

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp510-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC24H PRODUCT FAMILIES

The PIC24H Family of devices is ideal for a wide variety of 16-bit MCU embedded applications. The device names, pin counts, memory sizes and peripheral availability of each device are listed below, followed by their pinout diagrams.

PIC24H Family Controllers

Device	Pins	Program Flash Memory (KB)	RAM ⁽¹⁾ (KB)	DMA Channels	Timer 16-bit	Input Capture	Output Compare Std. PWM	Codec Interface	ADC	UART	IdS	I ² C™	CAN	I/O Pins (Max) ⁽²⁾	Packages
PIC24HJ64GP206	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	1	0	53	PT
PIC24HJ64GP210	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ64GP506	64	64	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT
PIC24HJ64GP510	100	64	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP206	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT
PIC24HJ128GP210	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ128GP506	64	128	8	8	9	8	8	0	1 ADC, 18 ch	2	2	2	1	53	PT
PIC24HJ128GP510	100	128	8	8	9	8	8	0	1 ADC, 32 ch	2	2	2	1	85	PF, PT
PIC24HJ128GP306	64	128	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT
PIC24HJ128GP310	100	128	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP206	64	256	16	8	9	8	8	0	1 ADC, 18 ch	2	2	2	0	53	PT
PIC24HJ256GP210	100	256	16	8	9	8	8	0	1 ADC, 32 ch	2	2	2	0	85	PF, PT
PIC24HJ256GP610	100	256	16	8	9	8	8	0	2 ADC, 32 ch	2	2	2	2	85	PF, PT

Note 1: RAM size is inclusive of 2 Kbytes DMA RAM.

2: Maximum I/O pin count includes pins shared by the peripheral functions.

Pin Diagrams (Continued) 100-Pin TQFP Pins are up to 5V tolerant AN22/CN22/RA6 AN23/CN23/RA7 OC7/CN15/RD6 OC6/CN14/RD5 IC6/CN19/RD13 OC5/CN13/RD4 OC8/CN16/RD7 VCAP/VDDCORE C1TX/RF1 C1RX/RF0 **AN27/RE3 AN26/RE2** AN24/RE0 OC4/RD3 OC3/RD2 OC2/RD1 **AN28/RE4** IC5/RD12 AN25/RE RG13 RG12 RG14 RG1 RGO VDD cRG15 75 Vss 74 PGEC2/SOSCO/T1CK/CN0/RC14 VDD 2 73 PGED2/SOSCI/CN1/RC13 AN29/RE5 3 72 OC1/RD0 AN30/RE6 71 IC4/RD11 AN31/RE7 5 70 IC3/RD10 AN16/T2CK/T7CK/RC1 6 IC2/RD9 69 AN17/T3CK/T6CK/RC2 7 68 IC1/RD8 AN18/T4CK/T9CK/RC3 8 AN19/T5CK/T8CK/RC4 67 INT4/RA15 9 INT3/RA14 SCK2/CN8/RG6 10 66 Vss SDI2/CN9/RG7 11 65 SDO2/CN10/RG8 OSC2/CLKO/RC15 12 64 MCLR OSC1/CLKIN/RC12 13 63 PIC24HJ64GP510 SS2/CN11/RG9 14 62 VDD PIC24HJ128GP510 TDO/RA5 Vss 15 61 VDD 16 60 TDI/RA4 TMS/RA0 17 59 SDA2/RA3 AN20/INT1/RA12 18 58 SCL2/RA2 AN21/INT2/RA13 19 57 SCL1/RG2 AN5/CN7/RB5 20 56 SDA1/RG3 AN4/CN6/RB4 21 55 SCK1/INT0/RF6 AN3/CN5/RB3 22 54 SDI1/RF7 AN2/SS1/CN4/RB2 23 53 SDO1/RF8 PGEC3/AN1/CN3/RB1 24 52 U1RX/RF2 PGED3/AN0/CN2/RB0 25 51 U1TX/RF3 50< U2RX/CN17/RF4 U2TX/CN18/RF5 TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 [AN13/RB13 [AN14/RB14 [AVDD AVSS AN8/RB8 [AN9/RB9 [AN10/RB10 AN11/RB11 IC7/U1CTS/CN20/RD14 ۵۵ VSS ۵۵۸ IC8/U1RTS/CN21/RD15 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 Vss AN15/OCFB/CN12/RB15

