

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

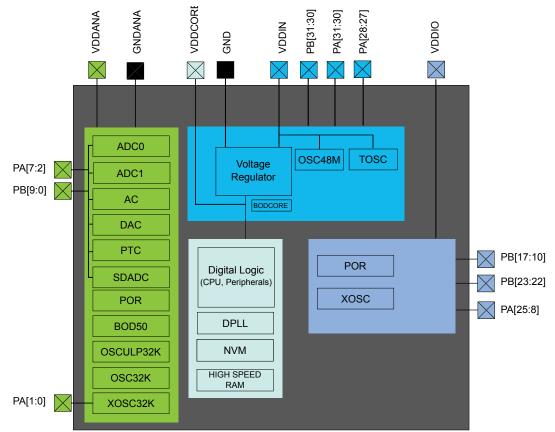
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿХF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 14x12b, 2x16b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc21g15a-aut


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7. Power Supply and Start-Up Considerations

7.1 Power Domain Overview

Figure 7-1. Power Domain Overview, SAM C20/C21 E/G/J

This flag is cleared by writing a one to the flag.

This flag is set when a Peripheral Access Error occurs while accessing the peripheral associated with the respective INTFLAGD bit, and will generate an interrupt request if INTENCLR/SET.ERR is one.

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the corresponding INTFLAGD interrupt flag.

 Name:
 INTFLAGD

 Offset:
 0x20 [ID-00000a18]

 Reset:
 0x000000

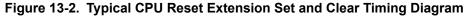
 Property:

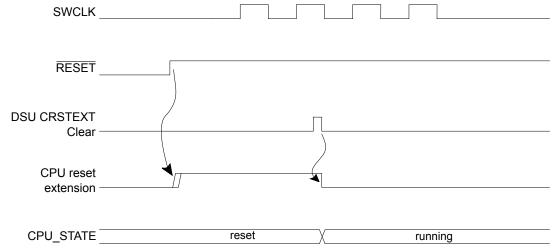
Bit	31	30	29	28	27	26	25	24
Access					-			
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Dit	7	0	_		0	0	1	0
Bit	7	6	5	4	3	2	1	0
				TC7	TC6	TC5	SERCOM7	SERCOM6
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 2, 3, 4 – TC5, TC6, TC7: Interrupt Flag for TCn [n = 7..5]

Bits 0, 1 – SERCOM6, SERCOM7: Interrupt Flag for SERCOMn [n = 7..6]

11.7.10 Peripheral Write Protection Status A


Writing to this register has no effect.


Reading STATUS register returns peripheral write protection status:

Value	Description
0	Peripheral is not write protected.
1	Peripheral is write protected.

13.6.2 CPU Reset Extension

"CPU reset extension" refers to the extension of the reset phase of the CPU core after the external reset is released. This ensures that the CPU is not executing code at startup while a debugger is connects to the system. The debugger is detected on a RESET release event when SWCLK is low. At startup, SWCLK is internally pulled up to avoid false detection of a debugger if the SWCLK pin is left unconnected. When the CPU is held in the reset extension phase, the CPU Reset Extension bit of the Status A register (STATUSA.CRSTEXT) is set. To release the CPU, write a '1' to STATUSA.CRSTEXT. STATUSA.CRSTEXT will then be set to '0'. Writing a '0' to STATUSA.CRSTEXT has no effect. For security reasons, it is not possible to release the CPU reset extension when the device is protected by the NVMCTRL security bit. Trying to do so sets the Protection Error bit (PERR) of the Status A register (STATUSA.PERR).

Related Links

NVMCTRL – Non-Volatile Memory Controller Security Bit

13.6.3 Debugger Probe Detection

13.6.3.1 Cold Plugging

Cold-Plugging is the detection of a debugger when the system is in reset. Cold-Plugging is detected when the CPU reset extension is requested, as described above.

13.6.3.2 Hot Plugging

Hot-Plugging is the detection of a debugger probe when the system is not in reset. Hot-Plugging is not possible under reset because the detector is reset when POR or RESET are asserted. Hot-Plugging is active when a SWCLK falling edge is detected. The SWCLK pad is multiplexed with other functions and the user must ensure that its default function is assigned to the debug system. If the SWCLK function is changed, the Hot-Plugging feature is disabled until a power-reset or external reset occurs. Availability of the Hot-Plugging feature can be read from the Hot-Plugging Enable bit of the Status B register (STATUSB.HPE).

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								SMEMP
Access								R
Reset								x

Bit 0 – SMEMP: System Memory Present

This bit indicates whether system memory is present on the bus that connects to the ROM table.

This bit is set at power-up if the device is not protected, indicating that the system memory is accessible from a debug adapter.

This bit is cleared at power-up if the device is protected, indicating that the system memory is not accessible from a debug adapter.

13.13.14 Peripheral Identification 4

 Name:
 PID4

 Offset:
 0x1FD0

 Reset:
 0x0000000

 Property:

SAM C20/C21

Offset	Name	Bit Pos.								
0x41		15:8			RUNSTDBY	DIVSEL	OE	OOV	IDC	GENEN
0x42		23:16				DIV[7:0]		1	
0x43		31:24				DIV[1	15:8]			
0x44										
	Reserved									
0x7F										
0x80		7:0	WRTLOCK	CHEN				GEN	I [3:0]	
0x81	PCHCTRL0	15:8								
0x82		23:16								
0x83		31:24								
0x84		7:0	WRTLOCK	CHEN				GEN	I [3:0]	
0x85	PCHCTRL1	15:8								
0x86		23:16								
0x87		31:24								
0x88		7:0	WRTLOCK	CHEN				GEN	I [3:0]	
0x89	PCHCTRL2	15:8								
0x8A		23:16								
0x8B		31:24								
0x8C		7:0	WRTLOCK	CHEN				GEN	I [3:0]	
0x8D	PCHCTRL3	15:8								
0x8E	-	23:16								
0x8F		31:24		OUEN				051	1[2-0]	
0x90	PCHCTRL4	7:0	WRTLOCK	CHEN				GEN	J [3:0]	
0x91		15:8								
0x92 0x93		23:16 31:24								
0x93 0x94		7:0	WRTLOCK	CHEN					J[3:0]	
0x94		15:8	WRILOCK	CHEN				GLI	4[J.U]	
0x96	PCHCTRL5	23:16								
0x97		31:24								
0x98		7:0	WRTLOCK	CHEN				GEN	J[3:0]	
0x99		15:8		0.1.E.N					.[0.0]	
0x9A	PCHCTRL6	23:16								
0x9B		31:24								
0x9C		7:0	WRTLOCK	CHEN				GEN	J [3:0]	
0x9D		15:8							-	
0x9E	PCHCTRL7	23:16								
0x9F		31:24								
0xA0		7:0	WRTLOCK	CHEN				GEN	I [3:0]	
0xA1	DOLLOTT	15:8								
0xA2	PCHCTRL8	23:16								
0xA3		31:24								
0xA4		7:0	WRTLOCK	CHEN				GEN	I [3:0]	
0xA5		15:8								
0xA6	PCHCTRL9	23:16								
0xA7		31:24								
0xA8	PCHCTRL10	7:0	WRTLOCK	CHEN				GEN	I [3:0]	

Value	Description
0	XOSC is not switched and provides the external clock or crystal oscillator clock.
1	XOSC is switched and provides the safe clock.

Bit 1 – CLKFAIL: XOSC Clock Failure

Value	Description
0	No XOSC failure detected.
1	A XOSC failure was detected.

Bit 0 – XOSCRDY: XOSC Ready

Ν	/alue	Description
C		XOSC is not ready.
1		XOSC is stable and ready to be used as a clock source.

20.8.5 External Multipurpose Crystal Oscillator (XOSC) Control

Name:XOSCCTRLOffset:0x10 [ID-00001eee]Reset:0x0080Property:PAC Write-Protection

Bit	15	14	13	12	11	10	9	8
		START	UP[3:0]		AMPGC		GAIN[2:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ONDEMAND	RUNSTDBY		SWBACK	CFDEN	XTALEN	ENABLE	
Access	R/W	R/W		R/W	R/W	R/W	R/W	
Reset	1	0		0	0	0	0	

Bits 15:12 - STARTUP[3:0]: Start-Up Time

These bits select start-up time for the oscillator.

The OSCULP32K oscillator is used to clock the start-up counter.

Table 20-5. Start-Up Time for External Multipurpose Crystal Oscillator

STARTUP[3:0]	Number of OSCULP32K Clock Cycles	Number of XOSC Clock Cycles	Approximate Equivalent Time [µs]
0x0	1	3	31
0x1	2	3	61
0x2	4	3	122
0x3	8	3	244
0x4	16	3	488
0x5	32	3	977

21. OSC32KCTRL – 32KHz Oscillators Controller

21.1 Overview

The 32KHz Oscillators Controller (OSC32KCTRL) provides a user interface to the 32.768kHz oscillators: XOSC32K, OSC32K, and OSCULP32K.

