

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp210t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24HJXXXGPX06/X08/X10

SR: CPU STATUS REGISTER **REGISTER 3-1:** U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 DC bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽²⁾ R/W-0⁽²⁾ R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL<2:0>(2) RA Ν OV Ζ С bit 7 bit 0 Leaend: C = Clear only bit U = Unimplemented bit, read as '0' R = Readable bit S = Set only bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾ bit 7-5 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 **RA:** REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred Z: MCU ALU Zero bit bit 1 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

TABLE 4-15: ADC1 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Data	Buffer 0								xxxx
AD1CON1	0320	ADON	_	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	:	SSRC<2:0>	•	_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322		VCFG<2:0>	>	—	—	CSCNA	CHP	S<1:0>	BUFS			SMPI	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	—	_		S	AMC<4:0>						ADCS	\$<7:0>				0000
AD1CHS123	0326	—	_	_	—	—	CH123N	NB<1:0>	CH123SB	—		—		—	CH123	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	—	_		CI	H0SB<4:0>	•		CH0NA		—		(CH0SA<4:()>		0000
AD1PCFGH ⁽¹⁾	032A	PCFG31	PCFG30	PCFG29	PCFG28	PCFG27	PCFG26	PCFG25	PCFG24	PCFG23	PCFG22	PCFG21	PCFG20	PCFG19	PCFG18	PCFG17	PCFG16	0000
AD1PCFGL	032C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSH ⁽¹⁾	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	—	_	_	—	—			—	—		—		—		DMABL<2:	0>	0000
Reserved	0334- 033E	—		—	_	_	_	_	_	_	_	—	_	_	_	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: Not all ANx inputs are available on all devices. See the device pin diagrams for available ANx inputs.

TABLE 4-16: ADC2 REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF0	0340								ADC Data	Buffer 0								xxxx
AD2CON1	0360	ADON	-	ADSIDL	ADDMABM	_	AD12B	FOR	M<1:0>	:	SSRC<2:0	>	_	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	١	VCFG<2:0>	>	_	_	CSCNA	CHP	S<1:0>	BUFS	_		SMPI	<3:0>		BUFM	ALTS	0000
AD2CON3	0364	ADRC	-	_		S	AMC<4:0>						ADC	S<7:0>				0000
AD2CHS123	0366	_	-	_	_	_	CH123N	IB<1:0>	CH123SB	_	_	_	_	_	CH123N	IA<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	-	_	_		CH0S	B<3:0>		CH0NA	_	_	_		CH0S	A<3:0>		0000
Reserved	036A	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2PCFGL	036C	PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
Reserved	036E	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
AD2CSSL	0370	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD2CON4	0372	_		_	_	_	_	_	_	_	_	_	_	_	I	DMABL<2:	0>	0000
Reserved	0374- 037E	—	—	_	—	_	—	_	—	_	_	—	_	—	_	—	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

IABLE 4-2	ABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610 DEVICES ONLY																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	_	_	CSIDL	ABAT	-	RI	EQOP<2:0	>	OPN	/ODE<2:0	>	—	CANCAP	—	_	WIN	0480
C2CTRL2	0502	_	_	_	_	_	_	_	_	_	_	_		C	NCNT<4:0)>		0000
C2VEC	0504	_	_	_		FI	LHIT<4:0>			_				ICODE<6:0)>			0000
C2FCTRL	0506	C	MABS<2:0	>	_	_	_	_	_	—	_	—			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<5	:0>			_	_			FNRE	3<5:0>			0000
C2INTF	050A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	Γ<7:0>							RERRCI	NT<7:0>				0000
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<1	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SI	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MSH	<1:0>	F6MSI	<<1:0>	F5MSł	<1:0>	F4MSI	<<1:0>	F3MSK<	<1:0>	F2MS	<1:0>	F1MSI	<<1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSI	< <1:0>	F8MS	K<1:0>	0000

TABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR PIC24HJ256GP610 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	edefinition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	81<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540				•				Recieved	Data Word								xxxx
C2TXD	0542								Transmit I	Data Word								xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.4.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

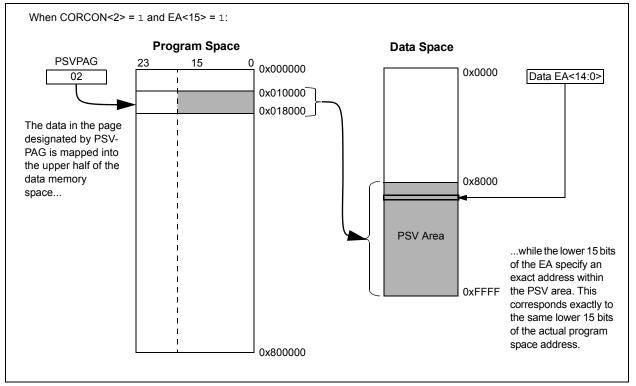
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. Note that by incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address, 8000h and higher, maps directly into a corresponding program memory address (see Figure 4-8), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note: PSV access is temporarily disabled during table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

FIGURE 4-8: PROGRAM SPACE VISIBILITY OPERATION

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

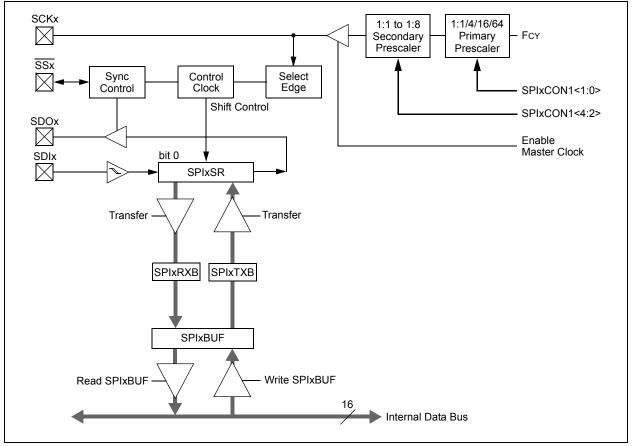
bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_	—	DMA5IE	_	_	—	_	C2IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE
bit 7							bit 0
r							
Legend:							
R = Readable		W = Writable		•	nented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		tad. Daad aa f	o'				
bit 15-14 bit 13	-	ted: Read as '		amplata Interr	unt Enchla hit		
DIL 13		A Channel 5 D equest enable			upt Enable bit		
	•	request not ena					
bit 12-9	Unimplemen	ted: Read as '	0'				
bit 8	C2IE: ECAN2	2 Event Interrup	ot Enable bit				
		equest enable					
	•	request not ena					
bit 7		N2 Receive D	-	errupt Enable I	Dit		
	•	equest enable equest not ena					
bit 6		nal Interrupt 4					
	1 = Interrupt r	equest enable	d				
		request not ena					
bit 5		nal Interrupt 3					
		equest enable equest not ena					
bit 4	-	Interrupt Enab					
		equest enable					
	•	equest not ena					
bit 3		Interrupt Enab					
		equest enable					
bit 2	-	equest not ena 2 Master Even		abla bit			
		equest enable	-				
		request not ena					
bit 1	SI2C2IE: 12C	2 Slave Events	Interrupt Ena	ble bit			
		equest enable					
	-	equest not ena					
bit 0		Interrupt Enab					
		equest enable equest not ena					
		540501101010					

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 18. "Serial Peripheral Interface (SPI)" (DS70243), which is available from the Microchip website (www.microchip.com).


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module. Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

PIC24HJXXXGPX06/X08/X10

REGISTER	16-2: SPIxC	ON1: SPIx C	ONTROL R	EGISTER 1			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	СКР	MSTEN		SPRE<2:0>(2	2)	PPRE<	<1:0> ⁽²⁾
bit 7						·	bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as	0'				
bit 12	DISSCK: Dis	able SCKx pin	bit (SPI Maste	er modes only)			
		SPI clock is dis		ctions as I/O			
	0 = Internal S	SPI clock is ena	abled				
bit 11		able SDOx pin					
		is not used by is controlled b		functions as I/C)		
hit 10	•		•	a at hit			
bit 10		ord/Byte Comn ication is word					
		ication is byte-					
bit 9	SMP: SPIx D	ata Input Sam	ole Phase bit				
	Master mode	-					
		a sampled at e					
	Slave mode:	a sampled at m		Sulput lime			
		cleared when	SPIx is used	in Slave mode.			
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾				
	1 = Serial out	put data chang	ges on transiti		clock state to Id		
					ock state to activ	/e clock state (s	see bit 6)
bit 7		Select Enable		de) ⁽³⁾			
		ised for Slave		rolled by port fu	unction		
hit 6	-	-		iolied by port it			
bit 6		Polarity Select		ve state is a lov	w level		
				e state is a high			
bit 5		ster Mode Enal		0			
	1 = Master m						
	0 = Slave mo	de					
Note 1 · ⊤	he CKE bit is no	t used in the F	ramed SPI m	odes The user	should program	n this hit to 'o' f	or the Fram
	PI modes (FRM						
2: D	o not set both P	rimary and Se	condarv preso	alers to a value	e of 1:1.		

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

- **2:** Do not set both Primary and Secondary prescalers to a value of 1:1.
- 3: This bit must be cleared when FRMEN = 1.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>
bit 15							bit 8
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL
bit 7							bit C
Legend:		HC = Hardwa	ro cloared				
R = Readable	hit	W = Writable		LI – Unimplo	mented bit, read		
				$0^{\circ} = \text{Bit is cle}$			
-n = Value at F	'UR	'1' = Bit is set			ared	x = Bit is unkr	IOWN
bit 15	UARTEN: UA	RTx Enable bi	_t (1)				
				e controlled by	UARTx as defi	ned by UEN<1:	:0>
					y port latches; U		
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	USIDL: Stop	in Idle Mode bi	t				
		ue module ope			dle mode		
h:: 40		module opera					
bit 12		Encoder and D coder and dec		e dit'-'			
		coder and dec					
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it			
		in in Simplex n in in Flow Con					
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	UEN<1:0>: ∪	ARTx Enable I	oits				
	11 = UxTX, U	xRX and BCL	<pins are="" ena<="" td=""><td>bled and used</td><td>I; UxCTS pin co</td><td>ntrolled by port</td><td>latches</td></pins>	bled and used	I; UxCTS pin co	ntrolled by port	latches
		xRX, UxCTS a					
					ed; UxCTS pin c		
	port latcl						lolled by
bit 7	WAKE: Wake	up on Start bi	t Detect Durin	g Sleep Mode	Enable bit		
	1 = UARTx w	/ill continue to	sample the Ux	RX pin; interro	upt generated o	n falling edge; l	oit cleared
		are on following	g rising edge				
	0 = No wake	•					
bit 6		RTx Loopback		bit			
		oopback mode k mode is disal					
bit 5	-	-Baud Enable					
	1 = Enable b	aud rate meas	urement on th		er – requires re	ception of a Sy	nc field (0x55)
		ny data; cleared e measuremen		•	on		
					amily Referenc	e <i>Manual"</i> for i	nformation or
en	abling the UAR	T module for re	eceive or trans	smit operation.			

2: This feature is only available for the 16x BRG mode (BRGH = 0).

PIC24HJXXXGPX06/X08/X10

REGISTER 19-2: CiCTRL2: ECAN™ MODULE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—			DNCNT<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	Unimplemen	ted: Read as '	כ'				
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits			
	10010-1111	1 = Invalid sele	ection				
	10001 = Com	npare up to data	a byte 3, bit 6	with EID<17>			
	•						
	•						
	•						
		npare up to data not compare da		with EID<0>			

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 16. "Analog-to-Digital Converter (ADC)" (DS70225), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 devices have up to 32 Analog-to-Digital input channels. These devices also have up to 2 Analog-to-Digital converter modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Two result alignment options (signed/unsigned)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the Analog-to-Digital Converter can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

A block diagram of the Analog-to-Digital Converter is shown in Figure 20-1.

20.2 Analog-to-Digital Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on the ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit

2.

b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

REGISTER 20-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2) R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 VCFG<2:0> CSCNA CHPS<1:0> bit 15 bit 8 R/W-0 R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BUFS SMPI<3:0> BUFM ALTS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits VREF+ **VREF-**AVDD AVss 000 External VREF+ 001 AVss AVDD External VREF-010 External VREF-External VREF+ 011 1xx AVDD **AVss** bit 12-11 Unimplemented: Read as '0' bit 10 CSCNA: Scan Input Selections for CH0+ during Sample A bit 1 = Scan inputs 0 = Do not scan inputs bit 9-8 CHPS<1:0>: Selects Channels Utilized bits When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0' 1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1 00 = Converts CH0 bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1) 1 = ADC is currently filling second half of buffer, user should access data in first half 0 = ADC is currently filling first half of buffer, user should access data in second half bit 6 Unimplemented: Read as '0' bit 5-2 SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion operations per interrupt 1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/conversion operation 0001 = Increments the DMA address or generates interrupt after completion of every 2nd sample/conversion operation 0000 = Increments the DMA address or generates interrupt after completion of every sample/conversion operation bit 1 BUFM: Buffer Fill Mode Select bit 1 = Starts filling first half of buffer on first interrupt and second half of buffer on next interrupt 0 = Always starts filling buffer from the beginning bit 0 ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- · Control operations

Table 22-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 22-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

АС СНА	RACTERI	5110.5	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range	0.8		8	MHz	ECPLL, HSPLL, XTPLL modes			
OS51	Fsys	On-Chip VCO System Frequency		100	_	200	MHz			
OS52	TLOCK	PLL Start-up Time (Lock	Time)	0.9	1.5	3.1	mS			
OS53	DCLK	CLKO Stability (Jitter)		-3	0.5	3	%	Measured over 100 ms period		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 24-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS		rd Operating temper			3.0V to 3.6V (unless ot $C \le TA \le +85^{\circ}C$ for Indu	-			
Param No.	Characteristic	Min	Тур	Max	Units	Condit	ions			
	Internal FRC Accuracy @ 7.3728 MHz ^(1,2)									
F20	FRC -2 +2 % $-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = $3.0-3.6V$									

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 24-19: INTERNAL RC ACCURACY

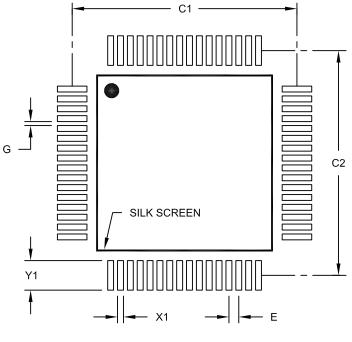
АС СН	ARACTERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions		
	LPRC @ 32.768 kHz ⁽¹⁾							
F21	LPRC	-20	±6	+20	%	$-40^\circ C \le T A \le +85^\circ C$	VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic Min.		Тур	Max.	Units	Conditions	
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-	
AD20a	Nr	Resolution	12 data bits		bits			
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25a	_	Monotonicity	_		_	_	Guaranteed	
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal V	VREF+/VREF-	
AD20a	Nr	Resolution	12 data bits		bits			
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25a	—	Monotonicity	—	—	—	—	Guaranteed	
		Dynamic	Performa	ince (12	-bit Mod	e)		
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB	—	
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	_	
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_	
AD33a	Fnyq	Input Signal Bandwidth	—	—	250	kHz	—	
AD34a	ENOB	Effective Number of Bits	10.95	11.1	_	bits	_	

TABLE 24-36: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Param No.	Symbol	ibol Characteristic		Typ ⁽²⁾	Max.	Units	Conditions
		Clock	Paramete	ers ⁽¹⁾			·
AD50	TAD	ADC Clock Period	117.6		_	ns	_
AD51	tRC	ADC Internal RC Oscillator Period		250	—	ns	_
		Con	version R	ate	•		•
AD55	tCONV	Conversion Time		14 Tad		ns	_
AD56	FCNV	Throughput Rate			500	ksps	_
AD57	TSAMP	Sample Time	3 Tad		—		—
		Timir	ng Parame	ters			·
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 TAD	—	3.0 Tad	—	Auto convert trigger not selected
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 TAD	_	3.0 Tad	_	—
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 Tad	—	_	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)		_	20	μs	_


Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED	LAND PATTERN
-------------	--------------

Units		MILLIM		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.50 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A

Revision G (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in the following table.

Section Name	Update Description
Section 3.0 "Memory Organization"	Updated Change Notification Register Map table title to reflect application with PIC24HJXXXGPX10 devices (Table 3-2).
	Added Change Notification Register Map tables (Table 3-3 and Table 3-4) for PIC24HJXXXGPX08 and PIC24HJXXXGPX06 devices, respectively.
	Updated the bit range for AD1CON3 (ADCS<7:0>) in the ADC1 Register Map and added Note 1 (Table 3-15).
	Updated the bit range for AD2CON3 (ADCS<7:0>) in the ADC2 Register Map (Table 3-16).
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 0 or 1 to reflect applicable devices (Table 3-18).
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 0 to reflect applicable devices (Table 3-19).
	Updated the title in the ECAN1 Register Map When C1CTRL1.WIN = 1 to reflect applicable devices (Table 3-20).
	Updated the Reset value for C2FEN1 (FFFF) in the ECAN2 Register Map When C2CTRL1.WIN = 0 or 1 (Table 3-21) and updated the title to reflect applicable device.
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 0 to reflect applicable device (Table 3-22).
	Updated the title for the ECAN2 Register Map When C2CTRL1.WIN = 1 to reflect applicable device (Table 3-23).
	Updated Reset value for TRISA (F6FF) in the PORTA Register Map (Table 3-24).
Section 5.0 "Reset"	Added POR and BOR references in Reset Flag Bit Operation (Table 5-1).
Section 7.0 "Direct Memory Access (DMA)"	Updated the table cross-reference for Note 2 in the DMAxREQ register (Register 7-2).
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources".
Section 15.0 "Serial Peripheral Interface (SPI)"	Removed redundant information, which is now available in the related section in the <i>"PIC24H Family Reference Manual"</i> , while retaining the SPI Module Block Diagram (Figure 15-1).
Section 16.0 "Inter-Integrated Circuit™ (I ² C™)"	Removed sections 16.3 through 16.13, while retaining the I ² C Block Diagram (Figure 16-1) (redundant information, which is now available in the related section in the <i>"PIC24H Family Reference Manual"</i>).
Section 17.0 "Universal Asynchronous Receiver Transmitter (UART)"	Removed sections 17.1 through 17.7 (redundant information, which is now available in the related section in the <i>"PIC24H Family Reference Manual"</i>).

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla		 Examples: a) PIC24HJ256GP210I/PT: General-purpose PIC24H, 256 KB program memory, 100-pin, Industrial temp., TQFP package. b) PIC24HJ64GP506I/PT-ES: General-purpose PIC24H, 64 KB program memory, 64-pin, Industrial temp., TQFP package, Engineering Sample.
Architecture:	24 = 16-bit Microcontroller	
Flash Memory Family:	HJ = Flash program memory, 3.3V, High-speed	
Product Group:	GP2=General purpose familyGP3=General purpose familyGP5=General purpose familyGP6=General purpose family	
Pin Count:	06 = 64-pin 10 = 100-pin	
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)	
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flat- pack) PF = 14x14 mm TQFP (Thin Quad Flatpack)	
Pattern:	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample	

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

02/04/09