SR: CPU STATUS REGISTER **REGISTER 3-1:** U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 DC bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽²⁾ R/W-0⁽²⁾ R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL<2:0>(2) RA Ν OV Ζ С bit 7 bit 0 Leaend: C = Clear only bit U = Unimplemented bit, read as '0' R = Readable bit S = Set only bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾ bit 7-5 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 **RA:** REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred Z: MCU ALU Zero bit bit 1 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJXXXGPX10 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_		_	-	_		_	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJXXXGPX08 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR PIC24HJXXXGPX06 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	_	_	_	_	_	_	_	_	_	CN21IE	CN20IE	_	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	_	_	_	_	_	_	_	_	_	CN21PUE	CN20PUE	_	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

FIGURE 7-1	PIC24H.IXXXGPX06/X08/X10 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	1	
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Tran Vector		
	DMA Error Trap Vector	-	
	Reserved	-	
	Reserved	-	
	Interrupt Vector 0	0x000014	1
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT)(")
<u> </u>	Interrupt Vector 54	0x000080	
2	~	1	
E	~		
	~		
5	Interrupt Vector 116	0x0000FC	
0	Interrupt Vector 117	0x0000FE	<u>-</u>
	Reserved	0x000100	
Ž	Reserved	0x000102	
	Reserved		
200	Oscillator Fail Trap Vector		
5	Address Error Trap Vector		
2	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved	1 –	7
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~	_	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		1
	Interrupt Vector 116		
¥	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	

REGISTER 7-5: IFS0: INTERRUP	T FLAG STATUS REGISTER 0
------------------------------	--------------------------

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF			
bit 15							bit 8			
		D 444 0	D 444 0	DAALO	D 444 A		D / N / O			
R/W-0	R/W-0	R/W-0		R/W-0	R/W-0	R/W-0				
IZIF	UC2IF	ICZIF	DIMAUTIF	IIIF	OCTIF	ICTIF	INTUF bit 0			
							Dit U			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	Unimplemer	nted: Read as	'O'							
bit 14	DMA1IF: DM	IA Channel 1 E)ata Transfer (Complete Interr	upt Flag Status	s bit				
	1 = Interrupt 0 = Interrupt	request has oc	t occurred							
bit 13	AD1IF: ADC	1 Conversion (Complete Inter	rupt Flag Status	s bit					
	1 = Interrupt	request has oc	curred	-						
1:1.40	0 = Interrupt	request has no	ot occurred							
bit 12	U1TXIF: UART1 Transmitter Interrupt Flag Status bit									
	0 = Interrupt	request has no	ot occurred							
bit 11	U1RXIF: UA	U1RXIF: UART1 Receiver Interrupt Flag Status bit								
	1 = Interrupt request has occurred									
	0 = Interrupt	request has no	ot occurred							
bit 10	SPI1IF: SPI1	Event Interrup	ot Flag Status I	bit						
	0 = Interrupt	request has no	ot occurred							
bit 9	SPI1EIF: SP	11 Fault Interru	pt Flag Status	bit						
	1 = Interrupt 0 = Interrupt	request has or request has no	ccurred							
bit 8	T3IF: Timer3	Interrupt Flag	Status bit							
	1 = Interrupt	request has oc	curred							
h:+ 7		request has no	ot occurred							
dit /	1 = Interrupt	request has or	Status bit							
	0 = Interrupt	request has no	ot occurred							
bit 6	OC2IF: Outp	ut Compare Cl	hannel 2 Interr	upt Flag Status	bit					
	1 = Interrupt 0 = Interrupt	request has or request has no	ccurred							
bit 5	IC2IF: Input	Capture Chanr	nel 2 Interrupt l	Flag Status bit						
	1 = Interrupt	request has oc	curred							
hit 4		request has no	ot occurred	Complete late	runt Eler Ot-t	ua hit				
DIL 4	1 = Interrupt	request has or	Data Transfer	Complete Inter	rupt Flag Statt	IS DIL				
	0 = Interrupt	request has no	ot occurred							
bit 3	T1IF: Timer1	Interrupt Flag	Status bit							
	1 = Interrupt 0 = Interrupt	request has or request has no	ccurred							

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—		T1IP<2:0>				OC1IP<2:0>			
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
—		IC1IP<2:0>		_		INT0IP<2:0>	1 11 0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 15	Unimpleme	nted: Read as '0	,						
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits						
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1	abled						
bit 11		Jnimplemented: Read as '0'							
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits								
	111 = Interru	upt is priority 7 (h	ighest priority	v interrupt)					
	•		U	, ,					
	•								
	001 = Interru	upt is priority 1	abled						
bit 7		nted: Read as '0	,						
bit 6-4	IC1IP<2:0>:	Input Capture C	hannel 1 Inte	rrupt Priority b	its				
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1	abled						
bit 3	Unimpleme	nted: Read as '0	,						
bit 2-0	INT0IP<2:0>	: External Interru	upt 0 Priority	bits					
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)					
	•								
	•								
	001 = Interru	upt is priority 1							
	000 = Interru	upt source is disa	abled						

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	_	_		IL	R<3:0>	
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0>			
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable b	bit	U = Unimpleme	ented bit, re	ad as '0'	
-n = Value at	n = Value at POR '1' = Bit is set			'0' = Bit is clear	red	x = Bit is unknov	vn
bit 15-12	Unimplemen	ted: Read as 'o	3				
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	vel bits			
	1111 = CPU	Interrupt Priority	/ Level is 15				
	•						
	•						
	0001 = CPU I	nterrupt Priority	Level is 1				
	0000 = CPU	Interrupt Priority	/Level is 0				
bit 7	Unimplemen	ted: Read as '0	,				
bit 6-0	VECNUM<6:	0>: Vector Num	ber of Pendir	ng Interrupt bits			
	1111111 = lr	iterrupt Vector p	ending is nu	mber 135			
	•						
	•						
	0000001 = Ir	nterrupt Vector p	ending is nu	mber 9			
	0000000 = Ir	terrupt Vector p	ending is nu	mber 8			

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1
_					LSTC	H<3:0>	
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	POR	1' = Bit is set		0' = Bit is cle	ared	x = Bit is unkr	nown
h# 45 40		ted. Deed ee f	,				
DIL 15-12		ted: Read as) openal Aativa k				
DIL TT-O	1111 = No DN	Last DIVIA CIT		ns ce system Res	sot		
	1110-1000 =	Reserved		be system ree			
	0111 = Last d	lata transfer wa	as by DMA Ch	nannel 7			
	0110 = Last d	lata transfer wa	as by DMA Ch	annel 6			
	0101 = Last d	lata transfer wa	as by DMA Cr as by DMA Cr	nannel 4			
	0011 = Last d	lata transfer wa	as by DMA Ch	nannel 3			
	0010 = Last d	lata transfer wa	as by DMA Ch	nannel 2			
	0001 = Last d	lata transfer wa	as by DMA Cr as by DMA Ch	nannel 0			
bit 7	PPST7: Chan	nel 7 Ping-Por	g Mode Statu	s Flag bit			
	1 = DMA7STE	B register selec	ted	0			
	0 = DMA7STA	A register selec	ted				
bit 6	PPST6: Chan	nel 6 Ping-Por	ig Mode Statu	s Flag bit			
	1 = DMA6STE 0 = DMA6STA	B register selec A register selec	ted ted				
bit 5	PPST5: Chan	nel 5 Ping-Por	ig Mode Statu	s Flag bit			
	1 = DMA5STE 0 = DMA5STA	B register select A register select	ted ted				
bit 4	PPST4: Chan	nel 4 Ping-Por	ig Mode Statu	s Flag bit			
	1 = DMA4STE	B register selec	ted				
bit 3	PPST3: Chan	nel 3 Pina-Por	ia Mode Statu	s Flag bit			
	1 = DMA3STE	B register selec	ted				
hit 0		A register selec	ied Ande Statu	o Flog hit			
DIL Z	1 = DMA2STE	R register selec	iy Moue Slalu Ited	IS Flay bit			
	0 = DMA2STA	A register selec	ted				
bit 1	PPST1: Chan	nel 1 Ping-Por	ig Mode Statu	s Flag bit			
	1 = DMA1STE	B register selec	ted				
hit O		A register selec		o Flor hit			
		niel v Ping-Por B register soler	iy iviode Statu	is riag bit			
	1 = DMA0STE	A register selec	ted				

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAE)R<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkno	own

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

REGISTER 18-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70232) in the *"PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

UxSTA: UARTx STATUS AND CONTROL REGISTER

REGISTER 18-2:

R/W-0 R/W-0 R/W-0 U-0 **R/W-0 HC** R/W-0 R-0 R-1 UTXEN⁽¹⁾ UTXBF UTXISEL1 UTXINV UTXISEL0 UTXBRK TRMT ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/C-0 R-0 RIDLE PERR FERR URXDA URXISEL<1:0> ADDEN OERR bit 7 bit 0 Legend: HC = Hardware cleared C = Clear only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) UTXINV: Transmit Polarity Inversion bit bit 14 If IREN = 0: 1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1' If IREN = 1: 1 = IrDA[®] encoded UxTX Idle state is '1' 0 = IrDA[®] encoded UxTX Idle state is '0' bit 12 Unimplemented: Read as '0' bit 11 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written bit 8 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters.

Note 1: Refer to **Section 17. "UART"** (DS70232) in the *"PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

REGISTER 19-2: CiCTRL2: ECAN™ MODULE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—		—		—	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
—	—	—			DNCNT<4:0>		
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable bit		U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	Unimplement	ted: Read as 'o)'				
bit 4-0	DNCNT<4:0>	: DeviceNet™	Filter Bit Num	ber bits			
	10010-1111	1 = Invalid sele	ection				
	10001 = Com	pare up to data	a byte 3, bit 6	with EID<17>			
	•						
	•						
	•						
	00001 = Com 00000 = Do n	pare up to data ot compare da	a byte 1, bit 7 ta bytes	with EID<0>			

REGISTER 19-29: CiTRBnDLC: ECAN™ MODULE BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31)

	()						
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	1 = Message will request remote transmission0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

REGISTER 19-30: CiTRBnDm: ECANTM MODULE BUFFER n DATA FIELD BYTE m $(n = 0, 1, ..., 31; m = 0, 1, ..., 7)^{(1)}$

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

REGISTER 20-2: ADxCON2: ADCx CONTROL REGISTER 2 (where x = 1 or 2) R/W-0 R/W-0 R/W-0 U-0 U-0 R/W-0 R/W-0 R/W-0 VCFG<2:0> CSCNA CHPS<1:0> bit 15 bit 8 R/W-0 R-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 BUFS SMPI<3:0> BUFM ALTS bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 VCFG<2:0>: Converter Voltage Reference Configuration bits VREF+ **VREF-**AVDD AVss 000 External VREF+ 001 AVss AVDD External VREF-010 External VREF-External VREF+ 011 1xx AVDD **AVss** bit 12-11 Unimplemented: Read as '0' bit 10 CSCNA: Scan Input Selections for CH0+ during Sample A bit 1 = Scan inputs 0 = Do not scan inputs bit 9-8 CHPS<1:0>: Selects Channels Utilized bits When AD12B = 1, CHPS<1:0> is: U-0, Unimplemented, Read as '0' 1x = Converts CH0, CH1, CH2 and CH3 01 = Converts CH0 and CH1 00 = Converts CH0 bit 7 **BUFS:** Buffer Fill Status bit (only valid when BUFM = 1) 1 = ADC is currently filling second half of buffer, user should access data in first half 0 = ADC is currently filling first half of buffer, user should access data in second half bit 6 Unimplemented: Read as '0' bit 5-2 SMPI<3:0>: Selects Increment Rate for DMA Addresses bits or number of sample/conversion operations per interrupt 1111 = Increments the DMA address or generates interrupt after completion of every 16th sample/conversion operation 1110 = Increments the DMA address or generates interrupt after completion of every 15th sample/conversion operation 0001 = Increments the DMA address or generates interrupt after completion of every 2nd sample/conversion operation 0000 = Increments the DMA address or generates interrupt after completion of every sample/conversion operation bit 1 BUFM: Buffer Fill Mode Select bit 1 = Starts filling first half of buffer on first interrupt and second half of buffer on next interrupt 0 = Always starts filling buffer from the beginning bit 0 ALTS: Alternate Input Sample Mode Select bit 1 = Uses channel input selects for Sample A on first sample and Sample B on next sample

TABLE 24-38:	ADC CONVERSION (12-BIT MODE	TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial								
Param No.	Symbol	Characteristic	Min.	Тур ⁽²⁾	Max.	Units	Conditions				
		Clock	Paramete	ers ⁽¹⁾							
AD50	TAD	ADC Clock Period	117.6	_	—	ns	—				
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—				
	Conversion Rate										
AD55	tCONV	Conversion Time	_	14 Tad		ns	—				
AD56	FCNV	Throughput Rate	—	—	500	ksps	—				
AD57	TSAMP	Sample Time	3 Tad	—	—	—	—				
		Timin	ig Parame	ters							
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	—	Auto convert trigger not selected				
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	—	—				
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 TAD		_					
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)			20	μs					

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

NOTES: