

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 14x12b, 2x16b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc21g16a-mnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Offset	Name	Bit Pos.						
0xA9		15:8						
0xAA		23:16						
0xAB		31:24						
0xAC		7:0	WRTLOCK	CHEN		GEN	I[3:0]	1
0xAD		15:8						
0xAE	PUNCIRLII	23:16						
0xAF		31:24						
0xB0		7:0	WRTLOCK	CHEN		GEN	I[3:0]	
0xB1		15:8						
0xB2	FUNCTREIZ	23:16						
0xB3		31:24						
0xB4		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0xB5		15:8						
0xB6	T CHOTKE 13	23:16						
0xB7		31:24						
0xB8		7:0	WRTLOCK	CHEN		GEN	I[3:0]	
0xB9		15:8						
0xBA		23:16						
0xBB		31:24						
0xBC		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0xBD	PCHCTRI 15	15:8						
0xBE	T CHOTKETS	23:16						
0xBF		31:24						
0xC0		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0xC1		15:8						
0xC2	T ONOTICE TO	23:16						
0xC3		31:24						
0xC4		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0xC5	PCHCTRI 17	15:8						
0xC6		23:16						
0xC7		31:24						
0xC8		7:0	WRTLOCK	CHEN		GEN	I [3:0]	
0xC9	PCHCTRI 18	15:8						
0xCA	. SHOTTLETO	23:16						
0xCB		31:24						
0xCC		7:0	WRTLOCK	CHEN		GEN	I[3:0]	
0xCD	PCHCTRL19	15:8						
0xCE		23:16						
0xCF		31:24						
0xD0		7:0	WRTLOCK	CHEN		GEN	I[3:0]	
0xD1	PCHCTRI 20	15:8						
0xD2		23:16						
0xD3		31:24						
0xD4		7:0	WRTLOCK	CHEN		GEN	I[3:0]	
0xD5	PCHCTRI 21	15:8						
0xD6	1 ON OTHER	23:16						
0xD7		31:24						

Value	Description
0	The Early Warning interrupt is disabled.
1	The Early Warning interrupt is enabled.

23.8.5 Interrupt Enable Set

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Name:INTENSETOffset:0x05 [ID-0000067a]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
								EW
Access								R/W
Reset								0

Bit 0 – EW: Early Warning Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit sets the Early Warning Interrupt Enable bit, which enables the Early Warning interrupt.

Value	Description
0	The Early Warning interrupt is disabled.
1	The Early Warning interrupt is enabled.

23.8.6 Interrupt Flag Status and Clear

 Name:
 INTFLAG

 Offset:
 0x06 [ID-0000067a]

 Reset:
 0x00

 Property:
 N/A

Bit 0 – EW: Early Warning

This flag is cleared by writing a '1' to it.

This flag is set when an Early Warning interrupt occurs, as defined by the EWOFFSET bit group in EWCTRL.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Early Warning interrupt flag.

23.8.7 Synchronization Busy

27.7 Register Summary

Offset	Name	Bit Pos.								
0x00		7:0					CMD[6:0]			
0x01	CIRLA	15:8				CMDE	EX[7:0]			
0x02										
	Reserved									
0x03										
0x04		7:0	MANW				RWS	6[3:0]		
0x05		15:8							SLEEPF	PRM[1:0]
0x06	CIRLB	23:16						CACHEDIS	READM	ODE[1:0]
0x07		31:24								
0x08		7:0				NVM	P[7:0]			
0x09		15:8				NVMF	P[15:8]			
0x0A	PARAM	23:16		RWWE	EP[3:0]				PSZ[2:0]	
0x0B	-	31:24				RWWE	EP[11:4]			
0x0C	INTENCLR	7:0							ERROR	READY
0x0D										
	Reserved									
0x0F										
0x10	INTENSET	7:0							ERROR	READY
0x11										
	Reserved									
0x13										
0x14	INTFLAG	7:0							ERROR	READY
0x15										
	Reserved									
0x17										
0x18	0747110	7:0				NVME	LOCKE	PROGE	LOAD	PRM
0x19	STATUS	15:8								SB
0x1A										
	Reserved									
0x1B										
0x1C		7:0				ADD	R[7:0]			
0x1D		15:8				ADDF	R[15:8]			
0x1E	ADDR	23:16						ADDR[20:16]		
0x1F	-	31:24								
0x20	1.0.01/	7:0				LOC	K[7:0]			
0x21	LUCK	15:8				LOCK	([15:8]			
0x22										
	Reserved									
0x27										
0x28		7:0				PBLDA	TA[7:0]			
0x29		15:8				PBLDA	TA[15:8]			
0x2A	PBLDAIA0	23:16				PBLDAT	A[23:16]			
0x2B	-	31:24				PBLDAT	[A[31:24]			
0x2C		7:0				PBLDA	TA[7:0]			
0x2D	PBLDATA1	15:8				PBLDA	TA[15:8]			