The OSC32KCTRL sub-peripherals can be enabled, disabled, calibrated, and monitored through interface registers.

All sub-peripheral statuses are collected in the Status register (STATUS). They can additionally trigger interrupts upon status changes via the INTENSET, INTENCLR, and INTFLAG registers.

21.2 Features

- 32.768kHz Crystal Oscillator (XOSC32K)
 - Programmable start-up time
 - Crystal or external input clock on XIN32 I/O
 - Clock failure detection with safe clock switch
 - Clock failure event output
- 32.768kHz High Accuracy Internal Oscillator (OSC32K)
 - Frequency fine tuning
 - Programmable start-up time
- 32.768kHz Ultra Low Power Internal Oscillator (OSCULP32K)
 - Ultra low power, always-on oscillator
 - Frequency fine tuning
- Calibration value loaded from Flash factory calibration at reset
- 1.024kHz clock outputs available

Bit 2 – VREFOE: Voltage Reference Output Enable

Value	Description
0	The Voltage Reference output is not available as an ADC input channel.
1	The Voltage Reference output is routed to an ADC input channel.

Bit 1 – TSEN: Temperature Sensor Enable

Value	Description
0	Temperature Sensor is disabled.
1	Temperature Sensor is enabled and routed to an ADC input channel.

23.6.7 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following registers are synchronized when written:

- Enable bit in Control A register (CTRLA.ENABLE)
- Window Enable bit in Control A register (CTRLA.WEN)
- Always-On bit in control Control A (CTRLA.ALWAYSON)

The following registers are synchronized when read:

• Watchdog Clear register (CLEAR)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

Required read-synchronization is denoted by the "Read-Synchronized" property in the register description.

23.6.8 Additional Features

23.6.8.1 Always-On Mode

The Always-On mode is enabled by setting the Always-On bit in the Control A register (CTRLA.ALWAYSON=1). When the Always-On mode is enabled, the WDT runs continuously, regardless of the state of CTRLA.ENABLE. Once written, the Always-On bit can only be cleared by a power-on reset. The Configuration (CONFIG) and Early Warning Control (EWCTRL) registers are read-only registers while the CTRLA.ALWAYSON bit is set. Thus, the time period configuration bits (CONFIG.PER, CONFIG.WINDOW, EWCTRL.EWOFFSET) of the WDT cannot be changed.

Enabling or disabling Window mode operation by writing the Window Enable bit (CTRLA.WEN) is allowed while in Always-On mode, but note that CONFIG.PER cannot be changed.

The Interrupt Clear and Interrupt Set registers are accessible in the Always-On mode. The Early Warning interrupt can still be enabled or disabled while in the Always-On mode, but note that EWCTRL.EWOFFSET cannot be changed.

Table WDT Operating Modes With Always-On shows the operation of the WDT for CTRLA.ALWAYSON=1.

WEN	Interrupt Enable	Mode
0	0	Always-on and normal mode
0	1	Always-on and normal mode with Early Warning interrupt
1	0	Always-on and window mode
1	1	Always-on and window mode with Early Warning interrupt

Table 23-2. WDT Operating Modes With Always-On

23.6.8.2 Early Warning

The Early Warning interrupt notifies that the WDT is approaching its time-out condition. The Early Warning interrupt behaves differently in Normal mode and in Window mode.

In Normal mode, the Early Warning interrupt generation is defined by the Early Warning Offset in the Early Warning Control register (EWCTRL.EWOFFSET). The Early Warning Offset bits define the number

Bit	15	14	13	12	11	10	9	8
	OVF						CMPn	CMPn
Access	R/W			·			R/W	R/W
Reset	0						0	0
Bit	7	6	5	4	3	2	1	0
	PERn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 - OVF: Overflow

This flag is cleared by writing a '1' to the flag.

This flag is set on the next CLK_RTC_CNT cycle after an overflow condition occurs, and an interrupt request will be generated if INTENCLR/SET.OVF is '1'.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Overflow interrupt flag.

Bits 9:8 – CMPn: Compare n [n = 1..0]

This flag is cleared by writing a '1' to the flag.

This flag is set on the next CLK_RTC_CNT cycle after a match with the compare condition, and an interrupt request will be generated if INTENCLR/SET.COMPn is one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Compare n interrupt flag.

Bits 7:0 – PERn: Periodic Interval n [n = 7..0]

This flag is cleared by writing a '1' to the flag.

