

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	52
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b, 3x16b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc21j15a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SAM C20/C21

	Pin ⁽¹⁾		I/O Pin	Supply	A				B ⁽²⁾⁽³⁾				С	D	E	F	G	н	I
SAM	SAM	SAM C21J			EIC	REF	ADC0	ADC1	AC	PTC	DAC	SDADC	SERCOM(2)(3)	SERCOM-ALT	тс	тсс	сом	AC/GCLK	CCL
C21E	C21G												(4)		тсс				
																			IN[3]
12	14	18	PA09	VDDIO	EXTINT[9]		AIN[9]	AIN[11]		X[1]/Y[17]			SERCOM0/	SERCOM2/	TCC0/WO[1]	TCC1/			CCL1/
12	15	10	DA10				A INI(10)			V[2]/V[19]			FAD[1]	FAD(I)		TCCO			
13	15	19	PAIU	VDDIO	EXTINITIO		AIN[10]			×[2]/1[10]			PAD[2]	PAD[2]		WO[2]		GCLK_IU[4]	IN[5]
14	16	20	PA11	VDDIO	EXTINT[11]		AIN[11]			X[3]/Y[19]			SERCOM0/	SERCOM2/	TCC1/WO[1]	TCC0/		GCLK_IO[5]	CCL1/
													PAD[3]	PAD[3]		WO[3]			OUT[1]
	19	23	PB10	VDDIO	EXTINT[10]									SERCOM4/ PAD[2]	TC1/WO[0]	TCC0/ WO[4]	CAN1/TX	GCLK_IO[4]	CCL1/ IN[5]
	20	24	PB11	VDDIO	EXTINT[11]									SERCOM4/	TC1/WO[1]	TCC0/	CAN1/RX	GCLK_IO[5]	CCL1/
														PAD[3]		WO[5]			OUT[1]
		25	PB12	VDDIO	EXTINT[12]					X[12]/Y[28]			SERCOM4/ PADI01		TC0/WO[0]	TCC0/ WO[6]		GCLK_IO[6]	
		26	PB13	VDDIO	EXTINT[13]					X[13]/Y[29]			SERCOM4/		TC0/WO[1]	TCC0/		GCLK_IO[7]	
		07	0044	VEDIO						V// /10//001			PAD[1]		TOURIO	WO[7]	0414/77	00114 10701	001.04
		21	PB14	VDDIO	EXTINI[14]					X[14]/1[30]			PAD[2]				CANI/TX	GCLK_IU[0]	IN[9]
		28	PB15	VDDIO	EXTINT[15]					X[15]/Y[31]			SERCOM4/		TC1/WO[1]		CAN1/RX	GCLK_IO[1]	CCL3/
													PAD[3]						IN[10]
	21	29	PA12	VDDIO	EXTINT[12]								SERCOM2/ PAD[0]	SERCOM4/ PAD[0]	TCC2/WO[0]	TCC0/ WO[6]		AC/CMP[0]	
	22	30	PA13	VDDIO	EXTINT[13]								SERCOM2/	SERCOM4/	TCC2/WO[1]	TCC0/		AC/CMP[1]	
15	23	31	PA14		EXTINT[14]								PAD[1] SERCOM2/	PAD[1]	TC4/WO[0]	WO[7]			
10	20			VDDIO	Extintities								PAD[2]	PAD[2]	104/10[0]	WO[4]		0051(_10[0]	
16	24	32	PA15	VDDIO	EXTINT[15]								SERCOM2/ PAD[3]	SERCOM4/ PAD[3]	TC4/WO[1]	TCC0/ WO[5]		GCLK_IO[1]	
17	25	35	PA16	VDDIO	EXTINT[0]					X[4]/Y[20]			SERCOM1/	SERCOM3/	TCC2/WO[0]	TCC0/		GCLK_IO[2]	CCL0/
													PAD[0]	PAD[0]		WO[6]			IN[0]
18	26	36	PA17	VDDIO	EXTINT[1]					X[5]/Y[21]			SERCOM1/ PAD[1]	SERCOM3/ PAD[1]	TCC2/WO[1]	TCC0/ WO[7]		GCLK_IO[3]	CCL0/ IN[1]
