

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp210-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < F_{IN} < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

4.2.5 DMA RAM

Every PIC24HJXXXGPX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610 DEVICES ONLY (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11EID	EID 056E EID<15:8>					EID<7:0>						xxxx						
C2RXF12SID	0570		SID<10:3>							SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx	
C2RXF12EID	0572		EID<15:8>									EID<7	7:0>				xxxx	
C2RXF13SID	0574	SID<10:3>							SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx		
C2RXF13EID	0576		EID<15:8>								EID<7	7:0>				xxxx		
C2RXF14SID	0578				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx
C2RXF14EID	057A		EID<15:8>			EID<7:0>						xxxx						
C2RXF15SID	057C	SID<10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx				
C2RXF15EID	057E				EID<	:15:8>							EID<7	7:0>				xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 5. *"Flash Programming"* (DS70228), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06/X08/X10 device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

5.2 RTSP Operation

The PIC24HJXXXGPX06/X08/X10 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 24-12 displays typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 24-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +85°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (1 + 0.02) \times (1 - 0.00375)} = 1.48 \text{ms}$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 1.54 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

NOTES:

Reset Type	Clock Source	Clock Source SYSRST Delay		FSCM Delay	Notes
POR	EC, FRC, LPRC	Tpor + Tstartup + Trst	_	_	1, 2, 3
	ECPLL, FRCPLL	Tpor + Tstartup + Trst	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	Tpor + Tstartup + Trst	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
MCLR	Any Clock	Trst	_	-	3
WDT	Any Clock	Trst	—	_	3
Software	Any clock	Trst	—		3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	_	3
Trap Conflict	Any Clock	TRST		_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.

- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μ s nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the Reset signal is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when the Reset signal is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0		
CHEN	SIZE	DIR	HALF	NULLW	—	—	—		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0		
—	—	AMOD	E<1:0>	—	—	MODE	E<1:0>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set	'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15	CHEN: Chan	nel Enable bit							
	1 = Channel e	enabled							
bit 14	SIZE: Data Tr	ranefer Size hit							
Dit 14	1 = Bvte								
	0 = Word								
bit 13	DIR: Transfer Direction bit (source/destination bus select)								
	1 = Read fron	n DMA RAM a	ddress, write	to peripheral ad	ddress				
	0 = Read fron	n peripheral ad	dress, write to	o DMA RAM ad	ddress				
bit 12	HALF: Early I	Block Transfer	Complete Inte	errupt Select bi	it				
	1 = Initiate blo 0 = Initiate blo	ock transfer co ock transfer co	mplete interru mplete interru	ipt when half of ipt when all of t	f the data has be he data has bee	een moved en moved			
bit 11	NULLW: Null	Data Peripher	al Write Mode	e Select bit					
	1 = Null data	write to periphe	eral in additio	n to DMA RAM	write (DIR bit m	nust also be cle	ear)		
bit 10 6		tod: Pood os '	o'						
bit 5_4		EU. Reau as	∪ el Oneratina I	Mode Select bi	te				
bit 3-4	11 = Reserve			Node Select bi	15				
	10 = Peripher	ral Indirect Add	ressing mode	9					
	01 = Register	Indirect without	ut Post-Incren	nent mode					
	00 = Register	Indirect with F	ost-Incremer	it mode					
bit 3-2	Unimplemen	ted: Read as '	0'						
bit 1-0	MODE<1:0>:	DMA Channel	Operating M	ode Select bits			h		
	11 = One-Sno	ous Ping-Pong r	noues enable 1 modes enab	led	ansier from/to e	ach Divia Raivi	buller)		
	01 = One-Sho	ot, Ping-Pong r	nodes disable	ed					
	00 = Continuo	ous, Ping-Pong	j modes disat	bled					

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

9.0 **OSCILLATOR** CONFIGURATION

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 7. "Oscillator" (DS70227), which is available from the Microchip website (www.microchip.com)

The PIC24HJXXXGPX06/X08/X10 oscillator system provides:

· Various external and internal oscillator options as clock sources

FIGURE 9-1:

- · An on-chip PLL to scale the internal operating frequency to the required system clock frequency
- · The internal FRC oscillator can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- · Programmable clock postscaler for system power savings
- · A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- · Nonvolatile Configuration bits for main oscillator selection.

A simplified diagram of the oscillator system is shown in Figure 9-1.

PIC24HJXXXGPX06/X08/X10 OSCILLATOR SYSTEM DIAGRAM

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 9. "Watchdog Timer and Power-Saving Modes" (DS70236), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06/X08/X10 devices can manage power consumption in four different ways:

- Clock frequency
- · Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06/X08/X10 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSC-CON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06/X08/X10 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled.
- Any form of device Reset.
- A WDT time-out.

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
SPIEN		SPISIDL	—	_	—	—	—				
bit 15	·				•	·	bit 8				
U-0	R/C-0	U-0	U-0	U-0	U-0	R-0	R-0				
	SPIROV	<u> </u>	—			SPITBF	SPIRBF				
bit 7							bit 0				
											
Legend:	egend: C = Clearable bit										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	SPIEN: SPIX Enable bit $1 = \text{Enables module and configures SCKy, SDCy, SDly and \overline{\text{SSy}} as satisf part size$										
	1 = Enables module and configures SCKX, SDOX, SDIX and SSX as serial port pins 0 = Disables module										
bit 14	Unimplemented: Read as '0'										
bit 13	SPISIDL: Stop in Idle Mode bit										
	1 = Discontinu	ue module oper	ration when de	evice enters lo	lle mode						
	0 = Continue	module operati	on in Idle mod	de							
bit 12-7	Unimplemen	ted: Read as 'o)'								
bit 6	SPIROV: Rec	eive Overflow	Flag bit								
	1 = A new by	te/word is com	pletely receive	ed and discard	led. The user so	oftware has not	read the				
	0 = No overfl	ow has occurre	xbor register ed								
bit 5-2	Unimplemen	ted: Read as 'o)'								
bit 1	SPITBF: SPI	<pre>< Transmit Buff</pre>	er Full Status	bit							
	1 = Transmit ı	not yet started,	SPIxTXB is fu	III							
	0 = Transmit	started, SPIxT>	(B is empty								
	Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB.										
bit 0	SPIRBF: SPI	x Receive Buffe	er Full Status I	bit							
bit o	1 = Receive of	complete. SPIx	RXB is full								
	0 = Receive is	s not complete,	SPIxRXB is e	empty							
	Automatically	set in hardwar	e when SPIx t	ransfers data	from SPIxSR to	SPIxRXB.					
	Automatically	cleared in hard	ware when co	ore reads SPIX	KBUF location, r	eading SPIXRX	в.				

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70235), which is available from the Microchip website (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The PIC24HJXXXGPX06/X08/X10 devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7 or 10-bit address

For details about the communication sequence in each of these modes, please refer to the *"PIC24H Family Reference Manual"*.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated. **UxSTA: UARTx STATUS AND CONTROL REGISTER**

REGISTER 18-2:

R/W-0 R/W-0 R/W-0 U-0 **R/W-0 HC** R/W-0 R-0 R-1 UTXEN⁽¹⁾ UTXBF UTXISEL1 UTXINV UTXISEL0 UTXBRK TRMT ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/C-0 R-0 RIDLE PERR FERR URXDA URXISEL<1:0> ADDEN OERR bit 7 bit 0 Legend: HC = Hardware cleared C = Clear only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) UTXINV: Transmit Polarity Inversion bit bit 14 If IREN = 0: 1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1' If IREN = 1: 1 = IrDA[®] encoded UxTX Idle state is '1' 0 = IrDA[®] encoded UxTX Idle state is '0' bit 12 Unimplemented: Read as '0' bit 11 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written bit 8 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters.

Note 1: Refer to **Section 17. "UART"** (DS70232) in the *"PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 19-20: CIRXMnSID: ECAN™ MODULE ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3			
bit 15			•		•	•	bit 8			
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x			
SID2	SID1	SID0	—	MIDE	_	EID17	EID16			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown							nown			
bit 15-5	SID<10:0>: \$	Standard Identi	fier bits							
	1 = Include bi 0 = Bit SIDx i	it SIDx in filter o s don't care in f	comparison filter comparis	son						
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	MIDE: Identi	fier Receive Mo	ode bit							
 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) 										
bit 2	Unimplemen	ted: Read as '	0'							
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits							
	 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison 									

REGISTER 19-21: CIRXMnEID: ECAN™ TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID7 | EID6 | EID5 | EID4 | EID3 | EID2 | EID1 | EID0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when analog-to-digital conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation

in progress. Automatically cleared by hardware at start of a new conversion.

24.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of PIC24HJXXXGPX06/X08/X10 electrical characteristics. Additional information is provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24HJXXXGPX06/X08/X10 family are listed below. Exposure to these maximum rating conditions for extended periods can affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital-only pin with respect to Vss	0.3V to +5.6V
Voltage on VCAP/VDDCORE with respect to Vss	2.25V to 2.75V
Maximum current out of Vss pin	
Maximum current into VDD pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	4 mA
Maximum output current sourced by any I/O pin ⁽³⁾	4 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" can cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods can affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 24-2).
 - **3:** Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.

FIGURE 24-6: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

TABLE 24 25: INDUT CARTURE TIMING REQUIREMENTS

АС СНА	RACTERI	STICS	Standard Operat (unless otherwis Operating temper	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Param No.	Symbol	Characte	ristic ⁽¹⁾	Min	Мах	Units	Conditions			
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20	_	ns				
			With Prescaler	10	_	ns				
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns	—			
			With Prescaler	10	_	ns				
IC15	TccP	ICx Input Period		(Tcy + 40)/N	—	ns	N = prescale value (1, 4, 16)			

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

TABLE 24-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions
OC10	TccF	OCx Output Fall Time	_	_	_	ns	See parameter D032
OC11	TccR	OCx Output Rise Time	—	—	—	ns	See parameter D031

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 24-28: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	—	_	ns	See Note 3
SP11	TscH	SCKx Output High Time	Tcy/2	_		ns	See Note 3
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter D032 and Note 4
SP21	TscR	SCKx Output Rise Time	—	-		ns	See parameter D031 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	-		ns	See parameter D031 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23		_	ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

L

VO Darta	100
Parallel I/O (PIO)	
Write/Read Timing	140
I ² C	
Operating Modes	161
Registers	161
I ² C Module	
I2C1 Perister Man	36
1201 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	213, 220
Input Capture	
Registers	150
Input Change Notification Module	140
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	51
MCILInstructions	50
Move and Accumulator Instructions	
Other Instructions	
Instruction Set	
Overview	
Summary	
Instruction-Based Power-Saving Modes	
Idle	132
Sleep	131
Internal RC Oscillator	
Use with WDT	219
Internet Address	287
Interrupt Control and Status Registers	71
IF5X	
IN I CON2	
INTTREG	71
IPCx	71
Interrupt Setup Procedures	110
Initialization	110
Interrupt Disable	110
Interrupt Service Routine	
Trap Service Routine	110
Interrupt Vector Table (IVT)	67
Interrupts Coincident with Power Save Instructions	132
interrupto confident with tower dave instructions.	192
J	
ITAC Boundary Scan Interface	010
TAG Boundary Scall Interface	
14	

Μ

Memory Organization	25
Microchip Internet Web Site	
Modes of Operation	
Disable	177
Initialization	177
Listen All Messages	177
Listen Only	177
Loopback	177
Normal Operation	177
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-C	ircuit Em-
ulator	
MPLAB Integrated Development Environment Softw	are 229
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	

MPLINK Object Linker/MPLIB Object Librarian
Multi-Bit Data Shifter
Ν
NVM Module
Register Map 49
0
Open-Drain Configuration
Output Compare
D
Packaging
Details
Peripheral Module Disable (PMD) 132
PICSTART Plus Development Programmer
Pinout I/O Descriptions (table)13
PMD Module
Register Map 49
POR and Long Oscillator Start-up Times
PORTA
Register Man 47
PORTC
Register Map 47
PORTD
Register Map 47
PORTE
Register Map 48
PURIF As
PORTG
Register Map 48
Power-Saving Features
Clock Frequency and Switching 131
Program Address Space25
Construction
Data Access from Program Memory Using Program
Space Visibility
tions 54
Data Access from Address Generation 53
Memory Map25
Table Read Instructions
TBLRDH 54
TBLRDL
Visibility Operation
Program Memory
Organization 26
Reset Vector 26
-
R
Reader Response
Registers
ADxCHS0 (ADCx Input Channel 0 Select
ADXURS 123 (ADUX INPUT Channel 1, 2, 3 Select) 209
ADXCONT (ADCX CONTROL 1)
ADxCON3 (ADCx Control 3) 207
ADxCON4 (ADCx Control 4)
ADxCSSH (ADCx Input Scan Select High)
ADxCSSL (ADCx Input Scan Select Low) 211
ADxPCFGH (ADCx Port Configuration High)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	PIC 24 HJ 256 GP6 10 T I/PT - XXX nark	 Examples: a) PIC24HJ256GP210I/PT: General-purpose PIC24H, 256 KB program memory, 100-pin, Industrial temp., TQFP package. b) PIC24HJ64GP506I/PT-ES: General-purpose PIC24H, 64 KB program memory, 64-pin, Industrial temp., TQFP package, Engineering Sample.
Architecture:	24 = 16-bit Microcontroller	
Flash Memory Family:	HJ = Flash program memory, 3.3V, High-speed	
Product Group:	GP2=General purpose familyGP3=General purpose familyGP5=General purpose familyGP6=General purpose family	
Pin Count:	06 = 64-pin 10 = 100-pin	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flat- pack) PF = 14x14 mm TQFP (Thin Quad Flatpack)	
Pattern:	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	