This flag is set on the 0-to-1 transition of prescaler bit [n+2], and an interrupt request will be generated if INTENCLR/SET.PERx is one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Periodic Interval n interrupt flag.

24.10.6 Debug Control

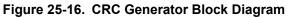
Name: DBGCTRL Offset: 0x0E Reset: 0x00 Property: PAC Write-Protection

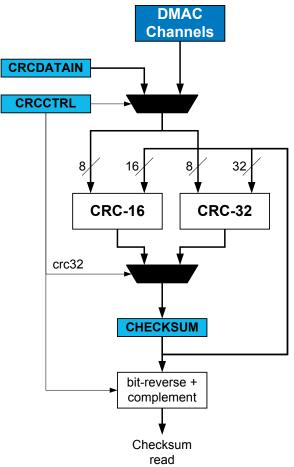
Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access								R/W
Reset								0

Bit 0 – DBGRUN: Debug Run

This bit is not reset by a software reset.

24.12.11 Alarm Mask in Clock/Calendar mode (CTRLA.MODE=2)


Name:MASKOffset:0x24Reset:0x00Property:PAC Write-Protection, Write-Synchronized


Bit	7	6	5	4	3	2	1	0
							SEL[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – SEL[2:0]: Alarm Mask Selection

These bits define which bit groups of ALARM are valid.

Value	Name	Description
0x0	OFF	Alarm Disabled
0x1	SS	Match seconds only
0x2	MMSS	Match seconds and minutes only
0x3	HHMMSS	Match seconds, minutes, and hours only
0x4	DDHHMMSS	Match seconds, minutes, hours, and days only
0x5	MMDDHHMMSS	Match seconds, minutes, hours, days, and months only
0x6	YYMMDDHHMMSS	Match seconds, minutes, hours, days, months, and years
0x7	-	Reserved

CRC on CRC-16 or CRC-32 calculations can be performed on data passing through any DMA

DMA channel. Once a DMA channel is selected as the source, the CRC engine will continuously generate the CRC on the data passing through the DMA channel. The checksum is available for readout once the DMA transaction is completed or aborted. A CRC can also be generated on SRAM, Flash, or I/O memory by passing these data through a DMA channel. If the latter is done, the destination register for the DMA data can be the data input (CRCDATAIN) register in the CRC engine.

CRC using the I/OBefore using the CRC engine with the I/O interface, the application must set the
CRC Beat Size bits in the CRC Control register (CRCCTRL.CRCBEATSIZE).
8/16/32-bit bus transfer type can be selected.

CRC can be performed on any data by loading them into the CRC engine using the CPU and writing the data to the CRCDATAIN register. Using this method, an arbitrary number of bytes can be written to the register by the CPU, and CRC is done continuously for each byte. This means if a 32-bit data is written to the CRCDATAIN register the CRC engine takes four cycles to calculate the CRC. The CRC complete is signaled by a set CRCBUSY bit in the CRCSTATUS register. New data can be written only when CRCBUSY flag is not set.

25.6.4 DMA Operation

Not applicable.

Bit	31	30	29	28	27	26	25	24	
	RRLVLEN3					LVLPF	RI3[3:0]		
Access	R/W				R/W	R/W	R/W	R/W	
Reset	0				0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
	RRLVLEN2					LVLPF	RI2[3:0]		
Access	R/W	•	•		R/W	R/W	R/W	R/W	
Reset	0				0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
	RRLVLEN1					LVLPF	RI1[3:0]		
Access	R/W	•	•		R/W	R/W	R/W	R/W	
Reset	0				0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
	RRLVLEN0				LVLPRI0[3:0]				
Access	R/W				R/W	R/W	R/W	R/W	
Reset	0				0	0	0	0	

Bit 31 – RRLVLEN3: Level 3 Round-Robin Arbitration Enable

This bit controls which arbitration scheme is selected for DMA channels with priority level 3. For details on arbitration schemes, refer to Arbitration.

Value	Description
0	Static arbitration scheme for channels with level 3 priority.
1	Round-robin arbitration scheme for channels with level 3 priority.

Bits 27:24 – LVLPRI3[3:0]: Level 3 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN3=1) for priority level 3, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 3.

When static arbitration is enabled (PRICTRL0.RRLVLEN3=0) for priority level 3, and the value of this bit group is non-zero, it will not affect the static priority scheme.

This bit group is not reset when round-robin arbitration gets disabled (PRICTRL0.RRLVLEN3 written to '0').

Bit 23 – RRLVLEN2: Level 2 Round-Robin Arbitration Enable

This bit controls which arbitration scheme is selected for DMA channels with priority level 2. For details on arbitration schemes, refer to Arbitration.

