  | 12  | 11        | 10     | 9   | 8   |  |
|        |    |    |     |     | TCA       | _[5:0] |     |     |  |
| Access |    |    | R/W | R/W | R/W       | R/W    | R/W | R/W |  |
| Reset  |    |    | 0   | 0   | 0         | 0      | 0   | 0   |  |
|        |    |    |     |     |           |        |     |     |  |
| Bit    | 7  | 6  | 5   | 4   | 3         | 2      | 1   | 0   |  |
|        |    |    |     |     | FCAL[5:0] |        |     |     |  |
| Access |    |    | R/W | R/W | R/W       | R/W    | R/W | R/W |  |
| Reset  |    |    | 0   | 0   | 0         | 0      | 0   | 0   |  |

#### Bits 13:8 – TCAL[5:0]: Temperature Calibration

This value from production test must be loaded from the NVM software calibration row into the CAL register by software to achieve the specified accuracy. The value must be copied only, and must not be changed.

#### Bits 5:0 – FCAL[5:0]: Frequency Calibration

This value from production test must be loaded from the NVM software calibration row into the CAL register by software to achieve the specified accuracy. The value must be copied only, and must not be changed.

#### 43.8.16 Debug Control

 Name:
 DBGCTRL

 Offset:
 0x24 [ID-00001f13]

 Reset:
 0x00

 Property:
 –

| Bit    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0      |
|--------|---|---|---|---|---|---|---|--------|
|        |   |   |   |   |   |   |   | DBGRUN |
| Access |   |   |   |   |   |   |   | R/W    |
| Reset  |   |   |   |   |   |   |   | 0      |

# Bit 0 – DBGRUN: Debug Run

This bit is not reset by a software reset.

This bits controls the functionality when the CPU is halted by an external debugger.



# Bit 1 – ENABLE: Enable

Due to synchronization there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRLA.ENABLE will read back immediately and the ENABLE bit in the Synchronization Busy register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

This bit is not enable-protected.

| Value | Description                 |
|-------|-----------------------------|
| 0     | The peripheral is disabled. |
| 1     | The peripheral is enabled.  |

### Bit 0 – SWRST: Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the FREQM to their initial state, and the FREQM will be disabled. Writing a '1' to this bit will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the Reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the Reset is complete.

This bit is not enable-protected.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | There is no ongoing Reset operation. |
| 1     | The Reset operation is ongoing.      |

### 44.8.2 Control B

| Name:     | CTRLB              |
|-----------|--------------------|
| Offset:   | 0x01 [ID-00000e03] |
| Reset:    | 0x00               |
| Property: | -                  |

| Bit    | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
|--------|---|---|---|---|---|---|---|-------|
|        |   |   |   |   |   |   |   | START |
| Access |   |   |   |   |   |   |   | W     |
| Reset  |   |   |   |   |   |   |   | 0     |

#### Bit 0 – START: Start Measurement

| Value | Description                         |
|-------|-------------------------------------|
| 0     | Writing a '0' has no effect.        |
| 1     | Writing a '1' starts a measurement. |

### 44.8.3 Configuration A

# $C_{LEXT}=2$ ( $C_{L}-C_{STRAY}-C_{SHUNT}$ )

where  ${\tt C}_{\tt STRAY}$  is the capacitance of the pins and PCB and <code>CSHUNT</code> is the shunt capacitance of the <code>crystal</code>.

| Symbol                            | Parameter                                        | Conditions                                | Min. | Тур.  | Мах  | Units   |
|-----------------------------------|--------------------------------------------------|-------------------------------------------|------|-------|------|---------|
| f <sub>OUT</sub> <sup>(1)</sup>   | Crystal oscillator frequency                     |                                           | -    | 32768 | -    | Hz      |
| C <sub>L</sub> <sup>(1)</sup>     | Crystal load capacitance                         |                                           | -    | -     | 12.5 | pF      |
| C <sub>SHUNT</sub> <sup>(1)</sup> | Crystal shunt capacitance                        |                                           | -    | -     | 1.75 |         |
| Cm <sup>(1)</sup>                 | Motional capacitance                             |                                           | -    | 1.25  | -    | fF      |
| ESR                               | Crystal Equivalent Series Resistance<br>- SF = 3 | F = 32.768kHz,<br>C <sub>L</sub> =12.5 pF | -    | -     | 79   | kΩ      |
| Cxin32k                           | Parasitic capacitor load                         |                                           | -    | 2.9   | -    | pF      |
| Cxout32k                          |                                                  |                                           | -    | 3.2   | -    |         |
| Tstart                            | Startup time                                     | F = 32.768kHz,<br>C <sub>L</sub> =12.5 pF | -    | 16    | 24   | Kcycles |

# Table 45-43. 32kHz Crystal Oscillator Characteristics

# 1. These are based on simulation. These values are not covered by test or characterization

# Table 45-44. Power Consumption<sup>(1)</sup>

| Symbol          | Parameters          | Conditions | Та       | Тур. | Max  | Units |
|-----------------|---------------------|------------|----------|------|------|-------|
| I <sub>DD</sub> | Current consumption | VDD = 5.0V | Max 85°C | 1528 | 1720 | nA    |
|                 |                     |            | Typ 25°C |      |      |       |

1. These are based on characterization.

# 45.12.3 Digital Phase Locked Loop (DPLL) Characteristics

# Table 45-45. Fractional Digital Phase Locked Loop Characteristics

| Symbol                          | Parameter         | Conditions                                          | Min. | Тур. | Max. | Units |
|---------------------------------|-------------------|-----------------------------------------------------|------|------|------|-------|
| f <sub>IN</sub> <sup>(1)</sup>  | Input frequency   |                                                     | 32   |      | 2000 | KHz   |
| f <sub>OUT</sub> <sup>(1)</sup> | Output frequency  |                                                     | 48   |      | 96   | MHz   |
| Jp <sup>(2)</sup>               | Period jitter     | f <sub>IN</sub> = 32 kHz, f <sub>OUT</sub> = 48 MHz | -    | 1.5  | 3.0  | %     |
| (Pe                             | (Peak-Peak value) | f <sub>IN</sub> = 32 kHz, f <sub>OUT</sub> = 96 MHz | -    | 2.7  | 8.0  | _     |
|                                 |                   | f <sub>IN</sub> = 2 MHz, f <sub>OUT</sub> = 48 MHz  | -    | 1.8  | 4.0  |       |
|                                 |                   | f <sub>IN</sub> = 2 MHz, f <sub>OUT</sub> = 96 MHz  | -    | 2.5  | 6.0  |       |
| $t_{LOCK}^{(2)}$                | Lock Time         | After startup, time to get lock signal.             | -    | 1.1  | 1.5  | ms    |
|                                 |                   | f <sub>IN</sub> = 32 kHz,                           |      |      |      |       |
|                                 |                   | f <sub>OUT</sub> = 96 MHz                           |      |      |      |       |
|                                 |                   | After startup, time to get lock signal.             | -    | 25   | 35   | μs    |



Figure 49-4. External Analog Reference Schematic With One Reference



| Signal Name | Recommended Pin Connection                                                                                                                                    | Description                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| VREFA       | 2.0V to $V_{DDANA}$ - 0.6V for ADC 1.0V to $V_{DDANA}$ - 0.6V for DAC Decoupling/filtering capacitors: 100nF <sup>(1)(2)</sup> and 4.7 $\mu$ F <sup>(1)</sup> | External reference from VREFA pin on the analog port. |
| VREFB       | 1.0V to 5.5V for SDADC Decoupling/filtering capacitors: 100nF^{(1)(2)} and 4.7 $\mu F^{(1)}$                                                                  | External reference from VREFB pin on the analog port. |
| GND         |                                                                                                                                                               | Ground                                                |

# Note:

- 1. These values are given as a typical example.
- 2. Decoupling capacitor should be placed close to the device for each supply pin pair in the signal group.