19	27	37	PA18	VDDIO	EXTINT[2]					X[6]/Y[22]			SERCOM1/	SERCOM3/	TC4/WO[0]	TCC0/		AC/CMPI01	CCL0/
													PAD[2]	PAD[2]		WO[2]			IN[2]
20	28	38	PA19	VDDIO	EXTINT[3]					X[7]/Y[23]			SERCOM1/	SERCOM3/	TC4/WO[1]	TCC0/		AC/CMP[1]	CCL0/
		30	PB16		EXTINT[0]								SERCOM5/	1 70[0]	TC2/W/0[0]	TCC0/			
		55	1010	VDDIO	EXTINU[0]								PAD[0]		102/100[0]	WO[4]		GOLK_IO[2]	IN[11]
		40	PB17	VDDIO	EXTINT[1]								SERCOM5/		TC2/WO[1]	TCC0/		GCLK_IO[3]	CCL3/
			DAGO	VEDIO						V/010//0/1			PAD[1]	05500140/	TOOMNOIO	WO[5]		00114 1044	001[3]
	29	41	PAZU	VDDIO	EXTINT[4]					A[0]/1[24]			PAD[2]	PAD[2]	103/00[0]	WO[6]		GCLK_IU[4]	
	30	42	PA21	VDDIO	EXTINT[5]					X[9]/Y[25]			SERCOM5/	SERCOM3/	TC3/WO[1]	TCC0/		GCLK_IO[5]	
21	31	43	PA22	VDDIO	EXTINT[6]					X[10]/Y[26]			SERCOM3/	SERCOM5/	TC0/WO[0]	TCC0/		GCLK IO[6]	CCL2/
													PAD[0]	PAD[0]		WO[4]			IN[6]
22	32	44	PA23	VDDIO	EXTINT[7]					X[11]/Y[27]			SERCOM3/ PAD[1]	SERCOM5/ PAD[1]	TC0/WO[1]	TCC0/ WO[5]		GCLK_IO[7]	CCL2/ IN[7]
23	33	45	PA24	VDDIO	EXTINT[12]								SERCOM3/	SERCOM5/	TC1/WO[0]	TCC1/	CAN0/TX	AC/CMP[2]	CCL2/
													PAD[2]	PAD[2]		WO[2]		[-]	IN[8]
24	34	46	PA25	VDDIO	EXTINT[13]								SERCOM3/	SERCOM5/	TC1/WO[1]	TCC1/	CAN0/RX	AC/CMP[3]	CCL2/
	37	49	DB22		EXTINITI61								FAD[3]	SERCOM5/	TC3/M/O[0]	110[3]	CANO/TY		
	57	45	1022	VDDIN	EXTINITIO									PAD[2]	103/100[0]		CANOTA	GOEK_IO[0]	IN[0]
	38	50	PB23	VDDIN	EXTINT[7]									SERCOM5/	TC3/WO[1]		CAN0/RX	GCLK_IO[1]	CCL0/
05		54	DAGT	MODINI										PAD[3]				00114 10701	001[0]
25	39	51	PA27 PA28	VDDIN	EXTINI[15]													GCLK_IO[0]	
31	45	57	PA30	VDDIN	EXTINT[10]									SERCOM1/	TCC1/WO[0]		CORTEX_M0P/	GCLK_IO[0]	CCL1/
														PAD[2]			SWCLK		IN[3]
32	46	58	PA31	VDDIN	EXTINT[11]									SERCOM1/ PAD[3]	TCC1/WO[1]		CORTEX_M0P/ SWDIO		CCL1/ OUT[1]
		59	PB30	VDDIN	EXTINT[14]									SERCOM5/	TCC0/WO[0]	TCC1/		AC/CMP[2]	
														PAD[0]		WO[2]			
		60	PB31	VDDIN	EXTINT[15]									SERCOM5/ PAD[1]	rcc0/w0[1]	TCC1/ WO[3]		AC/CMP[3]	
		61	PB00	VDDANA	EXTINT[0]			AIN[0]		Y[6]				SERCOM5/	TC3/WO[0]				CCL0/
			DEAL	VDD				A 13-17-13						PAD[2]	TOOLIG				IN[1]
		62	PB01	VDDANA	EXTINI[1]			AIN[1]		Y[7]				PAD[3]	103/W0[1]				IN[2]
	47	63	PB02	VDDANA	EXTINT[2]			AIN[2]		Y[8]				SERCOM5/	TC2/WO[0]				CCL0/
														PAD[0]					OUT[0]
	48	64	PB03	VDDANA	EXTINT[3]			AIN[3]		Y[9]				SERCOM5/ PAD[1]	TC2/WO[1]				