Value	Description
0	Static arbitration scheme for channels with level 2 priority.
1	Round-robin arbitration scheme for channels with level 2 priority.

Bits 19:16 – LVLPRI2[3:0]: Level 2 Channel Priority Number

When round-robin arbitration is enabled (PRICTRL0.RRLVLEN2=1) for priority level 2, this register holds the channel number of the last DMA channel being granted access as the active channel with priority level 2.

Value	Description
0	High-speed transfer disabled.
1	High-speed transfer enabled.

Bit 13 – LENEN: Transfer Length Enable

Value	Description
0	Automatic transfer length disabled.
1	Automatic transfer length enabled.

Bits 10:0 - ADDR[10:0]: Address

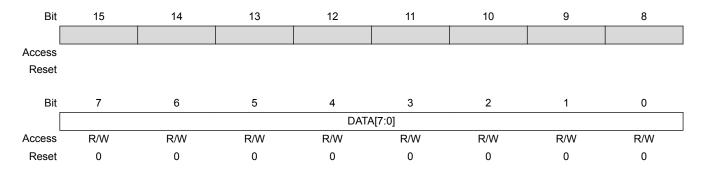
When ADDR is written, the consecutive operation will depend on the bus state:

UNKNOWN: INTFLAG.MB and STATUS.BUSERR are set, and the operation is terminated.

BUSY: The I²C master will await further operation until the bus becomes IDLE.

IDLE: The I²C master will issue a start condition followed by the address written in ADDR. If the address is acknowledged, SCL is forced and held low, and STATUS.CLKHOLD and INTFLAG.MB are set.

OWNER: A repeated start sequence will be performed. If the previous transaction was a read, the acknowledge action is sent before the repeated start bus condition is issued on the bus. Writing ADDR to issue a repeated start is performed while INTFLAG.MB or INTFLAG.SB is set.


STATUS.BUSERR, STATUS.ARBLOST, INTFLAG.MB and INTFLAG.SB will be cleared when ADDR is written.

The ADDR register can be read at any time without interfering with ongoing bus activity, as a read access does not trigger the master logic to perform any bus protocol related operations.

The I²C master control logic uses bit 0 of ADDR as the bus protocol's read/write flag (R/W); 0 for write and 1 for read.

33.10.10 Data

Name:DATAOffset:0x18 [ID-00001bb3]Reset:0x0000Property:Write-Synchronized, Read-Synchronized

Bits 7:0 - DATA[7:0]: Data

The master data register I/O location (DATA) provides access to the master transmit and receive data buffers. Reading valid data or writing data to be transmitted can be successfully done only when SCL is

SAM C20/C21

Offset	Name	Bit Pos.											
0x86		23:16				LSS	[7:0]						
0x87		31:24											
0x88		7:0				FLES	A[7:0]						
0x89		15:8		FLESA[15:8]									
0x8A	XIDFC	23:16					LSE[6:0]						
0x8B		31:24											
0x8C													
	Reserved												
0x8F 0x90		7:0				EIDN	4[7:0]						
0x90 0x91		15:8				EIDM							
0x91 0x92	XIDAM	23:16				EIDM							
0x92 0x93		31:24					23.10]	EIDM[28:24]					
0x93		7:0	MS	[[1:0]			BID>						
0x94 0x95		15:8	FLST	.[]			FIDX[6:0]	.[]					
0x96	HPMS	23:16	. 201				5,(0.0]						
0x97		31:24											
0x98		7:0	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x99	NDAT1	15:8	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x9A		23:16	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x9B		31:24	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x9C		7:0	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x9D		15:8	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x9E	NDAT2	23:16	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0x9F		31:24	NDn	NDn	NDn	NDn	NDn	NDn	NDn	NDn			
0xA0		7:0				F0SA	A[7:0]						
0xA1		15:8				F0SA	[15:8]						
0xA2	RXF0C	23:16					F0S[6:0]						
0xA3		31:24	F0OM				F0WM[6:0]						
0xA4		7:0					F0FL[6:0]						
0xA5	DVEQQ	15:8					F0G	I[5:0]					
0xA6	RXF0S	23:16					F0P	I[5:0]					
0xA7		31:24							RF0L	F0F			
0xA8		7:0					F0A	I[5:0]					
0xA9	RXF0A	15:8											
0xAA	INAEUA	23:16											
0xAB		31:24											
0xAC		7:0				RBS	A [7:0]						
0xAD	RXBC	15:8				RBSA	[15:8]						
0xAE	TABO	23:16											
0xAF		31:24											
0xB0		7:0				F1SA							
0xB1	RXF1C	15:8				F1SA							
0xB2		23:16					F1S[6:0]						
0xB3		31:24	F1OM				F1WM[6:0]						
0xB4	RXF1S	7:0					F1FL[6:0]						
0xB5		15:8					F1G	I[5:0]					