BAUD Register Value	Serial Engine CPF	f _{BAUD} at 48MHz Serial Engine Frequency (f _{REF})
0 - 406	160	3MHz
407 – 808	161	2.981MHz
809 – 1205	162	2.963MHz
65206	31775	15.11kHz
65207	31871	15.06kHz
65208	31969	15.01kHz

Table 30-3. BAUD Register Value vs. Baud Frequency

30.6.3 Additional Features

30.6.3.1 Address Match and Mask

The SERCOM address match and mask feature is capable of matching either one address, two unique addresses, or a range of addresses with a mask, based on the mode selected. The match uses seven or eight bits, depending on the mode.

Address With Mask

An address written to the Address bits in the Address register (ADDR.ADDR), and a mask written to the Address Mask bits in the Address register (ADDR.ADDRMASK) will yield an address match. All bits that are masked are not included in the match. Note that writing the ADDR.ADDRMASK to 'all zeros' will match a single unique address, while writing ADDR.ADDRMASK to 'all ones' will result in all addresses being accepted.

Figure 30-4. Address With Mask

Two Unique Addresses

The two addresses written to ADDR and ADDRMASK will cause a match.

Figure 30-5. Two Unique Addresses

Startup Timing The minimum time between SDA transition and SCL rising edge is 6 APB cycles when the DATA register is written in smart mode. If a greater startup time is required due to long rise times, the time between DATA write and IF clear must be controlled by software.

Note: When timing is controlled by user, the Smart Mode cannot be enabled.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J)

Master Clock Generation (High-Speed Mode)

For I²C *Hs* transfers, there is no SCL synchronization. Instead, the SCL frequency is determined by the GCLK_SERCOMx_CORE frequency (f_{GCLK}) and the High-Speed Baud setting in the Baud register (BAUD.HSBAUD). When BAUD.HSBAUDLOW=0, the HSBAUD value will determine both SCL high and SCL low. In this case the following formula determines the SCL frequency.

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{2 + 2 \cdot HS \, BAUD}$$

When HSBAUDLOW is non-zero, the following formula determines the SCL frequency.

$$f_{\rm SCL} = \frac{f_{\rm GCLK}}{2 + HS \, BAUD + HSBAUDLOW}$$

Note: The I²C standard *Hs* (High-speed) requires a nominal high to low SCL ratio of 1:2, and HSBAUD should be set accordingly. At a minimum, BAUD.HSBAUD and/or BAUD.HSBAUDLOW must be non-zero.

Transmitting Address Packets

The I²C master starts a bus transaction by writing the I²C slave address to ADDR.ADDR and the direction bit, as described in Principle of Operation. If the bus is busy, the I²C master will wait until the bus becomes idle before continuing the operation. When the bus is idle, the I²C master will issue a start condition on the bus. The I²C master will then transmit an address packet using the address written to ADDR.ADDR. After the address packet has been transmitted by the I²C master, one of four cases will arise according to arbitration and transfer direction.

Case 1: Arbitration lost or bus error during address packet transmission

If arbitration was lost during transmission of the address packet, the Master on Bus bit in the Interrupt Flag Status and Clear register (INTFLAG.MB) and the Arbitration Lost bit in the Status register (STATUS.ARBLOST) are both set. Serial data output to SDA is disabled, and the SCL is released, which disables clock stretching. In effect the I²C master is no longer allowed to execute any operation on the bus until the bus is idle again. A bus error will behave similarly to the arbitration lost condition. In this case, the MB interrupt flag and Master Bus Error bit in the Status register (STATUS.BUSERR) are both set in addition to STATUS.ARBLOST.

The Master Received Not Acknowledge bit in the Status register (STATUS.RXNACK) will always contain the last successfully received acknowledge or not acknowledge indication.

In this case, software will typically inform the application code of the condition and then clear the interrupt flag before exiting the interrupt routine. No other flags have to be cleared at this moment, because all flags will be cleared automatically the next time the ADDR.ADDR register is written.

Case 2: Address packet transmit complete – No ACK received

If there is no I²C slave device responding to the address packet, then the INTFLAG.MB interrupt flag and STATUS.RXNACK will be set. The clock hold is active at this point, preventing further activity on the bus.

Bit	31	30	29	28	27	26	25	24
		REL	[3:0]			STER	P[3:0]	
Access	R	R	R	R	R	R	R	R
Reset	0	0	1	1	0	0	1	0
D :4	22	00	24	20	10	40	47	40
BIL	23	22	21	20	19	18	17	10
		SUBST	EP[3:0]					
Access	R	R	R	R				
Reset	0	0	0	1				
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
Access			1			1	1	

Reset

Bits 31:28 – REL[3:0]: Core Release

One digit, BCD-coded.

Bits 27:24 – STEP[3:0]: Step of Core Release One digit, BCD-coded.

Bits 23:20 – SUBSTEP[3:0]: Sub-step of Core Release

One digit, BCD-coded.

34.8.2 Endian

Name:ENDNOffset:0x04 [ID-0000a4bb]Reset:0x87654321Property:Read-only

Bit	31	30	29	28	27	26	25	24			
Access											
Reset											
Bit	23	22	21	20	19	18	17	16			
Access											
Reset											
Bit	15	14	13	12	11	10	9	8			
	FLST			FIDX[6:0]							
Access	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	MSI[1:0] BIDX[5:0]										
Access	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			

Bit 15 – FLST: Filter List

Indicates the filter list of the matching filter element.

Value	Description
0	Standard Filter List.
1	Extended Filter List.

Bits 14:8 – FIDX[6:0]: Filter Index

Index of matching filter element. Range is 0 to SIDFC.LSS - 1 (standard) or XIDFC.LSE - 1 (extended).

Bits 7:6 – MSI[1:0]: Message Storage Indicator

This field defines the message storage information to a FIFO.

Value	Name	Description
0x0	NONE	No FIFO selected.
0x1	LOST	FIFO message lost.
0x2	FIFO0	Message stored in FIFO 0.
0x3	FIFO1	Message stored in FIFO 1.

Bits 5:0 – BIDX[5:0]: Buffer Index

Index of Rx FIFO element to which the message was stored. Only valid when MSI[1] = 1.

34.8.25 New Data 1

 Name:
 NDAT1

 Offset:
 0x98 [ID-0000a4bb]

 Reset:
 0x0000000

 Property:

Bit	31	30	29	28	27	26	25	24
	NDn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	NDn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	NDn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	NDn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - NDn: New Data [n = 32..64]

The register holds the New Data flags of Rx Buffers 32 to 63. The flags are set when the respective Rx Buffer has been updated from a received frame. The flags remain set until the Host clears them. A flag is cleared by writing 1 to the corresponding bit position. Writing a 0 has no effect. A hard reset will clear the register.

34.8.27 Rx FIFO 0 Configuration

Name:RXF0COffset:0xA0 [ID-0000a4bb]Reset:0x00000000Property:Write-restricted

Value	Description
0	Tx FIFO operation.
1	Tx Queue operation.

Bits 29:24 – TFQS[5:0]: Transmit FIFO/Queue Size

Value	Description
0	No Tx FIFO/Queue.
1 - 32	Number of Tx Buffers used for Tx FIFO/Queue.
>32	Values greater than 32 are interpreted as 32.

