

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 14x12b, 2x16b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc21g17a-mnt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit 8 – DPLLLCKR: DPLL Lock Rise Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the DPLL Lock Rise Interrupt Enable bit, which enables the DPLL Lock Rise interrupt.

Value	Description
0	The DPLL Lock Rise interrupt is disabled.
1	The DPLL Lock Rise interrupt is enabled, and an interrupt request will be generated when
	the DPLL Lock Rise Interrupt flag is set.

Bit 4 – OSC48MRDY: OSC48M Ready Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the OSC48M Ready Interrupt Enable bit, which enables the OSC48M Ready interrupt.

Value	Description
0	The OSC48M Ready interrupt is disabled.
1	The OSC48M Ready interrupt is enabled, and an interrupt request will be generated when the OSC48M Ready Interrupt flag is set.

Bit 1 – CLKFAIL: XOSC Clock Failure Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the XOSC Clock Failure Interrupt Enable bit, which enables the XOSC Clock Failure Interrupt.

Value	Description
0	The XOSC Clock Failure Interrupt is disabled.
1	The XOSC Clock Failure Interrupt is enabled, and an interrupt request will be generated when the XOSC Clock Failure Interrupt flag is set.

Bit 0 – XOSCRDY: XOSC Ready Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the XOSC Ready Interrupt Enable bit, which enables the XOSC Ready interrupt.

Value	Description
0	The XOSC Ready interrupt is disabled.
1	The XOSC Ready interrupt is enabled, and an interrupt request will be generated when the XOSC Ready Interrupt flag is set.

20.8.3 Interrupt Flag Status and Clear

 Name:
 INTFLAG

 Offset:
 0x08 [ID-00001eee]

 Reset:
 0x00000000

 Property:

24.9 Register Summary - COUNT16

Offset	Name	Bit Pos.								
0x00		7:0					MOD	E[1:0]	ENABLE	SWRST
0x01	CIRLA	15:8	COUNTSYNC					PRESCA	LER[3:0]	
0x02										
	Reserved									
0x03										
0x04		7:0	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn
0x05	EVICTE	15:8	OVFEO						CMPEOn	CMPEOn
0x06	EVCIRE	23:16								
0x07		31:24								
0x08		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x09	INTENCLR	15:8	OVF						CMPn	CMPn
0x0A	INTENOET	7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0B	INTENSET	15:8	OVF						CMPn	CMPn
0x0C		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0D	INTELAG	15:8	OVF						CMPn	CMPn
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
0x10		7:0		COMPn	COMPn	PER	COUNT	FREQCORR	ENABLE	SWRST
0x11		15:8	COUNTSYNC							
0x12	- SYNCBUSY -	23:16								
0x13		31:24								
0x14	FREQCORR	7:0	SIGN				VALUE[6:0]			
0x15										
	Reserved									
0x17										
0x18		7:0				COUN	IT[7:0]			
0x19	COUNT	15:8				COUN	T[15:8]			
0x1A										
	Reserved									
0x1B										
0x1C		7:0				PER	[7:0]			
0x1D	PER	15:8				PER	[15:8]			
0x1E										
	Reserved									
0x1F										
0x20	COMPO	7:0				СОМ	P[7:0]			
0x21	COMPU	15:8				COMF	P[15:8]			
0x22	COMP1	7:0				COM	P[7:0]			
0x23	COMP1	15:8				COMF	P[15:8]			

24.10 Register Description - COUNT16

This Register Description section is valid if the RTC is in COUNT16 mode (CTRLA.MODE=1).

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
						CTRLB	ENABLE	SWRST
Access						R	R	R
Reset						0	0	0

Bit 2 – CTRLB: CTRLB Synchronization Busy

Writing to the CTRLB register when the SERCOM is enabled requires synchronization. When writing to CTRLB the SYNCBUSY.CTRLB bit will be set until synchronization is complete. If CTRLB is written while SYNCBUSY.CTRLB is asserted, an APB error will be generated.

Value	Description
0	CTRLB synchronization is not busy.
1	CTRLB synchronization is busy.

Bit 1 – ENABLE: SERCOM Enable Synchronization Busy

Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the SYNCBUSY.ENABLE bit will be set until synchronization is complete.

Writes to any register (except for CTRLA.SWRST) while enable synchronization is on-going will be discarded and an APB error will be generated.

Value	Description
0	Enable synchronization is not busy.
1	Enable synchronization is busy.