31	30	29	28	27	26	25	24
F1OM				F1WM[6:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
				F1S[6:0]			
	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
			F1SA	[15:8]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
			F1S/	\ [7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	•	•	0
_	F1OM R/W 0 23 15 R/W 0 7	F10M R/W R/W 0 0 23 22 23 22 R/W 0 15 14 R/W 0 7 6 R/W R/W	F10M R/W R/W R/W 0 0 0 23 22 21 23 22 21 R/W R/W 0 15 14 13 R/W R/W 0 0 0 0 7 6 5 R/W R/W R/W	F10M R/W R/W R/W R/W 0 0 0 0 23 22 21 20 23 22 21 20 R/W R/W R/W R/W 0 0 0 0 15 14 13 12 F1SA F1SA F1SA F1SA R/W R/W R/W R/W F1SA 7 6 5 4 F1SA F1SA F1SA F1SA R/W R/W R/W R/W F1SA	$\begin{array}{c c c c c c c c } \hline F10M & R/W & R/W & R/W & R/W & R/W \\ \hline R/W & 0 & 0 & 0 & 0 & 0 \\ \hline 23 & 22 & 21 & 20 & 19 & \\ \hline 23 & 22 & 21 & 20 & 19 & \\ \hline 23 & 22 & 21 & 20 & 19 & \\ \hline 15 & 14 & R/W & R/W & R/W & R/W & \\ \hline 0 & 0 & 0 & 0 & 0 & \\ \hline 15 & 14 & 13 & 12 & 11 & \\ \hline 15 & 14 & 13 & 12 & 11 & \\ \hline 15 & 14 & 13 & 12 & 11 & \\ \hline 15 & 14 & 13 & 12 & 11 & \\ \hline 15 & 14 & 13 & 12 & 11 & \\ \hline 16 & 5 & 14 & R/W & R/W & \\ \hline 17 & 6 & 5 & 4 & 3 & \\ \hline 7 & 6 & 5 & 4 & 3 & \\ \hline 7 & 6 & 5 & 4 & 3 & \\ \hline 7 & R/W & R/W & R/W & R/W & \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c } \hline F10M & F1W & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $	$\begin{array}{c c c c c c c c c c } F10M & F10M$

Bit 31 – F1OM: FIFO 1 Operation Mode

FIFO 1 can be operated in blocking or in overwrite mode.

Value	Description
0	FIFO 1 blocking mode.
1	FIFO 1 overwrite mode.

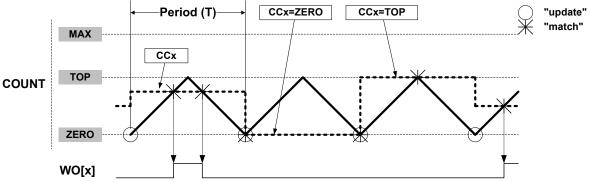
Bits 30:24 – F1WM[6:0]: Rx FIFO 1 Watermark

Value	Description				
0	Watermark interrupt disabled.				
1 - 64	Level for Rx FIFO 1 watermark interrupt (IR.RF1W).				
>64	Watermark interrupt disabled.				

Bits 22:16 - F1S[6:0]: Rx FIFO 1 Size

The Rx FIFO 1 elements are indexed from 0 to F1S - 1.

Value	Description
0	No Rx FIFO 1
1 - 64	Number of Rx FIFO 1 elements.
>64	Values greater than 64 are interpreted as 64.


Bits 15:0 – F1SA[15:0]: Rx FIFO 1 Start Address

Start address of Rx FIFO 1 in Message RAM. When the CAN module addresses the Message RAM it addresses 32-bit words, not single bytes. The configurable start addresses are 32-bit word addresses, i.e. only bits 15 to 2 are evaluated, the two least significant bits are ignored. Bits 1 to 0 will always be read back as "00".

34.8.32 Rx FIFO 1 Status

In DSBOTH operation, the circular buffer must be enabled to enable the update condition on TOP.

Using dual-slope PWM results in a lower maximum operation frequency compared to single-slope PWM generation. The period (TOP) defines the PWM resolution. The minimum resolution is 1 bit (TOP=0x00000001).