Bits 21:16 – NDTB[5:0]: Number of Dedicated Transmit Buffers

Value	Description
0	No Tx FIFO/Queue.
1 - 32	Number of Tx Buffers used for Tx FIFO/Queue.
>32	Values greater than 32 are interpreted as 32.

Bits 15:0 – TBSA[15:0]: Tx Buffers Start Address

Start address of Tx Buffers section in Message RAM. When the CAN module addresses the Message RAM it addresses 32-bit words, not single bytes. The configurable start addresses are 32-bit word addresses, i.e. only bits 15 to 2 are evaluated, the two least significant bits are ignored. Bits 1 to 0 will always be read back as "00".

34.8.36 Tx FIFO/Queue Status

Note: In case of mixed configurations where dedicated Tx Buffers are combined with a Tx FIFO or a Tx Queue, the Put and Get Indexes indicate the number of the Tx Buffer starting with the first dedicated Tx Buffers. Example: For a configuration of 12 dedicated Tx Buffers and a Tx FIFO of 20 Buffers a Put Index of 15 points to the fourth buffer of the Tx FIFO.

Name:TXFQSOffset:0xC4 [ID-0000a4bb]Reset:0x00000000Property:Read-only

Offset	Name	Bit Pos.									
0x2F		31:24	PERBUF[31:24]				PERBUF[31:24]				
0x30		7:0	CCBUF[7:0]								
0x31	CCBUF0	15:8	CCBUF[15:8]								
0x32		23:16	CCBUF[23:16]								
0x33	31:24		CCBUF[31:24]								
0x34		7:0	CCBUF[7:0]								
0x35	CCBUF1	15:8	CCBUF[15:8]								
0x36		23:16	CCBUF[23:16]								
0x37	31:24		CCBUF[31:24]								

35.7.3.1 Control A

Name:CTRLAOffset:0x00Reset:0x00000000Property:PAC Write-Protection, Write-Synchronized, Enable-Protected

Bit	31	30	29	28	27	26	25	24
				CAPTMODE1[1:0]			CAPTMODE0[1:0]	
Access				R/W	R/W		R/W	R/W
Reset				0	0		0	0
Bit	23	22	21	20	19	18	17	16
			COPEN1	COPEN0			CAPTEN1	CAPTEN0
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	15	14	13	12	11	10	9	8
					ALOCK	F	PRESCALER[2:0]
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	ONDEMAND RUNSTDBY PRESCSYNC[1:0]		YNC[1:0]	MOD	E[1:0]	ENABLE	SWRST	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	W
Reset	0	0	0	0	0	0	0	0

Bits 28:27 – CAPTMODE1[1:0]: Capture mode Channel 1

These bits select the channel 1 capture mode.

Value	Name	Description
0x0	DEFAULT	Default capture
0x1	CAPTMIN	Minimum capture
0x2	CAPTMAX	Maximum capture
0x3		Reserved

Bits 25:24 – CAPTMODE0[1:0]: Capture mode Channel 0

These bits select the channel 0 capture mode.

Bit	31	30	29	28	27	26	25	24
				CC[3	1:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				CC[2	3:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				CC[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				CC	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – CC[31:0]: Channel x Compare/Capture Value

These bits contain the compare/capture value in 32-bit TC mode. In Match frequency (MFRQ) or Match PWM (MPWM) waveform operation (WAVE.WAVEGEN), the CC0 register is used as a period register.

35.7.3.16 Period Buffer Value, 32-bit Mode

Name:PERBUFOffset:0x2C [ID-00001cd8]Reset:0xFFFFFFFProperty:Write-Synchronized

Figure 36-38. DMA Triggers in DSBOTH Operation Mode and Circular Buffer Enabled

36.6.5.2 Interrupts

The TCC has the following interrupt sources:

- Overflow/Underflow (OVF)
- Retrigger (TRG)
- Count (CNT) refer also to description of EVCTRL.CNTSEL.
- Capture Overflow Error (ERR)
- Non-Recoverable Update Fault (UFS)
- Debug Fault State (DFS)
- Recoverable Faults (FAULTn)
- Non-recoverable Faults (FAULTx)
- Compare Match or Capture Channels (MCx)

These interrupts are asynchronous wake-up sources. See Sleep Mode Entry and Exit Table in PM/Sleep Mode Controller section for details.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Interrupt Enable Set (INTENSET) register, and disabled by writing a '1' to the corresponding bit in the Interrupt Enable Clear (INTENCLR) register. An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the TCC is reset. See INTFLAG for details on how to clear interrupt flags. The TCC has one common interrupt request line for all the interrupt sources. The user must read the INTFLAG register to determine which interrupt condition is present.

Note: Interrupts must be globally enabled for interrupt requests to be generated. Refer to *Nested Vector Interrupt Controller* for details.

Related Links

Nested Vector Interrupt Controller Sleep Mode Controller

36.6.5.3 Events

The TCC can generate the following output events:

Bit 0 – STOP: Stop

This bit is set when the TCC is disabled either on a STOP command or on an UPDATE condition when One-Shot operation mode is enabled (CTRLBSET.ONESHOT=1).

This bit is clear on the next incoming counter increment or decrement.

Value	Description
0	Counter is running.
1	Counter is stopped.

36.8.14 Counter Value

Note: Prior to any read access, this register must be synchronized by user by writing the according TCC Command value to the Control B Set register (CTRLBSET.CMD=READSYNC).

Name:COUNTOffset:0x34 [ID-00002e48]Reset:0x0000000Property:PAC Write-Protection, Write-Synchronized, Read-Synchronized

Bit	31	30	29	28	27	26	25	24
ſ								
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
	20		Z 1	COUNT	[[23:16]	10		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	 R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Γ				COUN	T[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ		-		COUN	IT[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - COUNT[23:0]: Counter Value

These bits hold the value of the counter register.

Note: When the TCC is configured as 16-bit timer/counter, the excess bits are read zero.

Note: This bit field occupies the MSB of the register, [23:m]. m is dependent on the Resolution bit in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [23:m]
0x0 - NONE	23:0 (depicted)
0x1 - DITH4	23:4

CTRLA.RESOLUTION	Bits [23:m]
0x2 - DITH5	23:5
0x3 - DITH6	23:6 (depicted)

Bits 5:0 – DITHERBUF[5:0]: Dithering Buffer Cycle Number

These bits represent the CCx.DITHER bits buffer. When the double buffering is enable, DITHERBUF bits value is copied to the CCx.DITHER bits on an UPDATE condition.

Note: This bit field consists of the n LSB of the register. n is dependent on the value of the Resolution bits in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [n:0]
0x0 - NONE	-
0x1 - DITH4	3:0
0x2 - DITH5	4:0
0x3 - DITH6	5:0 (depicted)

Figure 37-15. JK Flip Flop

When the even LUT is disabled (LUTCTRL0.ENABLE=0 / LUTCTRL2.ENABLE=0), the flip-flop is asynchronously cleared. The reset command (R) is kept enabled for one APB clock cycle. In all other cases, the flip-flop output (OUT) is refreshed on rising edge of the GCLK_CCL, as shown in Table 37-3.

Table 37-3. JK Characteristics

R	J	κ	ουτ
1	Х	Х	Clear
0	0	0	Hold state (no change)
0	0	1	Clear
0	1	0	Set
0	1	1	Toggle

Gated D-Latch (DLATCH)

When the DLATCH is selected, the D-input is driven by the even LUT output (LUT0 and LUT2), and the G-input is driven by the odd LUT output (LUT1 and LUT3), as shown in Figure 37-14.

Figure 37-16. D-Latch

When the even LUT is disabled (LUTCTRL0.ENABLE=0 / LUTCTRL2.ENABLE=0), the latch output will be cleared. The G-input is forced enabled for one more APB clock cycle, and the D-input to zero. In all other cases, the latch output (OUT) is refreshed as shown in Table 37-4.

Bit 0 – SWRST: Synchronization Busy

This bit is cleared when the synchronization of CTRLA.SWRST is complete.

This bit is set when the synchronization of CTRLA.SWRST is started.

44.8.9 Value

 Name:
 VALUE

 Offset:
 0x10 [ID-00000e03]

 Reset:
 0x0000000

 Property:

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				VALUE	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				VALUE	E[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	VALUE[7:0]							
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 23:0 – VALUE[23:0]: Measurement Value

Result from measurement.

45.10.4 Analog-to-Digital Converter (ADC) Characteristics

Table 45-18. Operating Conditions⁽¹⁾

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
Res	Resolution		-	-	12	bits
Rs	Sampling rate		10	-	1000	ksps
fs	Sampling clock		10	-	1000	kHz
	Differential mode Number of ADC clock cycles SAMPCTRL.OFFCOMP=1	resolution 12 bit (CTRLC.RESSEL=0)	-	16	-	cycles
		resolution 10 bit (CTRLC.RESSEL=2)	_	14		
		resolution 8 bit (CTRLC.RESSEL=3)		12		
	Differential mode Number of ADC clock cycles SAMPCTRL.OFFCOMP=0	resolution 12 bit (CTRLC.RESSEL=0)	-	SAMPLEN +13	-	cycles
	value of SAMPCTRL.SAMPLEN[5:0] register	resolution 10 bit (CTRLC.RESSEL=2)		SAMPLEN +11		
		resolution 8 bit (CTRLC.RESSEL=3)		SAMPLEN+9		
	Single-ended mode Number of ADC clock cycles SAMPCTRL.OFFCOMP=1	resolution 12 bit (CTRLC.RESSEL=0)	-	16	-	cycles
		resolution 10 bit (CTRLC.RESSEL=2)		15		
		resolution 8 bit (CTRLC.RESSEL=3)		13		
Si	Single-ended mode Number of ADC clock cycles SAMPCTRL.OFFCOMP=0 SAMPLEN corresponds to the decimal value of SAMPCTRL.SAMPLEN[5:0] register	resolution 12 bit (CTRLC.RESSEL=0)	-	SAMPLEN +13	-	cycles
		resolution 10 bit (CTRLC.RESSEL=2)		SAMPLEN +12		
		resolution 8 bit (CTRLC.RESSEL=3)		SAMPLEN +10		
fadc	ADC Clock frequency	SAMPCTRL.OFFCOMP=1 or CTRLC.R2R=1	-	fs*16	-	Hz
		SAMPCTRL.OFFCOMP=0	-	fs*13	-	
Ts	Sampling time	SAMPCTRL.OFFCOMP=1 or CTRLC.R2R=1	250	-	25000	ns
		SAMPCTRL.OFFCOMP=0	76	-	7692	
	Sampling time with DAC as input	SAMPCTRL.OFFCOMP=1 or CTRLC.R2R=1	3000	3000 -		
		SAMPCTRL.OFFCOMP=0	3000	-	7692	
	Conversion range	Differential mode	-VREF	-	+VREF	V
	Conversion range	Single-ended mode	0	-	VREF	
Vref	Reference input	REFCTRL.REFCOMP=1	2	-	VDDANA-0.6	V
		REFCTRL.REFCOMP=0	VDDANA	-	VDDANA	
Vin	Input channel range	-	0	-	VDDANA	V

Symbol	Parameters	Conditions	Min Typ Max		Max	Unit
		Single-Ended 1/(Cin x CLK_SDADC_FS x 2 mode		DC_FS x 2)		
	Input anti-alias filter	R _{EXT}	-	1.0	-	kΩ
recommendation (4		C _{EXT}	3.3	-	10	nF

- 1. These are based on simulation. These values are not covered by test or characterization.
- 2. External Anti-alias filter must be placed in front of each SDADC input to ensure high-frequency signals to not alias into measurement bandwidth. Use capacitors of X5R type for DC measurement, or capacitors of COG or NPO type for AC measurement.

Symbol	Parameters	Conditions (2)	Min	Тур	Max	Unit	
INL	Integral Non Linearity	CLK_SDADC = 6MHz; VREF = 1.2V	-	+/-1.3	+/-2	LSB	
		CLK_SDADC = 6MHz; INT VREF = 5.5V	-	+/-5.3	+/-11		
DNL	Differential Non Linearity	CLK_SDADC = 6MHz; VREF = 1.2V	-	+1.4/-1	+1.3/-1	LSB	
		CLK_SDADC = 6MHz; INT VREF = 5.5V	-	+2.1/-1	+1.7/-1		
Off	Offset Error	CLK_SDADC = 6MHz; VREF = 1.2V	-	+/-0.6	+/-3	mV	
		CLK_SDADC = 6MHz; INT VREF = 5.5V	-	+/-3.9	+/-6		
Тсо	Offset Error Drift	CLK_SDADC = 6MHz; VREF = 1.2V	2,3	3,6	5,0	uV/°C	
Eg	Gain Errors	CLK_SDADC = 6MHz; VREF = 1.2V	-	+/-1.1	+/-3.7	%	
		CLK_SDADC = 6MHz; INT VREF = 5.5V	-	+/-1.1	+/-3.4		
TCg	Gain Drift	CLK_SDADC = 6MHz; VREF = 1.2V	-10,9	1,2	7,6	ppm/°C	
Input noise rms	AC Input noise rms	OSR = 256	-	0,08	0,12	mVrms	

Table 45-23. SDADC DC Performance: Differential Input Mode ⁽¹⁾⁽²⁾

1. These are based on characterization.

2. OSR=256, Chopper ON, INL at -3dB.

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
		XOSC.GAIN=2				
		F = 16MHz	-	10.8	18.1	
		CL=20pF				
		XOSC.GAIN=3				
		F = 32MHz	-	8.7	15.4	
		CL=18pF				
		XOSC.GAIN=4				

1. These are based on characterization.

Table 45-41. Power Consumption ⁽¹⁾

Symbol	Parameters	Conditions	Та	Тур.	Мах	Units
IDD	Current consumption	F = 2MHz	Max 85°C	150	202	μA
		CL=20pF	Typ 25°C			
		XOSC.GAIN=0				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		138	192	
		F = 4MHz		220	288	
		CL=20pF				
		XOSC.GAIN=1				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		175	260	
		F = 8MHz		350	416	
		CL=20pF				
		XOSC.GAIN=2				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		247	321	
		F = 16MHz		663	843	
		CL=20pF				
		XOSC.GAIN=3				
		VDD = 5.0V				

- 1. These values are only given as a typical example.
- 2. The capacitors should be placed close to the device for each supply pin pair in the signal group.

49.7.3 External Real Time Oscillator

The low frequency crystal oscillator is optimized for use with a 32.768kHz watch crystal. When selecting crystals, load capacitance and the crystal's Equivalent Series Resistance (ESR) must be taken into consideration. Both values are specified by the crystal vendor.

SAM C20/C21 oscillator is optimized for very low power consumption, hence close attention should be made when selecting crystals.

The typical parasitic load capacitance values are available in the Electrical Characteristics section. This capacitance and PCB capacitance can allow using a crystal inferior to 12.5pF load capacitance without external capacitors as shown in Figure 49-8.

Figure 49-8. External Real Time Oscillator without Load Capacitor

To improve accuracy and Safety Factor, the crystal datasheet can recommend adding external capacitors as shown in Figure 49-9.

To find suitable load capacitance for a 32.768kHz crystal, consult the crystal datasheet.

Figure 49-9. External Real Time Oscillator with Load Capacitor

Table 49-6. External Real Time Oscillator Checklist

Signal Name	Recommended Pin Connection	Description
XIN32	Load capacitor 22pF ⁽¹⁾⁽²⁾	Timer oscillator input
XOUT32	Load capacitor 22pF ⁽¹⁾⁽²⁾	Timer oscillator output

1. These values are only given as typical examples.

2. The capacitors should be placed close to the device for each supply pin pair in the signal group.

Note: In order to minimize the cycle-to-cycle jitter of the external oscillator, keep the neighboring pins as steady as possible. For neighboring pin details, refer to the Oscillator Pinout section.