Bit 0 – SWRST: Software Reset Synchronization Busy

Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the SYNCBUSY.SWRST bit will be set until synchronization is complete.

Writes to any register while synchronization is on-going will be discarded and an APB error will be generated.

Value	Description
0	SWRST synchronization is not busy.
1	SWRST synchronization is busy.

31.8.11 Data

- Interrupt Flag Clear and Status register (INTFLAG)
- Status register (STATUS)
- Data register (DATA)

Optional PAC Write-Protection is denoted by the "PAC Write-Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

32.5.9 Analog Connections

Not applicable.

32.6 Functional Description

32.6.1 Principle of Operation

The SPI is a high-speed synchronous data transfer interface It allows high-speed communication between the device and peripheral devices.

The SPI can operate as master or slave. As master, the SPI initiates and controls all data transactions. The SPI is single buffered for transmitting and double buffered for receiving.

When transmitting data, the Data register can be loaded with the next character to be transmitted during the current transmission.

When receiving, the data is transferred to the two-level receive buffer, and the receiver is ready for a new character.

The SPI transaction format is shown in SPI Transaction Format. Each transaction can contain one or more characters. The character size is configurable, and can be either 8 or 9 bits.

Figure 32-2. SPI Transaction Format

The SPI master must pull the slave select line (\overline{SS}) of the desired slave low to initiate a transaction. The master and slave prepare data to send via their respective shift registers, and the master generates the serial clock on the SCK line.

Data are always shifted from master to slave on the Master Output Slave Input line (MOSI); data is shifted from slave to master on the Master Input Slave Output line (MISO).

Each time character is shifted out from the master, a character will be shifted out from the slave simultaneously. To signal the end of a transaction, the master will pull the \overline{SS} line high

32.6.2 Basic Operation

32.6.2.1 Initialization

The following registers are enable-protected, meaning that they can only be written when the SPI is disabled (CTRL.ENABLE=0):

Value	Description
0x00 -	Valid values are 0 to 127. The actual interpretation by the hardware of this value is such that
0x7F	one more than the programmed value is used.

Bits 24:16 – NBRP[8:0]: Nominal Baud Rate Prescaler

Value	Description
0x000 -	The value by which the oscillator frequency is divided for generating the bit time quanta. The
0x1FF	bit time is built up from a multiple of this quanta. Valid values for the Baud Rate Prescaler are
	0 to 511. The actual interpretation by the hardware of this value is such that one more than
	the value programmed here is used.

Bits 15:8 – NTSEG1[7:0]: Nominal Time segment before sample point

Value	Description
0x00 -	Valid values are 1 to 255. The actual interpretation by the hardware of this value is such that
0x7F	one more than the programmed value is used. NTSEG1 is the sum of Prop_Seg and
	Phase_Seg1.

Bits 6:0 – NTSEG2[6:0]: Time segment after sample point

Value	Description
0x00 -	Valid values are 0 to 127. The actual interpretation by the hardware of this value is such that
0x7F	one more than the programmed value is used. NTSEG2 is Phase_Seg2.

34.8.9 Timestamp Counter Configuration

This register is write-restricted and only writable if bit fields CCCR.CCE = 1 and CCCR.INIT = 1.

Name:TSCCOffset:0x20 [ID-0000a4bb]Reset:0x00000000Property:Write-restricted

 Name:
 RXF0A

 Offset:
 0xA8 [ID-0000a4bb]

 Reset:
 0x0000000

 Property:

Bits 5:0 – F0AI[5:0]: Rx FIFO 0 Acknowledge Index

After the Host has read a message or a sequence of messages from Rx FIFO 0 it has to write the buffer index of the last element read from Rx FIFO 0 to F0AI. This will set the Rx FIFO 0 Get Index RXF0S.F0GI to F0AI + 1 and update the FIFO 0 Fill Level RXF0S.F0FL.

34.8.30 Rx Buffer Configuration

This register is write-restricted and only writable if bit fields CCCR.CCE = 1 and CCCR.INIT = 1.

Name:RXBCOffset:0xAC [ID-0000a4bb]Reset:0x0000000Property:Write-restricted

SAM C20/C21

Bits 10:8 – RBDS[2:0]: Rx Buffer Data Field Size

In case the data field size of an accepted CAN frame exceeds the data field size configured for the matching Rx Buffer, only the number of bytes as configured by RXESC are stored to the Rx Buffer element. The rest of the frame's data field is ignored.