The following equation calculates the exact resolution for dual-slope PWM ($R_{PWM DS}$):

 $R_{\text{PWM}_{\text{DS}}} = \frac{\log(\text{PER}+1)}{\log(2)}.$

The PWM frequency $f_{PWM_{DS}}$ depends on the period setting (TOP) and the peripheral clock frequency $f_{GCLK TCC}$, and can be calculated by the following equation:

$$f_{\text{PWM}_{\text{DS}}} = \frac{f_{\text{GCLK}_{\text{TCC}}}}{2N \cdot \text{PER}}$$

N represents the prescaler divider used. The waveform generated will have a maximum frequency of half of the TCC clock frequency ($f_{GCLK TCC}$) when TOP is set to 0x00000001 and no prescaling is used.

The pulse width (P_{PWM_DS}) depends on the compare channel (CCx) register value and the peripheral clock frequency ($f_{GCLK TCC}$), and can be calculated by the following equation:

$$P_{\text{PWM}_\text{DS}} = \frac{2N \cdot (\text{TOP} - \text{CCx})}{f_{\text{GCLK}_\text{TCC}}}$$

N represents the prescaler divider used.

Note: In DSTOP, DSBOTTOM and DSBOTH operation, when TOP is lower than MAX/2, the CCx MSB bit defines the ramp on which the CCx Match interrupt or event is generated. (Rising if CCx[MSB] = 0, falling if CCx[MSB] = 1.)

Related Links

Circular Buffer

Dual-Slope Critical PWM Generation

Critical mode generation allows generation of non-aligned centered pulses. In this mode, the period time is controlled by PER while CCx control the generated waveform output edge during up-counting and CC(x+CC_NUM/2) control the generated waveform output edge during down-counting.

Bit	31	30	29	28	27	26	25	24
						FILTER	VAL[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
			BLANKVAL[7:0]					
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
		CAPTURE[2:0]		CHSEL[1:0]		HALT[1:0]		
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	RESTART	BLANK[1:0]		QUAL	KEEP		SRC	[1:0]
Access	R/W	R/W	R/W	R/W	R/W		R/W	R/W
Reset	0	0	0	0	0		0	0

Bits 27:24 – FILTERVAL[3:0]: Recoverable Fault n Filter Value

These bits define the filter value applied on MCEx (x=0,1) event input line. The value must be set to zero when MCEx event is used as synchronous event.

Bits 23:16 – BLANKVAL[7:0]: Recoverable Fault n Blanking Value

These bits determine the duration of the blanking of the fault input source. Activation and edge selection of the blank filtering are done by the BLANK bits (FCTRLn.BLANK).

When enabled, the fault input source is internally disabled for BLANKVAL* prescaled GCLK_TCC periods after the detection of the waveform edge.

Bits 14:12 – CAPTURE[2:0]: Recoverable Fault n Capture Action

These bits select the capture and Fault n interrupt/event conditions.

 Table 36-8. Fault n Capture Action

Value	Name	Description
0x0	DISABLE	Capture on valid recoverable Fault n is disabled
0x1	CAPT	On rising edge of a valid recoverable Fault n, capture counter value on channel selected by CHSEL[1:0]. INTFLAG.FAULTn flag rises on each new captured value.
0x2	CAPTMIN	On rising edge of a valid recoverable Fault n, capture counter value on channel selected by CHSEL[1:0], if COUNT value is lower than the last stored capture value (CC). INTFLAG.FAULTn flag rises on each local minimum detection.
0x3	CAPTMAX	On rising edge of a valid recoverable Fault n, capture counter value on channel selected by CHSEL[1:0], if COUNT value is higher than the last stored capture value (CC).

38. ADC – Analog-to-Digital Converter

38.1 Overview

The Analog-to-Digital Converter (ADC) converts analog signals to digital values. The ADC has up to 12bit resolution, and is capable of a sampling rate of up to 1MSPS. The input selection is flexible, and both differential and single-ended measurements can be performed. In addition, several internal signal inputs are available. The ADC can provide both signed and unsigned results.

ADC measurements can be started by either application software or an incoming event from another peripheral in the device. ADC measurements can be started with predictable timing, and without software intervention.

Both internal and external reference voltages can be used.

An integrated temperature sensor is available for use with the ADC. The bandgap voltage as well as the scaled I/O and core voltages can also be measured by the ADC.

The ADC has a compare function for accurate monitoring of user-defined thresholds, with minimum software intervention required.

The ADC can be configured for 8-, 10- or 12-bit results. ADC conversion results are provided left- or rightadjusted, which eases calculation when the result is represented as a signed value. It is possible to use DMA to move ADC results directly to memory or peripherals when conversions are done.

The SAM C20/C21 has two ADC instances, ADC0 and ADC1. The two inputs can be sampled simultaneously, as each ADC includes sample and hold circuits.

Note: When the Peripheral Touch Controller (PTC) is enabled, ADC0 is serving the PTC exclusively. In this case, ADC0 cannot be used by the user application.

38.2 Features

- Two Analog to Digital Converters (ADC) ADC0 and ADC1
- 8-, 10- or 12-bit resolution
- Up to 1,000,000 samples per second (1MSPS)
- Differential and single-ended inputs
 - Up to 12 analog inputs per ADC (20 unique channels total)
 16 positive and 7 negative, including internal and external
- Internal inputs:
 - Bandgap voltage
 - Scaled core supply
 - Scaled I/O supply
 - DAC
- Single, continuous and sequencing options
- Windowing monitor with selectable channel
- Conversion range: V_{ref} = [2.0V to VDD_{ANA}]
- Built-in internal reference and external reference options
- Event-triggered conversion for accurate timing (one event input)
- Optional DMA transfer of conversion settings or result

- 2.2. Select the required voltage for the internal voltage reference INTREF by writing to the Voltage Reference Selection bits (SUPC.VREF.SEL). The required value can be found in the Electrical Characteristics.
- 2.3. Enable routing INTREF to the ADC by writing a '1' to the Voltage Reference Output Enable bit (SUPC.VREF.VREFOE).
- 3. Configure the ADC:
 - 3.1. Select the internal voltage reference INTREF as ADC reference voltage by writing to the Reference Control register (ADC.REFCTRL.REFSEL).
 - 3.2. Select the temperature sensor vs. internal GND as input by writing TEMP and GND to the positive and negative MUX Input Selection bit fields (ADC.INPUTCTRL.MUXNEG and .MUXPOS, respectively).
 - 3.3. Configure the remaining ADC parameters according to the Electrical Characteristics.
 - 3.4. Enable the ADC and acquire a value, ADC_m.

Calculation Parameter Values

The temperature sensor behavior is linear, but it is sensitive to several parameters such as the internal voltage reference - which itself depends on the temperature. To take this into account, each device contains a Temperature Log row with individual calibration data measured and written during the production tests. These calibration values are read by software to infer the most accurate temperature readings possible.

The Temperature Log Row basically contains the following parameter set for two different temperatures ("ROOM" and "HOT"):

- Calibration temperatures in °C. One at room temperature temp_R, one at a higher temperature temp_H:
 - ROOM_TEMP_VAL_INT and ROOM_TEMP_VAL_DEC contain the measured temperature at room insertion, *temp*_R, in °C, separated in integer and decimal value.
 Example: For ROOM_TEMP_VAL_INT=0x19=25 and ROOM_TEMP_VAL_DEC=2, the measured temperature at room insertion is 25.2°C.
 - HOT_TEMP_VAL_INT and HOT_TEMP_VAL_DEC contain the measured temperature at hot insertion, *temp*_H, in °C. The integer and decimal value are also separated.
- For each temperature, the corresponding sensor value at the ADC in 12-bit, ADC_R and ADC_H:
 - ROOM_ADC_VAL contains the 12-bit ADC value, ADC_R, corresponding to *temp*_R. Its conversion to Volt is denoted V_{ADCR}.
 - HOT_ADC_VAL contains the 12-bit ADC value, ADC_H, corresponding to *temp*_H. Its conversion to Volt is denoted V_{ADCH}.
- Actual reference voltages at each calibration temperature in Volt, INT1V_R and INT1V_H, respectively:
 - ROOM_INT1V_VAL is the 2's complement of the internal 1V reference value at *temp*_R: INT1V_R.
 - HOT_INT1V_VAL is the 2's complement of the internal 1V reference value at $temp_{H}$: INT1V_H.
 - Both ROOM_INT1V_VAL and HOT_INT1V_VAL values are centered around 1V with a 0.001V step. In other words, the range of values [0,127] corresponds to [1V, 0.873V] and the range of values [-1, -127] corresponds to [1.001V, 1.127V]. INT1V == 1 (VAL/1000) is valid for both ranges.

Calculating the Temperature by Linear Interpolation

Using the data pairs (*temp*_R, V_{ADCR}) and (*temp*_H, V_{ADCH}) for a linear interpolation, we have the following equation: