

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	84
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 20x12b, 3x16b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc21n18a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

50.6. Rev H - 05/2016
50.7. Rev G - 04/2015
50.8. Rev F - 02/2015
50.9. Rev E - 12/2015
50.10. Rev D - 09/2015
50.11. Rev C - 09/2015
50.12. Rev B - 06/2015
50.13. Rev A - 04/2015 1102
The Microchip Web Site1103
Customer Change Notification Service1103
Customer Support1103
Product Identification System
Microchip Devices Code Protection Feature 1104
Legal Notice1104
Trademarks1105
Quality Management System Certified by DNV1105
Worldwide Sales and Service

PM – Power Manager

11.4.3 Clocks

The PAC bus clock (CLK_PAC_APB) can be enabled and disabled in the Main Clock module. The default state of CLK_PAC_APB can be found in the related links.

Related Links

MCLK – Main Clock Peripheral Clock Masking

11.4.4 DMA

Not applicable.

11.4.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. Using the PAC interrupt requires the Interrupt Controller to be configured first.

Table 11-1. Interrupt Lines

Instances	NVIC Line
PAC	PACERR

Related Links

Nested Vector Interrupt Controller

11.4.6 Events

The events are connected to the Event System, which may need configuration.

Related Links

EVSYS – Event System

11.4.7 Debug Operation

When the CPU is halted in debug mode, write protection of all peripherals is disabled and the PAC continues normal operation.

11.4.8 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

- Write Control (WRCTRL) register
- AHB Slave Bus Interrupt Flag Status and Clear (INTFLAGAHB) register
- Peripheral Interrupt Flag Status and Clear n (INTFLAG A/B/C...) registers

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

11.5 Functional Description

11.5.1 Principle of Operation

The Peripheral Access Control module allows the user to set a write protection on peripheral modules and generate an interrupt in case of a peripheral access violation. The peripheral's protection can be set,

- 2.3. Erases the lock row, removing the NVMCTRL security bit protection.
- 3. Check for completion by polling STATUSA.DONE (read as '1' when completed).
- 4. Reset the device to let the NVMCTRL update the fuses.

13.8 Programming

Programming the Flash or RAM memories is only possible when the device is not protected by the NVMCTRL security bit. The programming procedure is as follows:

- At power up, RESET is driven low by a debugger. The on-chip regulator holds the system in a POR state until the input supply is above the POR threshold (refer to Powe-On Reset (POR) characteristics). The system continues to be held in this static state until the internally regulated supplies have reached a safe operating state.
- 2. The PM starts, clocks are switched to the slow clock (Core Clock, System Clock, Flash Clock and any Bus Clocks that do not have clock gate control). Internal resets are maintained due to the external reset.
- 3. The debugger maintains a low level on SWCLK. RESET is released, resulting in a debugger Cold-Plugging procedure.
- 4. The debugger generates a clock signal on the SWCLK pin, the Debug Access Port (DAP) receives a clock.
- 5. The CPU remains in Reset due to the Cold-Plugging procedure; meanwhile, the rest of the system is released.
- 6. A Chip-Erase is issued to ensure that the Flash is fully erased prior to programming.
- 7. The debugger then configures the NVIC to catch the Cortex-M4 core reset vector fetch. For more information on how to program the NVIC, refer to the ARMv7-M Architecture Reference Manual.
- 8. Release the "CPU reset extension" phase by writing a '1' to the Status A register CPU Reset Phase Extension bit (STATUSA.CRSTEXT).
- 9. Programming is available through the AHB-AP.
- 10. After the operation is completed, the chip can be restarted either by asserting RESET or toggling power. Make sure that the SWCLK pin is high when releasing RESET to prevent extending the CPU reset.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J) NVMCTRL – Non-Volatile Memory Controller Security Bit

13.9 Intellectual Property Protection

Intellectual property protection consists of restricting access to internal memories from external tools when the device is protected, and this is accomplished by setting the NVMCTRL security bit. This protected state can be removed by issuing a Chip-Erase (refer to Chip Erase). When the device is protected, read/write accesses using the AHB-AP are limited to the DSU address range and DSU commands are restricted. When issuing a Chip-Erase, sensitive information is erased from volatile memory and Flash.

The DSU implements a security filter that monitors the AHB transactions inside the DAP. If the device is protected, then AHB-AP read/write accesses outside the DSU external address range are discarded, causing an error response that sets the ARM AHB-AP sticky error bits (refer to the ARM Debug Interface v5 Architecture Specification on http://www.arm.com).

