

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the PIC24HJXXXGPX06/X08/X10 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors") • VCAP/VDDCORE

- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence	source.			

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

IADLE 4	-7. 1	INFUIC																
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regis	ter							xxxx
IC1CON	0142	_	_	ICSIDL	_	_	_	_	- ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>								0000	
IC2BUF	0144								Input 2 Ca	pture Regis	ter							XXXX
IC2CON	0146	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148		Input 3 Capture Register											xxxx				
IC3CON	014A	_	_	ICSIDL	—	_	_	_		ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4BUF	014C								Input 4 Ca	pture Regis	ter							XXXX
IC4CON	014E	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5BUF	0150								Input 5 Ca	pture Regis	ter							XXXX
IC5CON	0152	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6BUF	0154								Input 6 Ca	pture Regis	ter							XXXX
IC6CON	0156	_	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regis	ter							XXXX
IC7CON	015A	_		ICSIDL	—	_	—	_		ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Ca	pture Regis	ter							xxxx
IC8CON	015E	—	_	ICSIDL	—	_	_	_		ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
Logondy			Deed				Desetualu		wn in hovo	de alus al fau	ماء ماد الم							

TABLE 4-7: INPUT CAPTURE REGISTER MAP

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-17: DMA REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4								P	AD<15:0>								0000
DMA5CNT	03C6		_	_	_	_	_					CNT	<9:0>					0000
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	AMODE<1:0> MODE<1:0>							0000		
DMA6REQ	03CA	FORCE	FORCE IRQSEL<6:0> 00									0000						
DMA6STA	03CC		STA<15:0>											0000				
DMA6STB	03CE		STB<15:0>											0000				
DMA6PAD	03D0		PAD<15:0>										0000					
DMA6CNT	03D2	_	_	_	_	_	_					CNT	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	-		_	_	_	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE		_	_	_	-		_	-			I	RQSEL<6:0	>			0000
DMA7STA	03D8			•	•	•			S	TA<15:0>	•							0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	_	—	—	—	_	—					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	_	_	_	_		LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4					•			DS	ADR<15:0>	•	1			1			0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

PIC24HJXXXGPX06/X08/X10

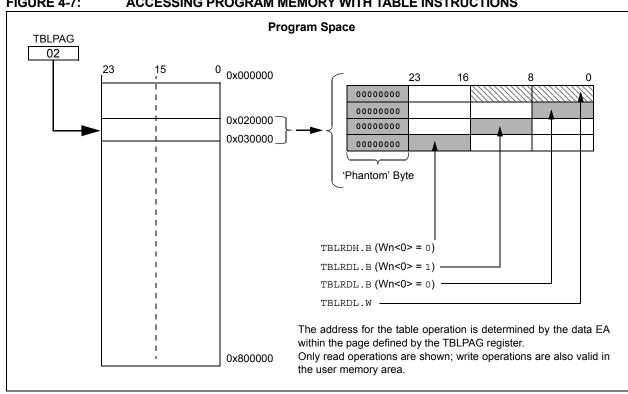
4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).


In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.4.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

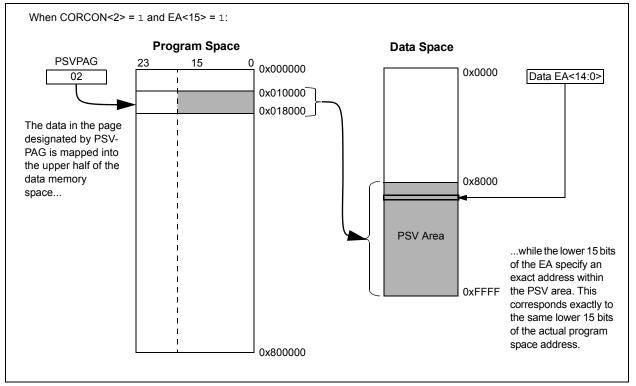
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-8), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-8: PROGRAM SPACE VISIBILITY OPERATION

FIGURE 7-1:	PIC24HJXXXGPX06/X08/X10 INTERRUPT VECTOR TABLE

]	
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	-	
	Address Error Trap Vector	-	
	Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	DMA Error Trap Vector	-	
	Reserved	-	
	Reserved		1
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1	-	
	~	-	
	~	-	
	- Interrupt Vector 52	0x00007C	
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
≥	Interrupt Vector 54	0x00007L	
orit		0x000080	
Pri	~		
fer	~		
Ö	Interrupt Vector 116	0x0000FC	
Decreasing Natural Order Priority	Interrupt Vector 117	0x0000FE	1
atur	Reserved	0x000100	
N N	Reserved	0x000102	
ing	Reserved		
sas	Oscillator Fail Trap Vector		
cre	Address Error Trap Vector		
De	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~	-	
	~	-	
	Interrupt Vector 116		
*	Interrupt Vector 117	0x0001FE	
•	Start of Code	0x000200	
Note	1: See Table 7-1 for the list of impleme	nted interrupt	vectors.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE
bit 15							bit 8
	DAMA	DMU O	D 444 0	DMUO		DAVA	DAMO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IE bit 7	IC7IE	AD2IE	INT1IE	CNIE		MI2C1IE	SI2C1IE bit 0
							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15		RT2 Transmitte	-	able bit			
		request enable request not ena					
bit 14		RT2 Receiver li		le hit			
		request enable	•				
	0 = Interrupt r	request not ena	abled				
bit 13		rnal Interrupt 2					
		request enable request not ena					
bit 12	•	Interrupt Enab					
		request enable					
	0 = Interrupt r	request not ena	abled				
bit 11		Interrupt Enab					
	•	request enable request not ena					
bit 10	-	ut Compare Ch		upt Enable bit			
	•	request enable					
	0 = Interrupt r	request not ena	abled				
bit 9		ut Compare Ch		upt Enable bit			
		request enable request not ena					
bit 8		A Channel 2 D		Complete Interr	unt Enable hit		
bit 0		request enable					
		request not ena					
bit 7	IC8IE: Input C	Capture Chann	el 8 Interrupt	Enable bit			
		request enable request not ena					
bit 6		Capture Chann		Enable bit			
	-	request enable	-				
		request not ena					
bit 5	AD2IE: ADC2	2 Conversion C	omplete Inter	rupt Enable bit			
	•	request enable					
hit 4	-	request not ena					
bit 4	1 = Interrupt r	rnal Interrupt 1					
		naniaet anabia	n				

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, PIC24HJXXXGPX06/X08/X10 devices have a safe-guard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 21.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70227) in the "PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

If an oscillator failure occurs, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN1 Module Disable bit
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled

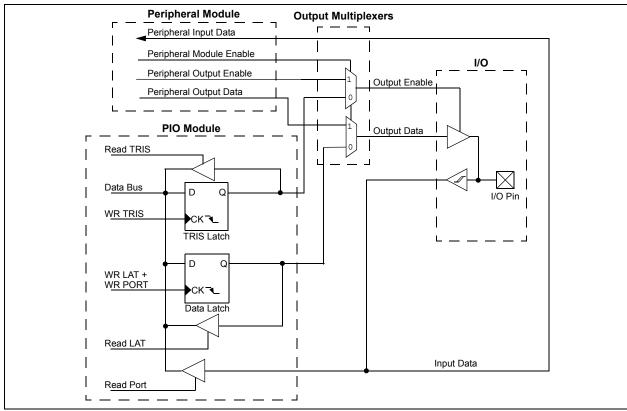
11.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 10. "I/O Ports" (DS70230), which is available from the Microchip website (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

14.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 12. *"Input Capture"* (DS70248), which is available from the Microchip website (www.microchip.com).

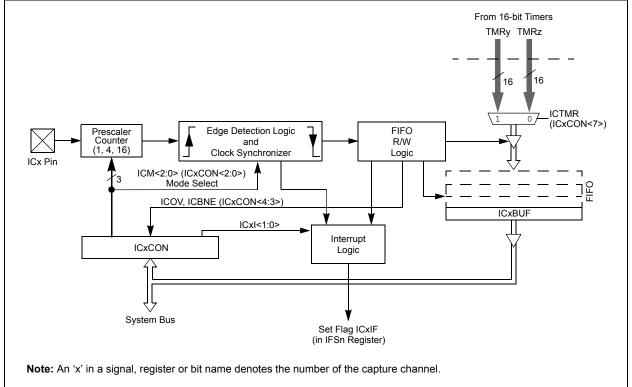
The input capture module is useful in applications requiring frequency (period) and pulse measurement. The PIC24HJXXXGPX06/X08/X10 devices support up to eight input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- Simple Capture Event modes

 Capture timer value on every falling edge of
 input at ICx pin
 - -Capture timer value on every rising edge of input at ICx pin

- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes
 - -Capture timer value on every 4th rising edge of input at ICx pin
 - -Capture timer value on every 16th rising edge of input at ICx pin


Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Input capture can also be used to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to 1 (ICI<1:0> = 00).