Value	Name	Description
0x0	DATA8	8 byte data field.
0x1	DATA12	12 byte data field.
0x2	DATA16	16 byte data field.
0x3	DATA20	20 byte data field.
0x4	DATA24	24 byte data field.
0x5	DATA32	32 byte data field.
0x6	DATA48	48 byte data field.
0x7	DATA64	64 byte data field.

Bits 6:4 – F1DS[2:0]: Rx FIFO 1 Data Field Size

In case the data field size of an accepted CAN frame exceeds the data field size configured for the matching Rx FIFO 1, only the number of bytes as configured by RXESC are stored to the Rx FIFO 1 element. The rest of the frame's data field is ignored.

Value	Name	Description
0x0	DATA8	8 byte data field.
0x1	DATA12	12 byte data field.
0x2	DATA16	16 byte data field.
0x3	DATA20	20 byte data field.
0x4	DATA24	24 byte data field.
0x5	DATA32	32 byte data field.
0x6	DATA48	48 byte data field.
0x7	DATA64	64 byte data field.

Figure 35-13. PWP Capture

Selecting PWP in the Event Action bit group in the Event Control register (EVCTRL.EVACT) enables the TC to perform one capture action on the rising edge and the other one on the falling edge. The period T will be captured into CC1 and the pulse width t_p in CC0. EVCTRL.EVACT=PPW (period and pulse-width) offers identical functionality, but will capture T into CC0 and t_p into CC1.

The TC Event Input Invert Enable bit in the Event Control register (EVCTRL.TCINV) is used to select whether the wraparound should occur on the rising edge or the falling edge. If EVCTRL.TCINV=1, the wraparound will happen on the falling edge. In case pin capture is enabled, this can also be achieved by modifying the value of the DRVCTRL.INVENx bit.

The TC can detect capture overflow of the input capture channels: When a new capture event is detected while the Capture Interrupt flag (INTFLAG.MCx) is still set, the new timestamp will not be stored and INTFLAG.ERR will be set.

Note: The corresponding capture is working only if the channel is enabled in capture mode (CTRLA.CAPTENx=1). If not, the capture action is ignored and the channel is enabled in compare mode of operation. Consequently, both channels must be enabled in order to fully characterize the input.

Pulse-Width Capture Action

The TC performs the input capture on the falling edge of the input signal. When the edge is detected, the counter value is cleared and the TC stops counting. When a rising edge is detected on the input signal, the counter restarts the counting operation. To enable the operation on opposite edges, the input signal to capture must be inverted (refer to DRVCTRL.INVEN or EVCTRL.TCEINV).

Name:DBGCTRLOffset:0x0FReset:0x00Property:PAC Write-Protection

Bit 0 – DBGRUN: Run in Debug Mode

This bit is not affected by a software Reset, and should not be changed by software while the TC is enabled.

Value	Description
0	The TC is halted when the device is halted in debug mode.
1	The TC continues normal operation when the device is halted in debug mode.

35.7.1.12 Synchronization Busy

Name:	SYNCBUSY
Offset:	0x10
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
		CCx	PER	COUNT	STATUS	CTRLB	ENABLE	SWRST
Access		R	R	R	R	R	R	R
Reset		0	0	0	0	0	0	0

Bit 6 – CCx: Compare/Capture Channel x Synchronization Busy

For details on CC channels number, refer to each TC feature list.

This bit is set when the synchronization of CCx between clock domains is started.

Name:WAVEOffset:0x0CReset:0x00Property:PAC Write-Protection, Enable-Protected

Bits 1:0 – WAVEGEN[1:0]: Waveform Generation Mode

These bits select the waveform generation operation. They affect the top value, as shown in Waveform Output Operations. They also control whether frequency or PWM waveform generation should be used. The waveform generation operations are explained in Waveform Output Operations.

Value	Name	Operation	Top Value	Output Waveform on Match	Output Waveform on Wraparound
0x0	NFRQ	Normal frequency	PER ¹ / Max	Toggle	No action
0x1	MFRQ	Match frequency	CC0	Toggle	No action
0x2	NPWM	Normal PWM	PER ¹ / Max	Set	Clear
0x3	MPWM	Match PWM	CC0	Set	Clear

These bits are not synchronized.

1) This depends on the TC mode: In 8-bit mode, the top value is the Period Value register (PER). In 16and 32-bit mode it is the respective MAX value.