13.12 Register Summary

Offset	Name	Bit Pos.										
0x00	CTRL	7:0				CE	MBIST		CRC	SWRST		
0x01	STATUSA	7:0				PERR	FAIL	BERR	CRSTEXT	DONE		
0x02	STATUSB	7:0				HPE	DCCDx	DCCDx	DBGPRES	PROT		
0x03	Reserved											
0x04		7:0		ADDR[5:0] AMOD[1:0]								
0x05	ADDR	15:8	ADDR[13:6]									
0x06	ADDR	23:16		ADDR[21:14]								
0x07		31:24		ADDR[29:22]								
0x08		7:0			LENG	TH[5:0]						
0x09	LENGTH	15:8				LENG	FH[13:6]					
0x0A	LENGTH	23:16				LENGT	H[21:14]					
0x0B		31:24				LENGT	H[29:22]					
0x0C		7:0				DAT	A[7:0]					
0x0D	DATA	15:8				DATA	A[15:8]					
0x0E	DAIA	23:16				DATA	[23:16]					
0x0F		31:24				DATA	[31:24]					
0x10		7:0				DAT	A[7:0]					
0x11	DCC0	15:8				DATA	A[15:8]					
0x12		23:16		DATA[23:16]								
0x13		31:24				DATA	[31:24]					
0x14		7:0		DATA[7:0]								
0x15	DCC1	15:8		DATA[15:8]								
0x16	2001	23:16		DATA[23:16]								
0x17		31:24				DATA	[31:24]					
0x18		7:0				DEVS	EL[7:0]					
0x19	DID	15:8		DIE	E[3:0]		REVISION[3:0]					
0x1A		23:16	FAMILY[0:0]				SERIE	ES[5:0]				
0x1B		31:24		PROCES	SSOR[3:0]	FAMILY[4:1]						
0x1C												
	Reserved											
0x0FFF										55550		
0x1000		7:0		4000					FMT	EPRES		
0x1001	ENTRY0	15:8		ADDC	0FF[3:0]							
0x1002		23:16					FF[11:4]					
0x1003		31:24				ADDOF	F[19:12]					
0x1004		7:0							FMT	EPRES		
0x1005	ENTRY1	15:8		ADDC	0FF[3:0]	4000						
0x1006		23:16					FF[11:4]					
0x1007		31:24					F[19:12]					
0x1008		7:0					D[7:0]					
0x1009	END	15:8					[15:8]					
0x100A		23:16					23:16]					
0x100B		31:24				END[31:24]					
0x100C	Reserved											

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
					DPLLLDRTO	DPLLLTO	DPLLLCKF	DPLLLCKR
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
				OSC48MRDY			CLKFAIL	XOSCRDY
Access		•	•	R/W	· · · · · · · · · · · · · · · · · · ·		R/W	R/W
Reset				0			0	0

Bit 11 – DPLLLDRTO: DPLL Loop Divider Ratio Update Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the DPLL Loop Divider Ratio Update Complete Interrupt Enable bit, which disables the DPLL Loop Divider Ratio Update Complete interrupt.

Value	Description
0	The DPLL Loop Divider Ratio Update Complete interrupt is disabled.
1	The DPLL Loop Divider Ratio Update Complete interrupt is enabled, and an interrupt request will be generated when the DPLL Loop Divider Ratio Update Complete Interrupt flag is set.

Bit 10 – DPLLLTO: DPLL Lock Timeout Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the DPLL Lock Timeout Interrupt Enable bit, which disables the DPLL Lock Timeout interrupt.

Value	Description
0	The DPLL Lock Timeout interrupt is disabled.
1	The DPLL Lock Timeout interrupt is enabled, and an interrupt request will be generated when the DPLL Lock Timeout Interrupt flag is set.

Bit 9 – DPLLLCKF: DPLL Lock Fall Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the DPLL Lock Fall Interrupt Enable bit, which disables the DPLL Lock Fall interrupt.

Value	Description
0	The DPLL Lock Fall interrupt is disabled.
1	The DPLL Lock Fall interrupt is enabled, and an interrupt request will be generated when the
	DPLL Lock Fall Interrupt flag is set.

21. OSC32KCTRL – 32KHz Oscillators Controller

21.1 Overview

The 32KHz Oscillators Controller (OSC32KCTRL) provides a user interface to the 32.768kHz oscillators: XOSC32K, OSC32K, and OSCULP32K.

The OSC32KCTRL sub-peripherals can be enabled, disabled, calibrated, and monitored through interface registers.

All sub-peripheral statuses are collected in the Status register (STATUS). They can additionally trigger interrupts upon status changes via the INTENSET, INTENCLR, and INTFLAG registers.

21.2 Features

- 32.768kHz Crystal Oscillator (XOSC32K)
 - Programmable start-up time
 - Crystal or external input clock on XIN32 I/O
 - Clock failure detection with safe clock switch
 - Clock failure event output
- 32.768kHz High Accuracy Internal Oscillator (OSC32K)
 - Frequency fine tuning
 - Programmable start-up time
- 32.768kHz Ultra Low Power Internal Oscillator (OSCULP32K)
 - Ultra low power, always-on oscillator
 - Frequency fine tuning
- Calibration value loaded from Flash factory calibration at reset
- 1.024kHz clock outputs available

21.5.3 Clocks

The OSC32KCTRL gathers controls for all 32KHz oscillators and provides clock sources to the Generic Clock Controller (GCLK), Real-Time Counter (RTC), and Watchdog Timer (WDT).

The available clock sources are: XOSC32K, OSC32K, and OSCULP32K.

The OSC32KCTRL bus clock (CLK_OSC32KCTRL_APB) can be enabled and disabled in the Main Clock module (MCLK).

Related Links

Peripheral Clock Masking

21.5.4 Interrupts

The interrupt request lines are connected to the interrupt controller. Using the OSC32KCTRL interrupts requires the interrupt controller to be configured first.

Related Links

Nested Vector Interrupt Controller

21.5.5 Events

The events of this peripheral are connected to the Event System.

Related Links

EVSYS - Event System

21.5.6 Debug Operation

When the CPU is halted in debug mode, OSC32KCTRL will continue normal operation. If OSC32KCTRL is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

21.5.7 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

Interrupt Flag Status and Clear (INTFLAG) register

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

21.5.8 Analog Connections

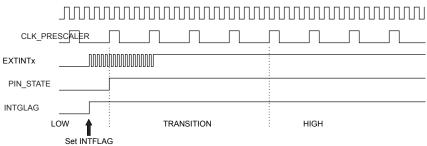
The external 32.768kHz crystal must be connected between the XIN32 and XOUT32 pins, along with any required load capacitors. For details on recommended oscillator characteristics and capacitor load, refer to the related links.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J)

21.5.9 Calibration

The OSC32K calibration value from the production test must be loaded from the NVM Software Calibration Area into the OSC32K register (OSC32K.CALIB) by software to achieve specified accuracy.


Figure 26-3. EXTINT Pin Synchronous Debouncing (Rising Edge)

In the synchronous edge detection mode, the EIC clock is required. The synchronous edge detection mode can be used in Idle and Standby sleep modes.

Asynchronous edge detection In this mode, the external interrupt (EXTINT) pin directly drives an asynchronous edges detector which triggers any rising or falling edge on the pin:

- 1. Any edge detected that indicates a transition from the current valid pin state will immediately set the valid pin state PINSTATE.PINSTATE[x] to the detected level.
- 2. The external interrupt flag (INTFLAG.EXTINT[x] is immediately changed.
- 3. The edge detector will then be idle until no other rising or falling edge transition is detected during 4 consecutive ticks of the low frequency clock.
- 4. Any rising or falling edge transition detected during the idle state will return the transition counter to 0.
- 5. After 4 consecutive ticks of the low frequency clock without bounce detected, the edge detector is ready for a new detection.

Figure 26-4. EXTINT Pin Asynchronous Debouncing (Rising Edge)

In this mode, the EIC clock is requested. The asynchronous edge detection mode can be used in Idle and Standby sleep modes.

26.6.5 DMA Operation

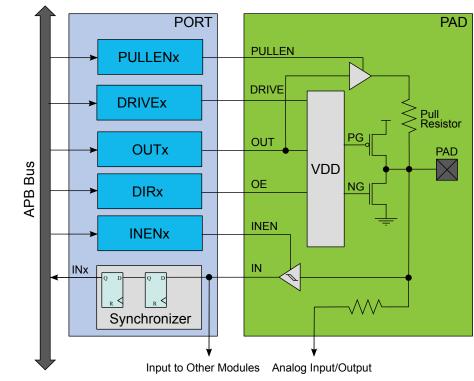
Not applicable.