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
FRMEN	SPIFSD	FRMPOL	_	—	—	—	—				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0				
—	—		_	—	—	FRMDLY	—				
bit 7							bit 0				
Legend:											
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown					
bit 14	FRMEN: Framed SPIx Support bit Framed SPIx support enabled (SSx pin used as frame sync pulse input/output) Framed SPIx support disabled SPIFSD: Frame Sync Pulse Direction Control bit Frame sync pulse input (slave) Frame sync pulse output (master) 										
bit 13	1 = Frame sy	ame Sync Pulse nc pulse is activ nc pulse is activ	ve-high								
bit 12-2	Unimplemen	ted: Read as 'o)'								
bit 1 bit 0	 FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock Unimplemented: Read as '0' This bit must not be set to '1' by the user application. 										
	i his dit must	not be set to '1'	by the user	application.							

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>
bit 15							bit 8
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL
bit 7							bit C
Legend:		HC = Hardwa	ro cloared				
R = Readable	hit	W = Writable		LI – Unimplo	mented bit, read		
				$0^{\circ} = \text{Bit is cle}$			
-n = Value at F	'UR	'1' = Bit is set			ared	x = Bit is unkr	IOWN
bit 15	UARTEN: UA	RTx Enable bi	_t (1)				
				e controlled by	UARTx as defi	ned by UEN<1:	:0>
					y port latches; U		
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	USIDL: Stop	in Idle Mode bi	t				
		ue module ope			dle mode		
h:: 40		module opera					
bit 12		Encoder and D coder and dec		e dit'-'			
		coder and dec					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it			
		in in Simplex n in in Flow Con					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	UEN<1:0>: ∪	ARTx Enable I	oits				
	11 = UxTX, U	xRX and BCL	<pins are="" ena<="" td=""><td>bled and used</td><td>I; UxCTS pin co</td><td>ntrolled by port</td><td>latches</td></pins>	bled and used	I; UxCTS pin co	ntrolled by port	latches
		xRX, UxCTS a					
					ed; UxCTS pin c		
	port latcl						lolled by
bit 7	WAKE: Wake	up on Start bi	t Detect Durin	g Sleep Mode	Enable bit		
	1 = UARTx w	/ill continue to	sample the Ux	RX pin; interro	upt generated o	n falling edge; l	oit cleared
		are on following	g rising edge				
	0 = No wake	•					
bit 6		RTx Loopback		bit			
		oopback mode k mode is disal					
bit 5	-	-Baud Enable					
	1 = Enable b	aud rate meas	urement on th		er – requires re	ception of a Sy	nc field (0x55)
		ny data; cleared e measuremen		•	on		
					amily Referenc	e <i>Manual"</i> for i	nformation or
en	abling the UAR	T module for re	eceive or trans	smit operation.			

2: This feature is only available for the 16x BRG mode (BRGH = 0).

NOTES:

REGISTER 20-4: ADxCON4: ADCx CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	_	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	—	—	DMABL<2:0>				
bit 7	•						bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle					

bit 15-3 Unimplemented: Read as '0'

bit 2-0

DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

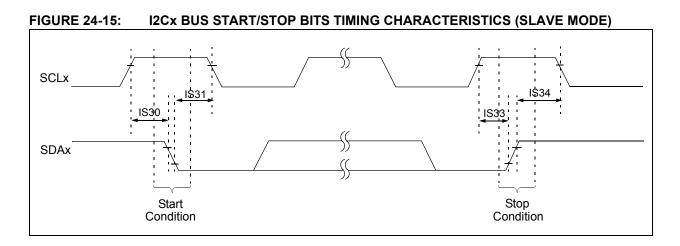
001 = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

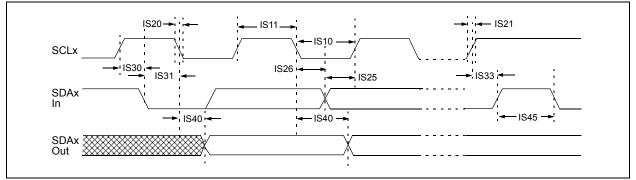
24.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS
onaracteristic	(in Volts)	(in °C)	PIC24HJXXXGPX06/X08/X10
	3.0-3.6V	-40°C to +85°C	40

TABLE 24-1: OPERATING MIPS VS. VOLTAGE


TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating		Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range		-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$		Pint + Pi/o		W	
Maximum Allowed Power Dissipation		(TJ — ΤΑ)/θJΑ			W


TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic		Тур	Мах	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40		°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θја	40	_	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