35.7.2.10 Driver Control

Name:DRVCTRLOffset:0x0DReset:0x00Property:PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
								INVENx
Access								R/W
Reset								0

Bit 0 – INVENx: Output Waveform x Invert Enable

Bit x of INVEN[1:0] selects inversion of the output or capture trigger input of channel x.

Value	Description
0	Disable inversion of the WO[x] output and IO input pin.
1	Enable inversion of the WO[x] output and IO input pin.

35.7.2.11 Debug Control

Offset	Name	Bit Pos.								
0x2A		23:16					MCx	MCx	MCx	MCx
0x2B	Reserved									
0x2C		7:0					ERR	CNT	TRG	OVF
0x2D	INTFLAG	15:8	FAULTx	FAULTx	FAULTB	FAULTA	DFS	UFS		
0x2E		23:16					MCx	MCx	MCx	MCx
0x2F	Reserved									
0x30		7:0	PERBUFV	WAVEBUFV	PATTBUFV	SLAVE	DFS	UFS	IDX	STOP
0x31		15:8	FAULTx	FAULTx	FAULTB	FAULTA	FAULT1IN	FAULTOIN	FAULTBIN	FAULTAIN
0x32	STATUS	23:16					CCBUFVx	CCBUFVx	CCBUFVx	CCBUFVx
0x33		31:24					CMPx	CMPx	CMPx	CMPx
0x34		7:0				COUN	IT[7:0]			
0x35		15:8				COUN	T[15:8]			
0x36	COUNT	23:16				COUNT	 [[23:16]			
0x37		31:24								
0x38		7:0				PGE	0[7:0]			
0x39	PATT	15:8				PGV	0[7:0]			
0x3A										
	Reserved									
0x3B										
0x3C		7:0	CIPEREN						WAVEGEN[2:0]	
0x3D	WAVE	15:8					CICCEN3	CICCEN2	CICCEN1	CICCEN0
0x3E	WAVE	23:16					POL3	POL2	POL1	POL0
0x3F	-	31:24					SWAP3	SWAP2	SWAP1	SWAP0
0x40		7:0	PER	[1:0]		DITHER[5:0]				
0x41		15:8		PER[9:2]						
0x42	PER	23:16				PER[17:10]			
0x43		31:24								
0x44		7:0	CC	1:0]			DITHE	R[5:0]		
0x45	000	15:8	CC[9:2]							
0x46		23:16				CC[1	7:10]			
0x47		31:24								
0x48		7:0	CC[[1:0]			DITHE	R[5:0]		
0x49	001	15:8				CC[[9:2]			
0x4A	001	23:16				CC[1	7:10]			
0x4B		31:24								
0x4C		7:0	CC[1:0]			DITHE	R[5:0]		
0x4D	CC2	15:8				CC[9:2]			
0x4E	002	23:16			1	CC[1	7:10]			
0x4F		31:24								
0x50		7:0	CC[[1:0]			DITHE	R[5:0]		
0x51	CC3	15:8				CC[9:2]			
0x52		23:16				CC[1	7:10]			
0x53		31:24								
0x54										
	Reserved									
0x63										
0x64	PATTBUF	7:0				PGEB	80[7:0]			

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				PER[17:10]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8
				PER	[9:2]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
	PER	PER[1:0]			DITHE	ER[5:0]		
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 23:6 – PER[17:0]: Period Value

These bits hold the value of the period buffer register.

Note: When the TCC is configured as 16-bit timer/counter, the excess bits are read zero.

Note: This bit field occupies the MSB of the register, [23:m]. m is dependent on the Resolution bit in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [23:m]
0x0 - NONE	23:0
0x1 - DITH4	23:4
0x2 - DITH5	23:5
0x3 - DITH6	23:6 (depicted)

Bits 5:0 – DITHER[5:0]: Dithering Cycle Number

These bits hold the number of extra cycles that are added on the PWM pulse period every 64 PWM frames.

Note: This bit field consists of the n LSB of the register. n is dependent on the value of the Resolution bits in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [n:0]
0x0 - NONE	-
0x1 - DITH4	3:0
0x2 - DITH5	4:0
0x3 - DITH6	5:0 (depicted)

36.8.18 Compare/Capture Channel x

Name:PERBUFOffset:0x6C [ID-00002e48]Reset:0xFFFFFFFProperty:Write-Synchronized, Read-Synchronized

Bit	31	30	29	28	27	26	25	24
[
Access		•						
Reset								
Bit	23	22	21	20	19	18	17	16
[PERBU	F[17:10]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8
[PERBU	JF[9:2]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
[PERB	UF[1:0]			DITHERBUF[5:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 23:6 – PERBUF[17:0]: Period Buffer Value

These bits hold the value of the period buffer register. The value is copied to PER register on UPDATE condition.

Note: When the TCC is configured as 16-bit timer/counter, the excess bits are read zero.

Note: This bit field occupies the MSB of the register, [23:m]. m is dependent on the Resolution bit in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [23:m]
0x0 - NONE	23:0
0x1 - DITH4	23:4
0x2 - DITH5	23:5
0x3 - DITH6	23:6 (depicted)

Bits 5:0 – DITHERBUF[5:0]: Dithering Buffer Cycle Number

These bits represent the PER.DITHER bits buffer. When the double buffering is enabled, the value of this bit field is copied to the PER.DITHER bits on an UPDATE condition.

Note: This bit field consists of the n LSB of the register. n is dependent on the value of the Resolution bits in the Control A register (CTRLA.RESOLUTION):

Name:CTRLOffset:0x00 [ID-00000485]Reset:0x00Property:PAC Write-Protection

Bit 6 – RUNSTDBY: Run in Standby

This bit indicates if the GCLK_CCL clock must be kept running in standby mode. The setting is ignored for configurations where the generic clock is not required. For details refer to Sleep Mode Operation.

Value	Description
0	Generic clock is not required in standby sleep mode.
1	Generic clock is required in standby sleep mode.

Bit 1 – ENABLE: Enable

Value	Description
0	The peripheral is disabled.
1	The peripheral is enabled.

Bit 0 – SWRST: Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the CCL to their initial state.

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

37.8.2 Sequential Control x

Name:SEQCTRLOffset:0x04 + n*0x01 [n=0..1]Reset:0x00Property:PAC Write-Protection, Enable-Protected

Bit	7	6	5	4	3	2	1	0
						SEQSI	EL[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3:0 – SEQSEL[3:0]: Sequential Selection

These bits select the sequential configuration:

Sequential Selection

Bit 1 – OVERRUN: Overrun

This flag is cleared by writing a one to the flag.

This flag is set if RESULT is written before the previous value has been read by CPU, and an interrupt request will be generated if INTENCLR/SET.OVERRUN is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Overrun interrupt flag.

Bit 0 – RESRDY: Result Ready

This flag is cleared by writing a one to the flag or by reading the RESULT register.

This flag is set when the conversion result is available, and an interrupt will be generated if INTENCLR/ SET.RESRDY is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Result Ready interrupt flag.

39.8.8 Sequence Status

 Name:
 SEQSTATUS

 Offset:
 0x08 [ID-0000243d]

 Reset:
 0x00

 Property:

Bit	7	6	5	4	3	2	1	0
Γ	SEQBUSY					SEQST	ATE[3:0]	
Access	R				R	R	R	R
Reset	0				0	0	0	0

Bit 7 – SEQBUSY: Sequence busy

This bit is set when the sequence start.

This bit is clear when the last conversion in a sequence is done.

Bits 3:0 - SEQSTATE[3:0]: Sequence State

This bit field is the pointer of sequence. This value identifies the last conversion done in the sequence.

39.8.9 Input Control

Name:INPUTCTRLOffset:0x09 [ID-0000243d]Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit 0 – SWRST: Software Reset Synchronization Busy

This bit is cleared when the synchronization of the CTRLA.SWRST bit between the clock domains is complete.

This bit is set when the synchronization of the CTRLA.SWRST bit between clock domains is started.

41.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0		RUNSTDBY					ENABLE	SWRST
0x01	CTRLB	7:0	REFSE	EL[1:0]	DITHER		VPD	LEFTADJ	IOEN	EOEN
0x02	EVCTRL	7:0						INVEI	EMPTYEO	STARTEI
0x03	Reserved									
0x04	INTENCLR	7:0							EMPTY	UNDERRUN
0x05	INTENSET	7:0							EMPTY	UNDERRUN
0x06	INTFLAG	7:0							EMPTY	UNDERRUN
0x07	STATUS	7:0								READY
0x08	DATA	7:0				DAT	A[7:0]			
0x09	DATA	15:8				DATA	[15:8]			
0x0A										
	Reserved									
0x0B										
0x0C		7:0				DATAB	UF[7:0]			
0x0D	DATABOI	15:8				DATAB	UF[15:8]			
0x0E										
	Reserved									
0x0F										
0x10		7:0					DATABUF	DATA	ENABLE	SWRST
0x11	SYNCBUSY	15:8								
0x12	01100001	23:16								
0x13		31:24								
0x14										
	Reserved									
0x17										
0x18	DBGCTRL	7:0								DBGRUN

41.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to Synchronization.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

41.8.1 Control A

Name:INTENCLROffset:0x04 [ID-00001f13]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
					OVF	WINMON	OVERRUN	RESRDY
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bit 3 – OVF: Overflow Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Overflow Interrupt Enable bit, which disables the corresponding interrupt request.

Value	Description
0	The overflow interrupt is disabled.
1	The overflow interrupt is enabled, and an interrupt request will be generated when the
	Overflow interrupt flag is set.

Bit 2 – WINMON: Window Monitor Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Window Monitor Interrupt Enable bit, which disables the corresponding interrupt request.

Value	Description
0	The window monitor interrupt is disabled.
1	The window monitor interrupt is enabled, and an interrupt request will be generated when the
	Window Monitor interrupt flag is set.

Bit 1 – OVERRUN: Overrun Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Overrun Interrupt Enable bit, which disables the corresponding interrupt request.

Value	Description
0	The Overrun interrupt is disabled.
1	The Overrun interrupt is enabled, and an interrupt request will be generated when the
	Overrun interrupt flag is set.

Bit 0 – RESRDY: Result Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Result Ready Interrupt Enable bit, which disables the corresponding interrupt request.

Value	Description
0	The Result Ready interrupt is disabled.
1	The Result Ready interrupt is enabled, and an interrupt request will be generated when the
	Result Ready interrupt flag is set.

Table 45-31. Power Consumption⁽¹⁾

Symbol	Parameters	Conditions	Та	Тур.	Max	Units
IDDANA	Current consumption - V _{CM} =VDDANA/2 ±100 mV overdrive from Vcm Voltage scaler disabled	COMPCTRLn.SPEED = 0x0 VDDANA =3.3V	Max 85°C Typ 25°C	10	13	μA
		COMPCTRLn.SPEED = 0x3 VDDANA =3.3V		39	50	
	Current consumption Voltage scaler only	VDDANA =3.3V		43	54	

1. These are based on characterization.

45.10.8 Voltage Reference Characteristics

Table 45-32. Voltage Reference Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
ADC / SDADC / DAC Ref	C / DAC ADC, SDADC, DAC Internal reference	nom. 1.024V	1.003	1.024	1.045	V
		VDDANA=5.0V Ta= 25°C				
		nom. 2.048V VDDANA=5.0V Ta= 25°C	2.007	2.048	2.089	
		nom. 4.096V VDDANA=5.0V Ta= 25°C	4.014	4.096	4.178	
	Reference temperature coefficient	Drift over [-40, +25]°C	-	-0.025/0.04	-	%/°C
		Drift over [+25, +85]°C	-	-0.015/0.03	-	
		Drift over [+25, +105]°C	-	-0.015/0.03	-	
	Reference supply coefficient	Drift over [2.7, 5.5]V	-	-0.2/0.3	-	%/V

1. These are based on characterization.

45.10.9 Temperature Sensor Characteristics

Table 45-33. Temperature Sensor Characteristics⁽¹⁾

Parameter	Condition	Min.	Max.	Unit
Accuracy	[0,60]°C	-11.3	6.2	°C
	[-40,85]°C	-14.6	10.5	

Refer to the SAM-ICE, JTAGICE3 or SAM C21 Xplained Pro user guides for details on debugging and programming connections and options. For connecting to any other programming or debugging tool, refer to that specific programmer or debugger's user guide.

The SAM C21 Xplained Pro evaluation board for the SAM C20/C21 supports programming and debugging through the onboard embedded debugger so no external programmer or debugger is needed.

Note that a pull-up resistor on the SWCLK pin is critical for reliable operations. Refer to related link for more information.

Figure 49-11. SWCLK Circuit Connections

Pin Name	Description	Recommended Pin Connection
SWCLK	Serial wire clock pin	Pull-up resistor 1kΩ

Related Links

Operation in Noisy Environment

49.8.1 Cortex Debug Connector (10-pin)

For debuggers and/or programmers that support the Cortex Debug Connector (10-pin) interface the signals should be connected as shown in Figure 49-12 with details described in Table 49-8.