Bit Position	Name	Description
59:36	TSENS OFFSET	TSENS Offset Calibration. Should be written to TSENS OFFSET register.
63:60	Reserved	

Related Links

CAL GAIN OFFSET

9.6 Serial Number

Each device has a unique 128-bit serial number which is a concatenation of four 32-bit words contained at the following addresses:

Word 0: 0x0080A00C

Word 1: 0x0080A040

Word 2: 0x0080A044

Word 3: 0x0080A048

The uniqueness of the serial number is guaranteed only when using all 128 bits.

watermark mechanism is not being used and the trace buffer overflows, then the buffer wraps around overwriting previous trace packets.

The base address of the MTB registers is 0x41008000; this address is also written in the CoreSight ROM Table. The offset of each register from the base address is fixed and as defined by the CoreSight MTB-M0+ Technical Reference Manual. The MTB has 4 programmable registers to control the behavior of the trace features:

- POSITION: Contains the trace write pointer and the wrap bit,
- MASTER: Contains the main trace enable bit and other trace control fields,
- FLOW: Contains the WATERMARK address and the AUTOSTOP and AUTOHALT control bits,
- BASE: Indicates where the SRAM is located in the processor memory map. This register is provided to enable auto discovery of the MTB SRAM location, by a debug agent.

See the CoreSight MTB-M0+ Technical Reference Manual for a detailed description of these registers.

10.4 High-Speed Bus System

10.4.1 Features

High-Speed Bus Matrix has the following features:

- Symmetric crossbar bus switch implementation
- Allows concurrent accesses from different masters to different slaves
- 32-bit data bus
- Operation at a 1-to-1 clock frequency with the bus masters

10.4.2 Configuration

Figure 10-1. Master-Slave Relation High-Speed Bus Matrix, SAM C20/C21(1)

13.5.3 Clocks

The DSU bus clocks (CLK_DSU_APB and CLK_DSU_AHB) can be enabled and disabled by the Main Clock Controller.

Related Links

PM – Power Manager MCLK – Main Clock Peripheral Clock Masking

13.5.4 DMA

The DMA request lines are connected to the DMA Controller (DMAC). In order to use DMA requests with this peripheral the DMAC must be configured first. Refer to DMAC – Direct Memory Access Controller for details.

13.5.5 Interrupts

Not applicable.

13.5.6 Events

Not applicable.

13.5.7 Register Access Protection

Registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC), except for the following:

- Debug Communication Channel 0 register (DCC0)
- Debug Communication Channel 1 register (DCC1)

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

When the CPU is halted in debug mode, all write-protection is automatically disabled. Write-protection does not apply for accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

13.5.8 Analog Connections

Not applicable.

13.6 Debug Operation

13.6.1 Principle of Operation

The DSU provides basic services to allow on-chip debug using the ARM Debug Access Port and the ARM processor debug resources:

- CPU reset extension
- Debugger probe detection

For more details on the ARM debug components, refer to the ARM Debug Interface v5 Architecture Specification.

Writing a '1' to this bit has no effect.

This bit is set when Hot-Plugging is enabled.

This bit is cleared when Hot-Plugging is disabled. This is the case when the SWCLK function is changed. Only a power-reset or a external reset can set it again.

Bits 3,2 – DCCDx: Debug Communication Channel x Dirty [x=1..0]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit has no effect.

This bit is set when DCCx is written.

This bit is cleared when DCCx is read.

Bit 1 – DBGPRES: Debugger Present

Writing a '0' to this bit has no effect.

Writing a '1' to this bit has no effect.

This bit is set when a debugger probe is detected.

This bit is never cleared.

Bit 0 – PROT: Protected

Writing a '0' to this bit has no effect.