26.6.6 Interrupts

The EIC has the following interrupt sources:

- External interrupt pins (EXTINTx). See Basic Operation.
- Non-maskable interrupt pin (NMI). See Additional Features.

Each interrupt source has an associated interrupt flag. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) is set when an interrupt condition occurs (NMIFLAG for NMI). Each interrupt, except NMI, can be individually enabled by setting the corresponding bit in the Interrupt Enable Set register (INTENSET=1), and disabled by setting the corresponding bit in the Interrupt Enable Clear register (INTENCLR=1).


© 2017 Microchip Technology Inc.

PAC - Peripheral Access Controller

28.5.9 Analog Connections

Analog functions are connected directly between the analog blocks and the I/O pads using analog buses. However, selecting an analog peripheral function for a given pin will disable the corresponding digital features of the pad.

28.6 Functional Description

Figure 28-2. Overview of the PORT

28.6.1 Principle of Operation

Each PORT group of up to 32 pins is controlled by the registers in PORT, as described in the figure. These registers in PORT are duplicated for each PORT group, with increasing base addresses. The number of PORT groups may depend on the package/number of pins.

Bit	31	30	29	28	27	26	25	24	
	IN[31:24]								
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
				IN[2	3:16]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	15	14	13	12	11	10	9	8	
				IN[1	5:8]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				IN[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	

Bits 31:0 - IN[31:0]: PORT Data Input Value

These bits are cleared when the corresponding I/O pin input sampler detects a logical low level on the input pin.

These bits are set when the corresponding I/O pin input sampler detects a logical high level on the input pin.

28.9.10 Control

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

Name:CTRLOffset:0x24Reset:0x00000000Property:PAC Write-Protection

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

31.8.1 Control A

Name: CTRLA Offset: 0x00 Reset: 0x0000000 Property: PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24	
		DORD	CPOL	CMODE		FORM	Л[3:0]		
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
	SAMF	PA[1:0]	RXP	D[1:0]			TXPC	D[1:0]	
Access	R/W	R/W	R/W	R/W			R/W	R/W	
Reset	0	0	0	0			0	0	
Bit	15	14	13	12	11	10	9	8	
		SAMPR[2:0]						IBON	
Access	R/W	R/W	R/W					R	
Reset	0	0	0					0	
Bit	7	6	5	4	3	2	1	0	
	RUNSTDBY				MODE[2:0]		ENABLE	SWRST	
Access	R/W			R/W	R/W	R/W	R/W	R/W	
Reset	0			0	0	0	0	0	

Bit 30 – DORD: Data Order

This bit selects the data order when a character is shifted out from the Data register.

This bit is not synchronized.

Value	Description
0	MSB is transmitted first.
1	LSB is transmitted first.

Bit 29 – CPOL: Clock Polarity

This bit selects the relationship between data output change and data input sampling in synchronous mode.

This bit is not synchronized.

Bit 4 – CTSIC: Clear to Send Input Change

This flag is cleared by writing a '1' to it.

This flag is set when a change is detected on the CTS pin.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the flag.

Bit 3 – RXS: Receive Start

This flag is cleared by writing '1' to it.

This flag is set when a start condition is detected on the RxD line and start-of-frame detection is enabled (CTRLB.SFDE is '1').

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Start interrupt flag.

Bit 2 – RXC: Receive Complete

This flag is cleared by reading the Data register (DATA) or by disabling the receiver.

This flag is set when there are unread data in DATA.

Writing '0' to this bit has no effect.

Writing '1' to this bit has no effect.

Bit 1 – TXC: Transmit Complete

This flag is cleared by writing '1' to it or by writing new data to DATA.

This flag is set when the entire frame in the transmit shift register has been shifted out and there are no new data in DATA.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the flag.

Bit 0 – DRE: Data Register Empty

This flag is cleared by writing new data to DATA.

This flag is set when DATA is empty and ready to be written.

Writing '0' to this bit has no effect.

Writing '1' to this bit has no effect.

31.8.9 Status

Name: STATUS Offset: 0x1A Reset: 0x0000 Property: -

32.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Refer to Synchronization

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

Refer to Register Access Protection.

32.8.1 Control A

Name:CTRLAOffset:0x00 [ID-00000e74]Reset:0x00000000Property:PAC Write-Protection, Enable-Protected, Write-Synchronized

Bit	31	30	29	28	27	26	25	24
		DORD	CPOL	CPHA	FORM		V[3:0]	
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset		0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
			DIPC	D[1:0]			DOPO	D[1:0]
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	15	14	13	12	11	10	9	8
								IBON
Access								R/W
Reset								0
Bit	7	6	5	4	3	2	1	0
	RUNSTDBY				MODE[2:0]		ENABLE	SWRST
Access	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			0	0	0	0	0

Bit 30 – DORD: Data Order

This bit selects the data order when a character is shifted out from the shift register.

This bit is not synchronized.

TXESC.TBDS[2:0]	Data Field [bytes]	Element Size [RAM words]
000	8	4
001	12	5
010	16	6
011	20	7
100	24	8
101	32	10
110	48	14
111	64	18

Table 34-7. Tx Buffer / FIFO / Queue Element Size

34.6.6.3 Tx FIFO

Tx FIFO operation is configured by programming TXBC.TFQM to '0'. Messages stored in the Tx FIFO are transmitted starting with the message referenced by the Get Index TXFQS.TFGI. After each transmission the Get Index is incremented cyclically until the Tx FIFO is empty. The Tx FIFO enables transmission of messages with the same Message ID from different Tx Buffers in the order these messages have been written to the Tx FIFO. The CAN calculates the Tx FIFO Free Level TXFQS.TFFL as difference between Get and Put Index. It indicates the number of available (free) Tx FIFO elements.

New transmit messages have to be written to the Tx FIFO starting with the Tx Buffer referenced by the Put Index TXFQS.TFQPI. An Add Request increments the Put Index to the next free Tx FIFO element. When the Put Index reaches the Get Index, Tx FIFO Full (TXFQS.TFQF = '1') is signaled. In this case no further messages should be written to the Tx FIFO until the next message has been transmitted and the Get Index has been incremented.

When a single message is added to the Tx FIFO, the transmission is requested by writing a '1' to the TXBAR bit related to the Tx Buffer referenced by the Tx FIFO's Put Index.

When multiple (n) messages are added to the Tx FIFO, they are written to n consecutive Tx Buffers starting with the Put Index. The transmissions are then requested via TXBAR. The Put Index is then cyclically incremented by n. The number of requested Tx buffers should not exceed the number of free Tx Buffers as indicated by the Tx FIFO Free Level.

When a transmission request for the Tx Buffer referenced by the Get Index is canceled, the Get Index is incremented to the next Tx Buffer with pending transmission request and the Tx FIFO Free Level is recalculated. When transmission cancellation is applied to any other Tx Buffer, the Get Index and the FIFO Free Level remain unchanged.

A Tx FIFO element allocates Element Size 32-bit words in the Message RAM (refer to Table 34-7). Therefore the start address of the next available (free) Tx FIFO Buffer is calculated by adding Tx FIFO/ Queue Put Index TXFQS.TFQPI (0...31) • Element Size to the Tx Buffer Start Address TXBC.TBSA.

34.6.6.4 Tx Queue

Tx Queue operation is configured by programming TXBC.TFQM to '1'. Messages stored in the Tx Queue are transmitted starting with the message with the lowest Message ID (highest priority). In case that multiple Queue Buffers are configured with the same Message ID, the Queue Buffer with the lowest buffer number is transmitted first.

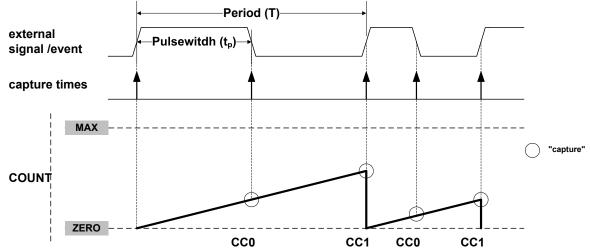
New messages have to be written to the Tx Buffer referenced by the Put Index TXFQS.TFQPI. An Add Request cyclically increments the Put Index to the next free Tx Buffer. In case that the Tx Queue is full

SAM C20/C21

Offset	Name	Bit Pos.								
0xB6		23:16				-	F1P	I[5:0]		
0xB7		31:24	DMS	S[1:0]					RF1L	F1F
0xB8		7:0					F1A	l[5:0]		
0xB9	RXF1A	15:8								
0xBA		23:16								
0xBB		31:24								
0xBC		7:0			F1DS[2:0]				F0DS[2:0]	
0xBD	RXESC	15:8							RBDS[2:0]	
0xBE	TOLEGO	23:16								
0xBF		31:24								
0xC0		7:0				TBS	A [7:0]			
0xC1	ТХВС	15:8				TBSA	[15:8]			
0xC2		23:16					NDT	B[5:0]		
0xC3		31:24		TFQM			TFQ	S[5:0]		
0xC4		7:0					TFF	L[5:0]		
0xC5	TXFQS	15:8						TFGI[4:0]		
0xC6		23:16			TFQF			TFQPI[4:0]		
0xC7		31:24								
0xC8		7:0							TBDS[2:0]	
0xC9	TXESC	15:8								
0xCA	TALGO	23:16								
0xCB		31:24								
0xCC		7:0	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn
0xCD	TXBRP	15:8	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn
0xCE	TADILE	23:16	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn
0xCF		31:24	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn	TRPn
0xD0		7:0	ARn	ARn	ARn	ARn	ARn	ARn	ARn	ARn
0xD1	TXBAR	15:8	ARn	ARn	ARn	ARn	ARn	ARn	ARn	ARn
0xD2	TADAK	23:16	ARn	ARn	ARn	ARn	ARn	ARn	ARn	ARn
0xD3		31:24	ARn	ARn	ARn	ARn	ARn	ARn	ARn	ARn
0xD4		7:0	CRn	CRn	CRn	CRn	CRn	CRn	CRn	CRn
0xD5	TXBCR	15:8	CRn	CRn	CRn	CRn	CRn	CRn	CRn	CRn
0xD6	INDUR	23:16	CRn	CRn	CRn	CRn	CRn	CRn	CRn	CRn
0xD7		31:24	CRn	CRn	CRn	CRn	CRn	CRn	CRn	CRn
0xD8		7:0	TOn	TOn	TOn	TOn	TOn	TOn	TOn	TOn
0xD9	ТХВТО	15:8	TOn	TOn	TOn	TOn	TOn	TOn	TOn	TOn
0xDA	TADIO	23:16	TOn	TOn	TOn	TOn	TOn	TOn	TOn	TOn
0xDB		31:24	TOn	TOn	TOn	TOn	TOn	TOn	TOn	TOn
0xDC		7:0	CFn	CFn	CFn	CFn	CFn	CFn	CFn	CFn
0xDD	TXBCF	15:8	CFn	CFn	CFn	CFn	CFn	CFn	CFn	CFn
0xDE	INDUF	23:16	CFn	CFn	CFn	CFn	CFn	CFn	CFn	CFn
0xDF		31:24	CFn	CFn	CFn	CFn	CFn	CFn	CFn	CFn
0xE0		7:0	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn
0xE1	TXBTIE	15:8	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn
0xE2	INDIIE	23:16	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn
0xE3		31:24	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn	TIEn
0xE4	TXBCIE	7:0	CFIEn	CFIEn	CFIEn	CFIEn	CFIEn	CFIEn	CFIEn	CFIEn

35.7.1 Register Summary - 8-bit Mode

Offset	Name	Bit Pos.								
0x00		7:0	ONDEMAND	RUNSTDBY	PRESCS	SYNC[1:0]	MOD	E[1:0]	ENABLE	SWRST
0x01		15:8					ALOCK	P	RESCALER[2:	0]
0x02	CTRLA	23:16			COPEN1	COPEN0			CAPTEN1	CAPTEN0
0x03		31:24				CAPTMO	DE1[1:0]		CAPTMC	DE0[1:0]
0x04	CTRLBCLR	7:0		CMD[2:0]				ONESHOT	LUPD	DIR
0x05	CTRLBSET	7:0		CMD[2:0]				ONESHOT	LUPD	DIR
0x06	EVCTRL	7:0			TCEI	TCINV			EVACT[2:0]	
0x07	EVOINE	15:8			MCEOx	MCEOx				OVFEO
0x08	INTENCLR	7:0				MCx			ERR	OVF
0x09	INTENSET	7:0				MCx			ERR	OVF
0x0A	INTFLAG	7:0				MCx			ERR	OVF
0x0B	STATUS	7:0				CCBUFVx	PERBUFV		SLAVE	STOP
0x0C	WAVE	7:0							WAVEG	GEN[1:0]
0x0D	DRVCTRL	7:0								INVENx
0x0E	Reserved									
0x0F	DBGCTRL	7:0								DBGRUN
0x10		7:0		CCx	PER	COUNT	STATUS	CTRLB	ENABLE	SWRST
0x11	SYNCBUSY	15:8								
0x12	011102001	23:16								
0x13		31:24								
0x14	COUNT	7:0				COUN	NT[7:0]			
0x15										
 0x1A	Reserved									
0x1B	PER	7:0				PER	R[7:0]			
0x1C	CC0	7:0					[7:0]			
0x1D	CC1	7:0					[7:0]			
0x1E										
 0x2E	Reserved									
0x2F	PERBUF	7:0				PERB	UF[7:0]			
0x30	CCBUF0	7:0				CCBL	JF[7:0]			
0x31	CCBUF1	7:0					JF[7:0]			


35.7.1.1 Control A

Name:CTRLAOffset:0x00Reset:0x00000000Property:PAC Write-Protection, Write-Synchronized, Enable-Protected

The TCC can perform two input captures and restart the counter on one of the edges. This enables the TCC to measure the pulse-width and period and to characterize the frequency *f* and *dutyCycle* of an input signal:

$$f = \frac{1}{T}$$
 , $dutyCycle = \frac{t_p}{T}$

Selecting PWP or PPW in the Timer/Counter Event Input 1 Action bit group in the Event Control register (EVCTRL.EVACT1) enables the TCC to perform one capture action on the rising edge and the other one on the falling edge. When using PPW (period and pulse-width) event action, period T will be captured into CC0 and the pulse-width t_p into CC1. The PWP (Pulse-width and Period) event action offers the same functionality, but T will be captured into CC1 and t_p into CC0.

The Timer/Counter Event x Invert Enable bit in Event Control register (EVCTRL.TCEINVx) is used for event source x to select whether the wraparound should occur on the rising edge or the falling edge. If EVCTRL.TCEINVx=1, the wraparound will happen on the falling edge.

The corresponding capture is done only if the channel is enabled in capture mode (CTRLA.CPTENx=1). If not, the capture action will be ignored and the channel will be enabled in compare mode of operation. When only one of these channel is required, the other channel can be used for other purposes.

The TCC can detect capture overflow of the input capture channels: When a new capture event is detected while the INTFLAG.MCx is still set, the new timestamp will not be stored and INTFLAG.ERR will be set.

Note: When up-counting (CTRLBSET.DIR=0), counter values lower than 1 cannot be captured in Capture Minimum mode (FCTRLn.CAPTURE=CAPTMIN). To capture the full range including value 0, the TCC must be configured in down-counting mode (CTRLBSET.DIR=0).

Note: In dual-slope PWM operation, and when TOP is lower than MAX/2, the CCx MSB captures the CTRLB.DIR state to identify the ramp on which the capture has been done. For rising ramps CCx[MSB] is zero, for falling ramps CCx[MSB]=1.

36.6.3 Additional Features

36.6.3.1 One-Shot Operation

When one-shot is enabled, the counter automatically stops on the next counter overflow or underflow condition. When the counter is stopped, the Stop bit in the Status register (STATUS.STOP) is set and the waveform outputs are set to the value defined by DRVCTRL.NREx and DRVCTRL.NRVx.

Name:EVCTRLOffset:0x02 [ID-00000bc7]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						INVEI	EMPTYEO	STARTEI
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – INVEI: Enable Inversion Data Buffer Empty Event Output

This bit defines the edge detection of the input event for STARTEI.

Value	Description
0	Rising edge.
1	Falling edge.

Bit 1 – EMPTYEO: Data Buffer Empty Event Output

This bit indicates whether or not the Data Buffer Empty event is enabled and will be generated when the Data Buffer register is empty.

Value	Description
0	Data Buffer Empty event is disabled and will not be generated.
1	Data Buffer Empty event is enabled and will be generated.

Bit 0 – STARTEI: Start Conversion Event Input

This bit indicates whether or not the Start Conversion event is enabled and data are loaded from the Data Buffer register to the Data register upon event reception.

Value	Description
0	A new conversion will not be triggered on any incoming event.
1	A new conversion will be triggered on any incoming event.

41.8.4 Interrupt Enable Clear

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Name:INTENCLROffset:0x04 [ID-00000bc7]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
							EMPTY	UNDERRUN
Access							R/W	R/W
Reset							0	0

Bit 1 – EMPTY: Data Buffer Empty Interrupt Enable

Writing a '0' to this bit has no effect.

Write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

44.6 Functional Description

44.6.1 Principle of Operation

FREQM counts the number of periods of the measured clock (GCLK_FREQM_MSR) with respect to the reference clock (GCLK_FREQM_REF). The measurement is done for a period of REFNUM/ f_{CLK_REF} and stored in the Value register (VALUE.VALUE). REFNUM is the number of Reference clock cycles selected in the Configuration A register (CFGA.REFNUM).

The frequency of the measured clock, $f_{\rm CLK\ MSR}$, is calculated by

 $f_{\text{CLK}_{\text{MSR}}} = \left(\frac{\text{VALUE}}{\text{REFNUM}}\right) f_{\text{CLK}_{\text{REF}}}$

44.6.2 Basic Operation

44.6.2.1 Initialization

Before enabling FREQM, the device and peripheral must be configured:

• Each of the generic clocks (GCLK_FREQM_REF and GCLK_FREQM_MSR) must be configured and enabled.

Important: The reference clock must be slower than the measurement clock.

• Write the number of Reference clock cycles for which the measurement is to be done in the Configuration A register (CFGA.REFNUM). This must be a non-zero number.

The following register is enable-protected, meaning that it can only be written when the FREQM is disabled (CTRLA.ENABLE=0):

Configuration A register (CFGA)

Enable-protection is denoted by the "Enable-Protected" property in the register description.

Related Links

GCLK - Generic Clock Controller

44.6.2.2 Enabling, Disabling and Resetting

The FREQM is enabled by writing a '1' to the Enable bit in the Control A register (CTRLA.ENABLE). The peripheral is disabled by writing CTRLA.ENABLE=0.

The FREQM is reset by writing a '1' to the Software Reset bit in the Control A register (CTRLA.SWRST). On software reset, all registers in the FREQM will be reset to their initial state, and the FREQM will be disabled.

Then ENABLE and SWRST bits are write-synchronized.

Related Links

Synchronization

Symbol	Parameters	Conditions (2)	Min	Тур	Max	Unit	
ENOB	Effective Number Of Bits	Ext ref = 1.2V	13.5	14.2	14.4	dB	
		Int Ref = 5.5V	11	11.2	11.4		
DR	Dynamic Range	Ext ref = 1.2V	89	91	92	dB	
		Int Ref = 5.5V	83	92	96		
SNR	Signal to Noise Ratio	Ext ref = 1.2V	84	88	89	dB	
		Int Ref = 5.5V	77	79	80		
SINAD	Signal to Noise + Distortion Ratio	Ext ref = 1.2V	83	87	89	dB	
		Int Ref = 5.5V	68	69	71		
THD	Total Harmonic Distortion	Ext ref = 1.2V	-105	-100	-92	dB	
		Int Ref = 5.5V	-70	-69	-69		

Table 45-24. SDADC AC Performance: : Differential Input Mode⁽¹⁾

- 1. These are based on characterization.
- 2. OSR=256

Table 45-25. Power consumption ⁽¹⁾

Symbol	Parameters	Conditions	Та	Тур.	Max	Units
IDD VDDANA	Power consumption	CTLSDADC=0x0 External Ref - VCCANA = 5.5V Vref = 2V Ref buf on SCLK_SDADC = 6 MHz	Max 85°C Typ 25°C	588	658	μA
		CTLSDADC=0x0 Internal Ref - VDDANA=Vref= 5.5V Ref buf off SCLK_SDADC = 6 MHz	-	552	608	

1. These are based on characterization.

45.10.6 Digital to Analog Converter (DAC) Characteristics Table 45-26. Operating Conditions⁽¹⁾

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
RES	Input resolution		-	-	10	Bits
VDDANA	Analog supply voltage		2.7	-	5.5	V
AVREF	External reference voltage		1	-	VDDANA - 0.6	V
	Internal reference voltage 1	VREF.SEL = 0x0	-	1.024	-	V
		VREF.SEL = 0x2	-	2.048	-	
		VREF.SEL = 0x3	-	4.096 (2)	-	
	Internal reference voltage 2		-	VDDANA	-	V
	Linear output voltage range		0.05	-	VDDANA - 0.05	V