

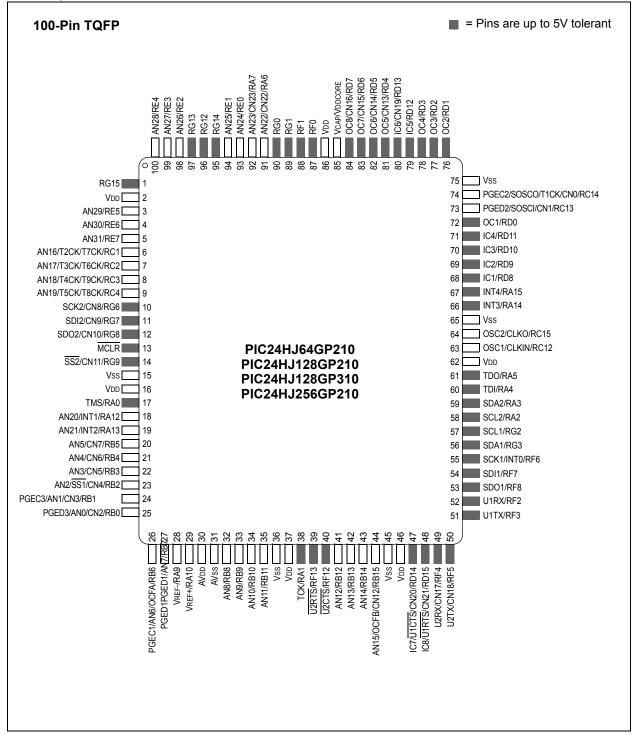
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Detuns	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp310t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < F_{IN} < 8 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the A/D input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the A/D pins that are initialized by MPLAB ICD 2, ICD 3, or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain A/D pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all A/D pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor to Vss on unused pins and drive the output to logic low.

3.0 CPU

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 2. "CPU" (DS70245), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and addressing modes. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double word move (MOV.D) instruction and the table instructions. Overhead-free, single-cycle program loop constructs are supported using the REPEAT instruction, which is interruptible at any point.

The PIC24HJXXXGPX06/X08/X10 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

The PIC24HJXXXGPX06/X08/X10 instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, the PIC24HJXXXGPX06/X08/X10 is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle.

A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the PIC24HJXXXGPX06/X08/X10 is shown in Figure 3-2.

3.1 Data Addressing Overview

The data space can be linearly addressed as 32K words or 64 Kbytes using an Address Generation Unit (AGU). The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program to data space mapping feature lets any instruction access program space as if it were data space.

The data space also includes 2 Kbytes of DMA RAM, which is primarily used for DMA data transfers, but may be used as general purpose RAM.

3.2 Special MCU Features

The PIC24HJXXXGPX06/X08/X10 features a 17-bit by 17-bit, single-cycle multiplier. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication makes mixed-sign multiplication possible.

The PIC24HJXXXGPX06/X08/X10 supports 16/16 and 32/16 integer divide operations. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A multi-bit data shifter is used to perform up to a 16-bit, left or right shift in a single cycle.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER
--

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	-	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0		
—	—	—	—	IPL3 ⁽¹⁾	PSV	—	—		
bit 7							bit 0		
Legend:		C = Clear only	y bit						
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set			
0' = Bit is clea	ared	'x = Bit is unki	nown	U = Unimpler	as '0'				
bit 15-4	Unimplemen	ted: Read as '	0'						
bit 3	•	terrupt Priority		oit 3 ⁽¹⁾					
		rupt priority lev							
		rupt priority lev	•						
bit 2	PSV: Progran	n Space Visibili	ty in Data Spa	ice Enable bit					
	1 = Program	space visible in	data space						
	0 = Program space not visible in data space								

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP
--

IADEE .	- -J.																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	—	—	_	—	—	—	—	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	0082	ALTIVT	DISI	_		-	_	_	_	—	_	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF	0000
IFS2	0088	T6IF	DMA4IF	—	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	008A	_	_	DMA5IF	_	_	_	_	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	008C	_	_	—	_	_	_	_	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	_	U2EIF	U1EIF	—	0000
IEC0	0094	_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	_	MI2C1IE	SI2C1IE	0000
IEC2	0098	T6IE	DMA4IE	—	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	009A	_	_	DMA5IE	_	_	_	_	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	009C	—	—	—	_	—	—	_	—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—	0000
IPC0	00A4	—		T1IP<2:0>		—		OC1IP<2:0)>	_		IC1IP<2:0>		-	INT0IP<2:0>		4444	
IPC1	00A6	_		T2IP<2:0>		_		OC2IP<2:0)>	_		IC2IP<2:0>	0> —		DMA0IP<2:0>		4444	
IPC2	00A8	_	ι	J1RXIP<2:0	XIP<2:0> —		SPI1IP<2:0>)>	_		SPI1EIP<2:0>		_		T3IP<2:0>		4444
IPC3	00AA	_	_	_			DMA1IP<2:0>		_	AD1IP<2:0>		_	U1TXIP<2:0>		>	0444		
IPC4	00AC	_		CNIP<2:0>	•	_	_	_	_	_	MI2C1IP<2:0>		_	SI2C1IP<2:0>		>	4044	
IPC5	00AE	—		IC8IP<2:0>	>		IC7IP<2:0>		>	—	AD2IP<2:0>		—	INT1IP<2:0>		•	4444	
IPC6	00B0	—		T4IP<2:0>				OC4IP<2:()>	—	OC3IP<2:0>		—	DMA2IP<2:0>		>	4444	
IPC7	00B2	—	ι	J2TXIP<2:0)>		U2RXIP<2:0>		—	INT2IP<2:0>		—		T5IP<2:0>		4444		
IPC8	00B4	—		C1IP<2:0>			C1RXIP<2:0>		—		SPI2IP<2:0	>	—	SF	PI2EIP<2:0	>	4444	
IPC9	00B6	_		IC5IP<2:0>	>			IC4IP<2:0>		—		IC3IP<2:0>		—	DI	MA3IP<2:0	>	4444
IPC10	00B8	—		OC7IP<2:0	>			OC6IP<2:0)>	—		OC5IP<2:0>	>	—	I	C6IP<2:0>		4444
IPC11	00BA	_		T6IP<2:0>			C	MA4IP<2:	0>	—	_	—	_	—	C	C8IP<2:0>		4404
IPC12	00BC	_		T8IP<2:0>		_	N	112C2IP<2	:0>	_		SI2C2IP<2:0)>	_		T7IP<2:0>		4444
IPC13	00BE	_	C	2RXIP<2:0)>	-	1	NT4IP<2:0)>	—		INT3IP<2:0	>	-		T9IP<2:0>		4444
IPC14	00C0	_	_	_	—	_	—	—	_	—	_	_	_	_	(C2IP<2:0>		0004
IPC15	00C2	—	_	—	_	—	—	—	—	_		DMA5IP<2:0)>	_	—	—	—	0040
IPC16	00C4	_		—		-		U2EIP<2:0)>	—		U1EIP<2:0>	>	_		_	—	0440
IPC17	00C6	_	(C2TXIP<2:0)>	_	(C1TXIP<2:	0>	_		DMA7IP<2:0)>	_	DMA6IP<2:0>		>	4444
INTTREG	00E0	_	—	—	—		ILR<	3:0>		_			VE	CNUM<6:0>				0000
Lonordi										adaaimal fa								

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506/510/610 DEVICES ONLY (CONTINUED)																		
File Name	Addr	Bit 15	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8							Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF11EID	046E		EID<15:8>							EID<7:0>								xxxx
C1RXF12SID	0470		SID<10:3>							SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx	
C1RXF12EID	0472	EID<15:8>							EID<7:0>								xxxx	
C1RXF13SID	0474		SID<10:3>							SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx	
C1RXF13EID	0476		EID<15:8>						EID<7:0>							xxxx		
C1RXF14SID	0478		SID<10:3>							SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx	
C1RXF14EID	047A		EID<15:8>						EID<7:0>							xxxx		
C1RXF15SID	047C		SID<10:3>								SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF15EID	047E		EID<15:8>						EID<7:0>							xxxx		

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices. Legend:

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610 DEVICES ONLY (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11EID	056E	EID<15:8>							EID<7:0>								xxxx	
C2RXF12SID	0570	SID<10:3>						SID<2:0> — EXIDE					— EID<17:16>		xxxx			
C2RXF12EID	0572	EID<15:8>							EID<7:0>								xxxx	
C2RXF13SID	0574	SID<10:3>						SID<2:0> — EXI					EXIDE — EID<17:16>			xxxx		
C2RXF13EID	0576	EID<15:8>						EID<7:0>							xxxx			
C2RXF14SID	0578		SID<10:3>						SID<2:0> — EXIDE —					_	EID<1	7:16>	xxxx	
C2RXF14EID	057A	EID<15:8>						EID<7:0>							xxxx			
C2RXF15SID	057C		SID<10:3>							SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx	
C2RXF15EID	057E	EID<15:8>						EID<7:0>							xxxx			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable reset delay times.

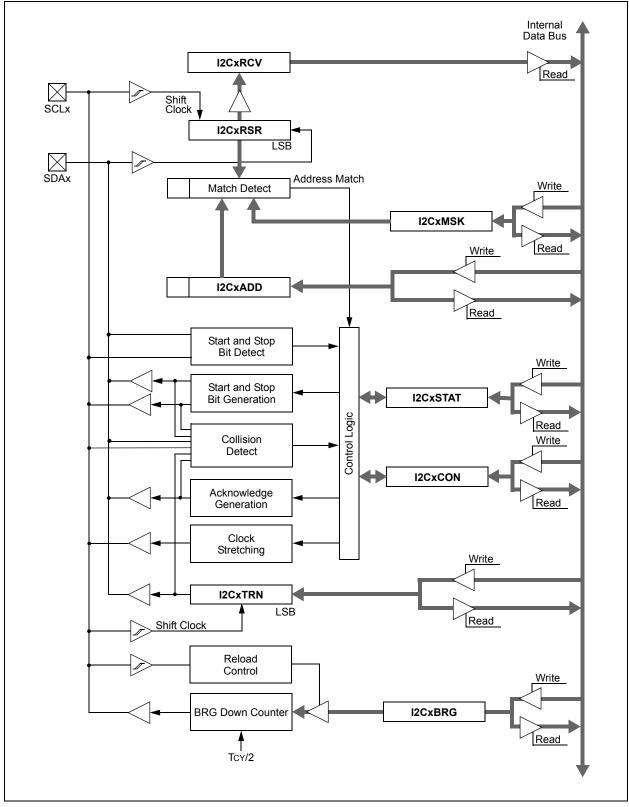
The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the reset signal is released.

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2
--

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T6IF	DMA4IF		OC8IF	OC7IF	OC6IF	OC5IF	IC6IF		
bit 15	÷						bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF		
bit 7									
Legend:									
R = Readable	ble bit W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at F	ue at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk								
bit 15	T6IF: Timer6	Interrupt Flag	Status bit						
		equest has oc							
	0 = Interrupt r	equest has no	t occurred						
bit 14				complete Interr	upt Flag Status	bit			
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 								
bit 13	•	•							
bit 12	Unimplemented: Read as '0' OC8IF: Output Compare Channel 8 Interrupt Flag Status bit								
	1 = Interrupt request has occurred								
		equest has no							
bit 11	OC7IF: Output Compare Channel 7 Interrupt Flag Status bit								
		equest has oc equest has no							
bit 10	OC6IF: Output Compare Channel 6 Interrupt Flag Status bit								
		equest has oc equest has no							
bit 9	•	•		upt Flag Status	s bit				
		equest has oc equest has no							
bit 8	IC6IF: Input C	apture Chann	el 6 Interrupt F	-lag Status bit					
		equest has oc equest has no		-					
bit 7	•	apture Chann		-lag Status bit					
	1 = Interrupt r	equest has oc	curred	·					
		equest has no							
bit 6	-	Capture Chann	-	lag Status bit					
	•	equest has oc equest has no							
bit 5	-	Capture Chann		-lag Status bit					
	-	request has oc		lag olalao bit					
	0 = Interrupt r	equest has no	t occurred						
bit 4	DMA3IF: DMA Channel 3 Data Transfer Complete Interrupt Flag Status bit								
		equest has oc							
	0 = Interrupt r	equest has no	Loccurred						
hit 0	•	•		h:+					
bit 3	C1IF: ECAN1	Event Interrup equest has oc	ot Flag Status	bit					

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 2	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SPI2EIF: SPI2 Error Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred


REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T1IP<2:0>		—		OC1IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC1IP<2:0>		—		INT0IP<2:0>	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable I	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as 'o	ז'				
bit 14-12	-	Timer1 Interrupt					
		upt is priority 7 (I		ty interrupt)			
	•		0	, i ,			
	•						
	• 001 = Interru	upt is priority 1					
		upt source is disa	abled				
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8	OC1IP<2:0>	: Output Compa	re Channel 1	Interrupt Prior	ity bits		
	111 = Interru	upt is priority 7 (I	nighest priorit	ty interrupt)			
	•						
	•						
		upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	nted: Read as 'o)'				
bit 6-4		Input Capture C			oits		
	111 = Interru	upt is priority 7 (I	nighest priorit	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	abled				
bit 3		nted: Read as '					
bit 3-0	-	: External Interr		bite			
DIL 2-0		upt is priority 7 (h					
	•		gricor priorit	, monupi)			
	•						
	• 001 = Interru						

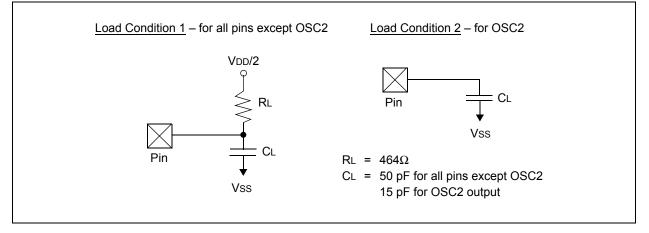
REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U1RXIP<2:0>		—		SPI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		SPI1EIP<2:0>		—		T3IP<2:0>	
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimpleme	ented: Read as '	0'				
bit 14-12	-	0>: UART1 Rece		Priority bits			
		rupt is priority 7 (I	-	-			
	•						
	•						
		rupt is priority 1					
	000 = Interr	rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8		>: SPI1 Event In	•	•			
	111 = Interr	rupt is priority 7 (I	highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	SPI1EIP<2:	:0>: SPI1 Error Ir	nterrupt Priori	ty bits			
	111 = Interr	rupt is priority 7 (I	highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1					
		rupt source is dis					
bit 3	-	ented: Read as '					
bit 2-0		Timer3 Interrupt	-				
	111 = Interr	rupt is priority 7 (I	highest priorit	y interrupt)			
	•						
	•						
		rupt is priority 1	ablad				
	000 = Interr	rupt source is dis	apled				

FIGURE 17-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1 OR 2)

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0x0007FE 010 = High security; boot program Flash segment starts at End of VS, ends at 0x0007FE Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x003FFE 000 = High security; boot program Flash segment starts at End of VS, ends at 0x003FFE
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 21-2: PIC24HJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION


24.2 AC Characteristics and Timing Parameters

This section defines PIC24HJXXXGPX06/X08/X10 AC characteristics and timing parameters.

TABLE 24-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS – AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for IndustrialOperating voltage VDD range as described in Section 24.0 "Electrical
	Characteristics"

FIGURE 24-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 24-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_	—	15		In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—		400	pF	In l ² C™ mode

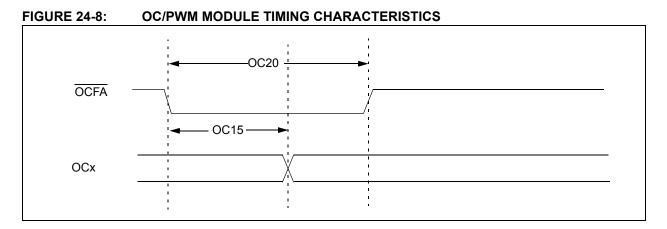
TABLE 24-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

					-			(unless otherwise stated) for Industrial
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8	MHz	ECPLL, HSPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	_	200	MHz	
OS52	TLOCK	PLL Start-up Time (Lock	Time)	0.9	1.5	3.1	mS	
OS53	DCLK	CLKO Stability (Jitter)		-3	0.5	3	%	Measured over 100 ms period

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 24-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICSStandard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwis Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						-				
Param No.	Characteristic	Min	Тур	Max	Units	Conditions				
	Internal FRC Accuracy @ 7.3728 MHz ^(1,2)									
F20	FRC	-2		+2	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$				


Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

2: FRC is set to initial frequency of 7.37 MHz (±2%) at 25°C.

TABLE 24-19: INTERNAL RC ACCURACY

АС СН	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	LPRC @ 32.768 kHz ⁽¹⁾	68 kHz ⁽¹⁾							
F21	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C \qquad VDD = 3.0-3.6V$			

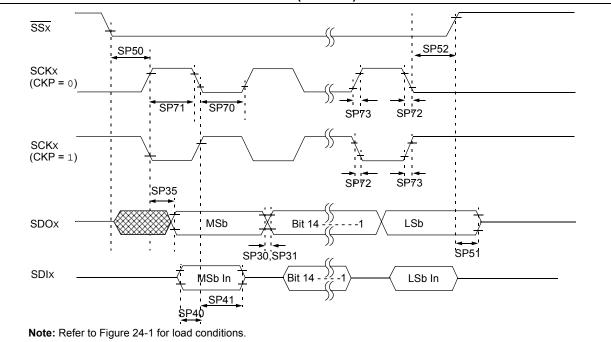

Note 1: Change of LPRC frequency as VDD changes.

TABLE 24-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC15	Tfd	Fault Input to PWM I/O Change	_	_	50	ns	_	
OC20	TFLT	Fault Input Pulse-Width	50	_	_	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 24-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 24-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq \ TA \leq \ +85^{\circ}C \ for \ Industrial \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	—	_	ns	_
SP71	TscH	SCKx Input High Time	30	_	_	ns	—
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	—
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	—
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	—	_	ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	—	30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_		ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120	—	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

L

VO Darta	100
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	140
l ² C	
Operating Modes	161
Registers	161
I ² C Module	
I2C1 Register Map	
I2C2 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	
Input Capture	215, 220
Registers	150
Input Change Notification Module	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MCU Instructions	
Move and Accumulator Instructions	51
Other Instructions	51
Instruction Set	
Overview	224
Summary	
Instruction-Based Power-Saving Modes	
Idle	
Sleep	
Internal RC Oscillator	
Use with WDT	210
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON1	
INTCON2	
INTTREG	
IPCx	
Interrupt Setup Procedures	
Initialization	110
Interrupt Disable	
Interrupt Service Routine	110
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions.	
•	
J	
JTAG Boundary Scan Interface	

Μ

Memory Organization	25
Microchip Internet Web Site	
Modes of Operation	
Disable	177
Initialization	177
Listen All Messages	177
Listen Only	177
Loopback	177
Normal Operation	177
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-C	ircuit Em-
ulator	
MPLAB Integrated Development Environment Softw	are 229
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	

MPLINK Object Linker/MPLIB Object Librarian		
Multi-Bit Data Shifter24		
N		
NVM Module		
Register Map 49		
0		
Open-Drain Configuration 140		
Output Compare		
Р		
Packaging		
Details		
Marking		
Peripheral Module Disable (PMD) 132		
PICSTART Plus Development Programmer		
Pinout I/O Descriptions (table)		
Register Map 49		
POR and Long Oscillator Start-up Times		
PORTA		
Register Map 47		
PORTB Register Map 47		
PORTC		
Register Map		
PORTD		
Register Map		
PORTE Register Map 48		
PORTF		
Register Map		
PORTG		
Register Map		
Power-Saving Features		
Program Address Space		
Construction		
Data Access from Program Memory Using Program		
Space Visibility55 Data Access from Program Memory Using Table Instruc-		
tions		
Data Access from. Address Generation		
Memory Map25		
Table Read Instructions		
TBLRDH		
TBLRDL		
Program Memory		
Interrupt Vector		
Organization		
Reset Vector		
R		
Reader Response		
Registers		
ADxCHS0 (ADCx Input Channel 0 Select		
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 209 ADxCON1 (ADCx Control 1) 204		
ADxCON1 (ADCx Control 1)		
ADXCON2 (ADCX Control 2)		
ADxCON4 (ADCx Control 4) 208		
ADxCSSH (ADCx Input Scan Select High)		
ADxCSSL (ADCx Input Scan Select Low)		
ADxPCFGH (ADCx Port Configuration High)		

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent	
RE:	Reader Response		
From	n: Name		
	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Appl	ication (optional):		
Wou	ld you like a reply?YN		
Device: PIC24HJXXXGPX06/X08/X10 Literature Number: DS70175H			
Ques	stions:		
1. \	1. What are the best features of this document?		
-			
2. How does this document meet your hardware and software development needs?			
2. 1	iow does this document meet your hardware and software development needs:		
-			
3. [3. Do you find the organization of this document easy to follow? If not, why?		
-			
	hat additions to the document do you think would enhance the structure and subject?		
ч . (
-			
5. \	What deletions from the document could be made without affecting the overall usefulness?		
-			
-			
6. I	S. Is there any incorrect or misleading information (what and where)?		
-			
- 7. ł	How would you improve this document?		
- · ·			
_			