Writing a '1' to this bit has no effect.

This bit is set at power-up when the device is protected.

This bit is never cleared.

13.13.4 Address

Name:ADDROffset:0x0004Reset:0x0000000Property:PAC Write-Protection

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access		I	I					
Reset								
Bit	7	6	5	4	3	2	1	0
[PARTN	BL[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – PARTNBL[7:0]: Part Number Low

These bits will always return 0xD0 when read, indicating that this device implements a DSU module instance.

13.13.16 Peripheral Identification 1

Name: PID1 Offset: 0x1FE4 Reset: 0x00000FC Property: -

Bit	7	6	5	4	3	2	1	0
		WINDO	DW[3:0]			PER	[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:4 – WINDOW[3:0]: Window Mode Time-Out Period

In Window mode, these bits determine the watchdog closed window period as a number of cycles of the 1.024kHz CLK_WDT_OSC clock.

These bits are loaded from NVM User Row at start-up.

Value	Name	Description
0x0	CYC8	8 clock cycles
0x1	CYC16	16 clock cycles
0x2	CYC32	32 clock cycles
0x3	CYC64	64 clock cycles
0x4	CYC128	128 clock cycles
0x5	CYC256	256 clock cycles
0x6	CYC512	512 clock cycles
0x7	CYC1024	1024 clock cycles
0x8	CYC2048	2048 clock cycles
0x9	CYC4096	4096 clock cycles
0xA	CYC8192	8192 clock cycles
0xB	CYC16384	16384 clock cycles
0xC - 0xF	-	Reserved

Bits 3:0 – PER[3:0]: Time-Out Period

These bits determine the watchdog time-out period as a number of 1.024kHz CLK_WDTOSC clock cycles. In Window mode operation, these bits define the open window period.

These bits are loaded from NVM User Row at startup.

Value	Name	Description
0x0	CYC8	8 clock cycles
0x1	CYC16	16 clock cycles
0x2	CYC32	32 clock cycles
0x3	CYC64	64 clock cycles
0x4	CYC128	128 clock cycles
0x5	CYC256	256 clock cycles
0x6	CYC512	512 clock cycles
0x7	CYC1024	1024 clock cycles
0x8	CYC2048	2048 clock cycles
0x9	CYC4096	4096 clock cycles
0xA	CYC8192	8192 clock cycles
0xB	CYC16384	16384 clock cycles
0xC - 0xF	-	Reserved

Related Links

NVM User Row Mapping

23.8.3 Early Warning Control

24.7 Register Summary - COUNT32

Offset	Name	Bit Pos.								
0x00		7:0	MATCHCLR				MOD	E[1:0]	ENABLE	SWRST
0x01	CIRLA	15:8	COUNTSYNC					PRESCA	LER[3:0]	1
0x02										
	Reserved									
0x03										
0x04		7:0	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn
0x05	EVICTRI	15:8	OVFEO							CMPEO0
0x06	Evente	23:16								
0x07		31:24								
0x08		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x09	INTENCER	15:8	OVF							CMP0
0x0A	INTENSET	7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0B	INTENSET	15:8	OVF							CMP0
0x0C		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0D	INTLAG	15:8	OVF							CMP0
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
0x10		7:0			COMP0		COUNT	FREQCORR	ENABLE	SWRST
0x11	SANCHISA	15:8	COUNTSYNC							
0x12	STINCBUST	23:16								
0x13		31:24								
0x14	FREQCORR	7:0	SIGN		1		VALUE[6:0]	1		
0x15										
	Reserved									
0x17										
0x18		7:0				COUN	IT[7:0]			
0x19	COUNT	15:8				COUN	T[15:8]			
0x1A		23:16				COUNT	[23:16]			
0x1B		31:24		COUNT[31:24]						
0x1C										
	Reserved									
0x1F										
0x20		7:0				COM	P[7:0]			
0x21	COMPO	15:8				COMF	P[15:8]			
0x22		23:16				COMP	[23:16]			
0x23		31:24				COMP	[31:24]			

24.8 Register Description - COUNT32

This Register Description section is valid if the RTC is in COUNT32 mode (CTRLA.MODE=0).

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Bit	15	14	13	12	11	10	9	8
	OVF						CMPn	CMPn
Access	R/W						R/W	R/W
Reset	0						0	0
Bit	7	6	5	4	3	2	1	0
	PERn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 – OVF: Overflow Interrupt Enable

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Overflow Interrupt Enable bit, which disables the Overflow interrupt.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled.

Bits 9:8 – CMPn: Compare n Interrupt Enable [n = 1..0]

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Compare n Interrupt Enable bit, which disables the Compare n interrupt.

Value	Description
0	The Compare n interrupt is disabled.
1	The Compare n interrupt is enabled.

Bits 7:0 – PERn: Periodic Interval n Interrupt Enable [n = 7..0]

Writing a '0' to this bit has no effect. Writing a '1' to this bit will clear the Periodic Interval n Interrupt Enable bit, which disables the Periodic Interval n interrupt.

Value	Description
0	Periodic Interval n interrupt is disabled.
1	Periodic Interval n interrupt is enabled.

24.10.4 Interrupt Enable Set in COUNT16 mode (CTRLA.MODE=1)

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear (INTENCLR) register.

Name:INTENSETOffset:0x0AReset:0x0000Property:PAC Write-Protection

Address register (ADDR)

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

30.5.9 Analog Connections

Not applicable.

30.6 Functional Description

30.6.1 Principle of Operation

The basic structure of the SERCOM serial engine is shown in Figure 30-2. Labels in capital letters are synchronous to the system clock and accessible by the CPU; labels in lowercase letters can be configured to run on the GCLK_SERCOMx_CORE clock or an external clock.

Figure 30-2. SERCOM Serial Engine

The transmitter consists of a single write buffer and a shift register.

The receiver consists of a two-level receive buffer and a shift register.

The baud-rate generator is capable of running on the GCLK_SERCOMx_CORE clock or an external clock.

Address matching logic is included for SPI and I²C operation.

30.6.2 Basic Operation

30.6.2.1 Initialization

The SERCOM must be configured to the desired mode by writing the Operating Mode bits in the Control A register (CTRLA.MODE). Refer to table SERCOM Modes for details.

33.7 Register Summary - I2C Slave

Offset	Name	Bit Pos.								
0x00		7:0	RUNSTDBY				MODE[2:0]		ENABLE	SWRST
0x01		15:8								
0x02	CIRLA	23:16	SEXTTOEN		SDAHO	DLD[1:0]				PINOUT
0x03		31:24		LOWTOUT			SCLSM		SPEE	D[1:0]
0x04		7:0								
0x05		15:8	AMOE	DE[1:0]				AACKEN	GCMD	SMEN
0x06	CIRLB	23:16						ACKACT	CME) [1:0]
0x07		31:24								
0x08										
	Reserved									
0x13										
0x14	INTENCLR	7:0	ERROR					DRDY	AMATCH	PREC
0x15	Reserved									
0x16	INTENSET	7:0	ERROR					DRDY	AMATCH	PREC
0x17	Reserved									
0x18	INTFLAG	7:0	ERROR					DRDY	AMATCH	PREC
0x19	Reserved									
0x1A	STATUS	7:0	CLKHOLD	LOWTOUT		SR	DIR	RXNACK	COLL	BUSERR
0x1B		15:8					LENERR	HS	SEXTTOUT	
0x1C		7:0							ENABLE	SWRST
0x1D	SYNCBUSY	15:8								
0x1E		23:16								
0x1F		31:24								
0x20										
	Reserved									
0x23										
0x24	7:0					ADDR[6:0]				GENCEN
0x25	ADDR	15:8	TENBITEN						ADDR[9:7]	
0x26		23:16			ŀ	ADDRMASK[6:0	0]			
0x27		31:24						/	ADDRMASK[9:7	7]
0x28	DATA	7:0				DATA	4[7:0]			
0x29	2.07	15:8								

33.8 Register Description - I²C Slave

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to Synchronization. will signal a Protocol Exception Event by setting bit PSR.PXE. When Protocol Exception Handling is enabled (CCCR.PXHD = '0'), this causes the operation state to change from Receiver (PSR.ACT = "10") to Integrating (PSR.ACT = "00") at the next sample point. In case Protocol Exception Handling is disabled (CCCR.PXHD = '1'), the CAN will treat a recessive res bit as a form error and will respond with an error frame.

CAN FD operation is enabled by programming CCCR.FDOE. In case CCCR.FDOE = '1', transmission and reception of CAN FD frames is enabled. Transmission and reception of Classic CAN frames is always possible. Whether a CAN FD frame or a Classic CAN frame is transmitted can be configured via bit FDF in the respective Tx Buffer element. With CCCR.FDOE = '0', received frames are interpreted as Classic CAN frames, witch leads to the transmission of an error frame when receiving a CAN FD frame. When CAN FD operation is disabled, no CAN FD frames are transmitted even if bit FDF of a Tx Buffer element is set. CCCR.FDOE and CCCR.BRSE can only be changed while CCCR.INIT and CCCR.CCE are both set.

With CCCR.FDOE = '0', the setting of bits FDF and BRS is ignored and frames are transmitted in Classic CAN format. With CCCR.FDOE = '1' and CCCR.BRSE = '0', only bit FDF of a Tx Buffer element is evaluated. With CCCR.FDOE = '1' and CCCR.BRSE = '1', transmission of CAN FD frames with bit rate switching is enabled. All Tx Buffer elements with bits FDF and BRS set are transmitted in CAN FD format with bit rate switching.

A mode change during CAN operation is only recommended under the following conditions:

- The failure rate in the CAN FD data phase is significantly higher than in the CAN FD arbitration phase. In this case disable the CAN FD bit rate switching option for transmissions.
- During system startup all nodes are transmitting Classic CAN messages until it is verified that they are able to communicate in CAN FD format. If this is true, all nodes switch to CAN FD operation.
- Wake-up messages in CAN Partial Networking have to be transmitted in Classic CAN format.
- End-of-line programming in case not all nodes are CAN FD capable. Non CAN FD nodes are held in silent mode until programming has completed. Then all nodes switch back to Classic CAN communication.

In the CAN FD format, the coding of the DLC differs from the standard CAN format. The DLC codes 0 to 8 have the same coding as in standard CAN, the codes 9 to 15, which in standard CAN all code a data field of 8 bytes, are coded according to the table below.

Table 34-2. Coding of DLC in CAN FD

DLC	9	10	11	12	13	14	15
Number of Data Bytes	12	16	20	24	32	48	64

In CAN FD frames, the bit timing will be switched inside the frame, after the BRS (Bit Rate Switch) bit, if this bit is recessive. Before the BRS bit, in the CAN FD arbitration phase, the nominal CAN bit timing is used as defined by the Nominal Bit Timing & Prescaler Register NBTP. In the following CAN FD data phase, the fast CAN bit timing is used as defined by the Data Bit Timing & Prescaler Register DBTP. The bit timing is switched back from the fast timing at the CRC delimiter or when an error is detected, whichever occurs first.

The maximum configurable bit rate in the CAN FD data phase depends on the CAN clock frequency (GCLK_CAN). Example: with a CAN clock frequency of 20MHz and the shortest configurable bit time of 4 t_q , the bit rate in the data phase is 5 Mbit/s.

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
						TCP	[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							TSS	[1:0]
Access							R/W	R/W
Reset							0	0

Bits 19:16 – TCP[3:0]: Timestamp Counter Prescaler

Value	Description
0x0 - 0xF	Configures the timestamp and timeout counters time unit in multiples of CAN bit times
	[116]. The actual interpretation by the hardware of this value is such that one more than
	the value programmed here is used.

Bits 1:0 – TSS[1:0]: Timestamp Select

This field defines the timestamp counter selection.

Value	Name	Description
0x0 or	ZERO	Timestamp counter value always 0x0000.
0x3		
0x1	INC	Timestamp counter value incremented by TCP.
0x2	-	Reserved

34.8.10 Timestamp Counter Value

Note:

- 1. A write access to TSCV while in internal mode clears the Timestamp Counter value. A write access to TSCV while in external mode has no impact.
- 2. A "wrap around" is a change of the Timestamp Counter value from non-zero to zero not caused by the write access to TSCV.

 Name:
 TSCV

 Offset:
 0x24 [ID-0000a4bb]

 Reset:
 0x00000000

 Property:
 Read-only

ADC measurements can be started simultaneously on both ADC's or interleaved. The trigger mode selection is available in the master ADC Control C register (ADC0.CTRLC.DUALSEL).

To restart an interleaved sequence, the user can apply different options:

- Flush the master ADC (ADC0.SWTRIG.FLUSH = 1)
- Disable/re-enable the master ADC (ADC0.CTRLA.ENABLE)
- Reset and reconfigure master ADC (ADC0.CTRLA.SWRST = 1)

Figure 38-10. Interleaved Dual-Mode Trigger Selection

38.6.3.2 Rail-to-Rail Operation

The accuracy of the ADC is highest when the input common mode voltage (V_{CMIN}) is close to $V_{REF}/2$. To enable a full range of common mode voltages (rail-to-rail operation), the Rail-to-Rail bit in the Control C register (CTRLC.R2R) should be written to one. Rail-to-rail operation requires a sampling period of four cycles. This is achieved by enabling offset compensation (SAMPCTRL.OFFCOMP = 1). Rail-to-rail operation should not be used when offset compensation is disabled.

38.6.3.3 Double Buffering

The following registers are double buffered:

- Input Control (INPUTCTRL)
- Control C (CTRLC)
- Average Control (AVGCTRL)
- Sampling Time Control (SAMPCTRL)
- Window Monitor Lower Threshold (WINLT)
- Window Monitor Upper Threshold (WINUT)
- Gain Correction (GAINCORR)
- Offset Correction (OFFSETCORR)

When one of these registers is written, the data is stored in the corresponding buffer as long as the current conversion is not impacted, and the corresponding busy status will be set in the Synchronization Busy register (SYNCBUSY). When a new RESULT is available, data stored in the buffer registers will be transfered to the ADC and a new conversion can start.

38.6.3.4 Device Temperature Measurement

Principle

The device has an integrated temperature sensor which is part of the Supply Controller (SUPC). The analog signal of that sensor can be converted into a digital value by the ADC. The digital value can be converted into a temperature in °C by following the steps in this section.

Configuration and Conditions

In order to conduct temperature measurements, configure the device according to these steps.

- 1. Configure the clocks and device frequencies according to the Electrical Characteristics.
- 2. Configure the Voltage References System of the Supply Controller (SUPC):
 - 2.1. Enable the temperature sensor by writing a '1' to the Temperature Sensor Enable bit in the VREF Control register (SUPC.VREF.TSEN).

Value	Description
0x2	4 samples
0x3	8 samples
0x4	16 samples
0x5	32 samples
0x6	64 samples
0x7	128 samples
0x8	256 samples
0x9	512 samples
0xA	1024 samples
0xB - 0xF	Reserved

38.8.12 Sampling Time Control

Name:SAMPCTRLOffset:0x0D [ID-0000120e]Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0	
	OFFCOMP		SAMPLEN[5:0]						
Access	R/W		R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0		0	0	0	0	0	0	

Bit 7 – OFFCOMP: Comparator Offset Compensation Enable

Setting this bit enables the offset compensation for each sampling period to ensure low offset and immunity to temperature or voltage drift. This compensation increases the sampling time by three clock cycles.

This bit must be set to zero to validate the SAMPLEN value. It's not possible to use OFFCOMP=1 and SAMPLEN>0.

Bits 5:0 – SAMPLEN[5:0]: Sampling Time Length

These bits control the ADC sampling time in number of CLK_ADC cycles, depending of the prescaler value, thus controlling the ADC input impedance. Sampling time is set according to the equation:

Sampling time = $(SAMPLEN+1) \cdot (CLK_{ADC})$

38.8.13 Window Monitor Lower Threshold

Name:WINLTOffset:0x0E [ID-0000120e]Reset:0x0000Property:PAC Write-Protection, Write-Synchronized

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				RESUL	T[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				RESUL	.T[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				RESU	LT[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 23:0 - RESULT[23:0]: Result Conversion Value

The analog-to-digital conversion data is placed into this register at the end of a conversion and remains until a new conversion is completed.

The RESULT is a signed integer value with 24-bit size. The SDADC conversion result is left-adjusted in the RESULT register.

39.8.20 Sequence Control

Name:SEQCTRLOffset:0x28 [ID-0000243d]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						SEQENn	SEQENn	SEQENn
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – SEQENn: Enable Positive Input in the Sequence

For details on available mux selections, refer to INPUTCTRL.

The sequence start from the lowest input, and go to the next enabled input automatically when the conversion is done. If no bits are set the sequence is disabled.

Value	Description
0	Disable the positive input mux n selection from the sequence.
1	Enable the positive input mux n selection to the sequence.

39.8.21 Analog Control

43.5.8 Register Access Protection

All registers with write-access are optionally write-protected by the Peripheral Access Controller (PAC), except the following registers:

- Control B (CTRLB) register
- Interrupt Flag Status and Clear (INTFLAG) register

Write-protection is denoted by the PAC Write-Protection property in the register description.

Write-protection does not apply to accesses through an external debugger. Refer to the Peripheral Access Controller chapter for details.

43.5.9 Calibration

The GAIN, OFFSET, FCAL, and TCAL calibration values from the production test must be loaded from the NVM Temperature Calibration Area into the TSENS Gain register (GAIN), Offset register (OFFSET) and Calibration register (CAL) by software to achieve specified accuracy.

Related Links

NVM Software Calibration Area Mapping Temperature Sensor Characteristics

43.6 Functional Description

43.6.1 Principle of Operation

The TSENS accurately measures the operating temperature of the device by comparing the difference in two temperature dependent frequencies to a known frequency. The frequency of the temperature dependent oscillator (TOSC) is measured twice: first with the min configuration and next with the max configuration. The number of periods of GCLK_TSENS used for the measurement is defined by the GAIN register. The width of the resulting pulse is measured using a counter clocked by GCLK_TSENS in the up direction for the 1st phase and in the down 2nd phase.

The resulting signed value is proportional to the temperature and is corrected for offset by the contents of the OFFSET register.

VALUE = OFFSET+GAIN ×
$$\left(\frac{f_{\text{TOSCMIN}}}{f_{\text{GCLK}}} + -\frac{f_{\text{TOSCMAX}}}{f_{\text{GCLK}}}\right)$$

Note:

- The values of GAIN and OFFSET are factory programmed to give a specific temperature slope when using the undivided internal 48MHz oscillator (OSC48M) as the GCLK_TSENS source. Other frequencies/sources may be used, but the GAIN setting and/or expected slope will need to be scaled accordingly.
- The calibration value should be copied and written into the GAIN and OFFSET registers to get the specified accuracy.

Related Links

VALUE

43.6.2 Basic Operation

43.6.2.1 Initialization

The generic clocks (GCLK_TSENS) should be configured and enabled. Refer to the Generic Clock Controller chapter for details.

44. FREQM – Frequency Meter

44.1 Overview

The Frequency Meter (FREQM) can be used to accurately measure the frequency of a clock by comparing it to a known reference clock.

44.2 Features

- Ratio can be measured with 24-bit accuracy
- Accurately measures the frequency of an input clock with respect to a reference clock
- Reference clock can be selected from the available GCLK_FREQM_REF sources
- Measured clock can be selected from the available GCLK_FREQM_MSR sources

44.3 Block Diagram

Figure 44-1. FREQM Block Diagram

44.4 Signal Description

Not applicable.

44.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

44.5.1 I/O Lines

The GCLK I/O lines (GCLK_IO[7:0]) can be used as measurement or reference clock sources. This requires the I/O pins to be configured.

SAM C20/C21

Parameter	Conditions	Max.	Units
	VOL/VOH = VDD/2		
	VDD = 4.5V	12.55	
	Load = 20pF		
	VOL/VOH = VDD/2		
RX _{CAN} input delay	VDD = 2.7V	27.4	
	VOL/VOH = VDD/2		
	VDD = 4.5V	18.9	
	VOL/VOH = VDD/2		

1. These values are based on simulation. These values are not covered by test limits in production.

The Microchip Web Site

Microchip provides online support via our web site at http://www.microchip.com/. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- **General Technical Support** Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Customer Change Notification Service

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at http://www.microchip.com/. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://www.microchip.com/support