

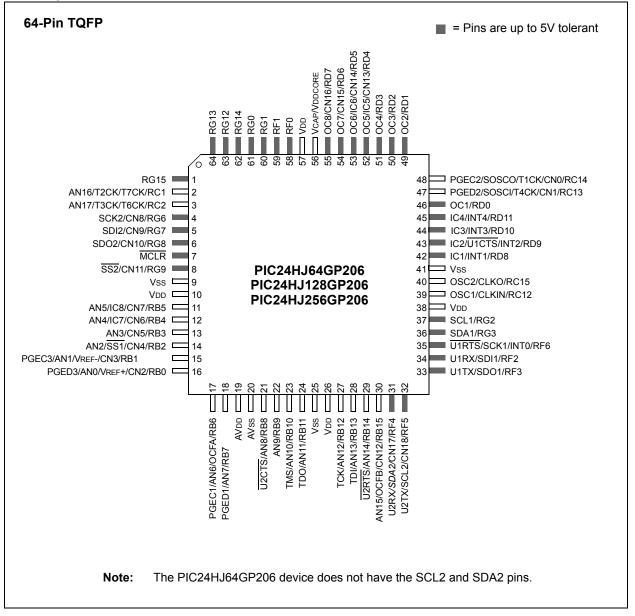
Welcome to E-XFL.COM

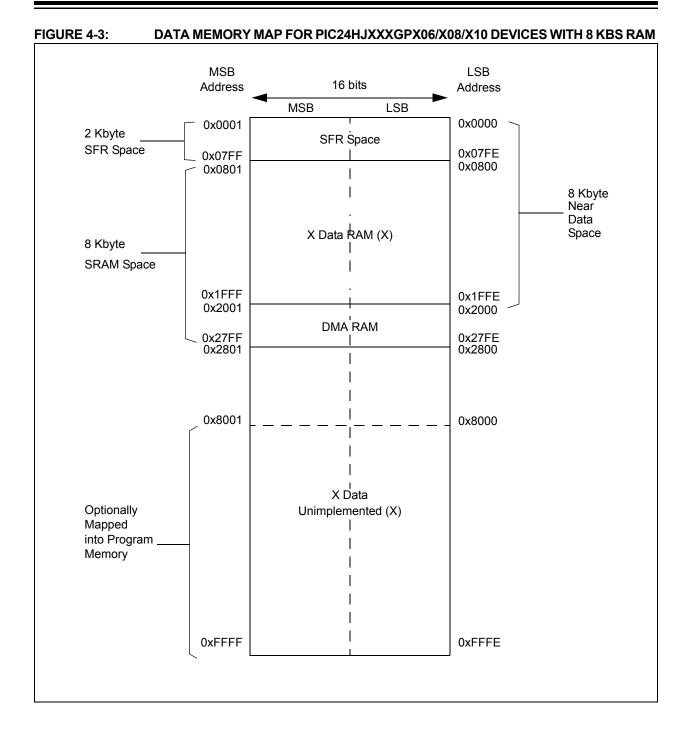
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj128gp510-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 4-12: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN		USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_		_				UART	Transmit Re	egister				xxxx
U2RXREG	0236	_	_	—	_	_	_	—				UART	Receive Re	gister				0000
U2BRG	0238							Baud	Rate Gen	erator Presc	aler							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-13: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	-	SPISIDL	_	—	—				SPIROV	—	_	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>	•	PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Red	eive Buffer	Register							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-14: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	_	-		—	SPIROV	_	_	—	_	SPITBF	SPIRBF	0000
SPI2CON1	0262	-	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	—	—	_	-	_	_	_	—	—	_	FRMDLY	—	0000
SPI2BUF	0268							SPI2 Tran	smit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-24: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	TRISA13	TRISA12	_	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	F6FF
PORTA	02C2	RA15	RA14	RA13	RA12	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	LATA13	LATA12	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	06C0	ODCA15	ODCA14	_	_	_	_	-	-		_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-25: PORTB REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C6	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02C8	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CA	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-26: PORTC REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	02CC	TRISC15	TRISC14	TRISC13	TRISC12	_	—	_	_		_	_	TRISC4	TRISC3	TRISC2	TRISC1		F01E
PORTC	02CE	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	02D0	LATC15	LATC14	LATC13	LATC12	_	_				_	-	LATC4	LATC3	LATC2	LATC1	-	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-27: PORTD REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	02D2	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	02D4	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	02D6	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	06D2	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	ODCD7	ODCD6	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 5. *"Flash Programming"* (DS70228), which is available from the Microchip website (www.microchip.com).

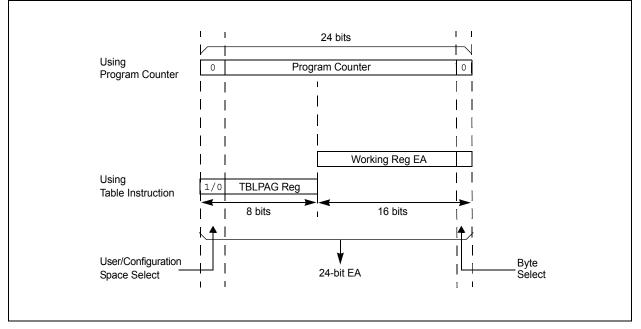
The PIC24HJXXXGPX06/X08/X10 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06/X08/X10 device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Compare 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1:INTERRUPT VECTORS

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

R/W-0	U-0						
NSTDIS	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
—	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—
bit 7							bit 0

Legend:				
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15		: Interrupt Nesting Disable bi	t	
		rupt nesting is disabled rupt nesting is enabled		
bit 14-7		emented: Read as '0'		
bit 6	-	R: Arithmetic Error Status bit		
		n error trap was caused by a		
		error trap was not caused by a	5	
bit 5	DMACE	RR: DMA Controller Error Sta	atus bit	
	1 = DMA	controller error trap has occ	urred	
	0 = DMA	controller error trap has not	occurred	
bit 4	MATHER	RR: Arithmetic Error Status b	it	
		error trap has occurred		
		error trap has not occurred		
bit 3		RR: Address Error Trap Statu	is bit	
		ress error trap has occurred	ad	
bit 2		ess error trap has not occurr		
		R: Stack Error Trap Status bit k error trap has occurred		
		k error trap has not occurred		
bit 1		L: Oscillator Failure Trap Sta	tus bit	
		llator failure trap has occurre		
		llator failure trap has not occ		
bit 0	Unimple	mented: Read as '0'		

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

- bit 3 **CNIF:** Input Change Notification Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
- bit 2 Unimplemented: Read as '0'
- bit 1 MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER (-10. IECO. INTERROFTENABLE CONTROL REGISTER U	REGISTER 7-10:	IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
---	----------------	---

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE		
bit 7							bit C		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set	İ	'0' = Bit is cle	ared	x = Bit is unkn	iown		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14				Complete Interr	rupt Enable bit				
	•	equest enable equest not ena							
bit 13				rupt Enable bit					
		equest enable	-						
		equest not en							
bit 12	U1TXIE: UAF	RT1 Transmitte	r Interrupt Ena	able bit					
		equest enable							
bit 11	 0 = Interrupt request not enabled U1RXIE: UART1 Receiver Interrupt Enable bit 								
		request enable	•						
	•	equest not en							
bit 10	SPI1IE: SPI1	Event Interrup	t Enable bit						
		equest enable							
L:1 0		equest not en							
bit 9		1 Error Interru equest enable	•						
		equest enable							
bit 8	T3IE: Timer3	Interrupt Enab	le bit						
		equest enable							
	-	equest not en							
bit 7		Interrupt Enab							
	•	equest enable equest not ena							
bit 6	•	•		upt Enable bit					
	-	equest enable							
	0 = Interrupt r	equest not en	abled						
bit 5		Capture Chann	-	Enable bit					
		equest enable equest not ena							
bit 4	-	-		Complete Interr	rupt Enable bit				
		equest enable							
		equest not en							
bit 3	T1IE: Timer1	Interrupt Enab	le bit						

8.0 DIRECT MEMORY ACCESS (DMA)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 22. "Direct Memory Access (DMA)" (DS70223), which is available from the Microchip website (www.microchip.com).

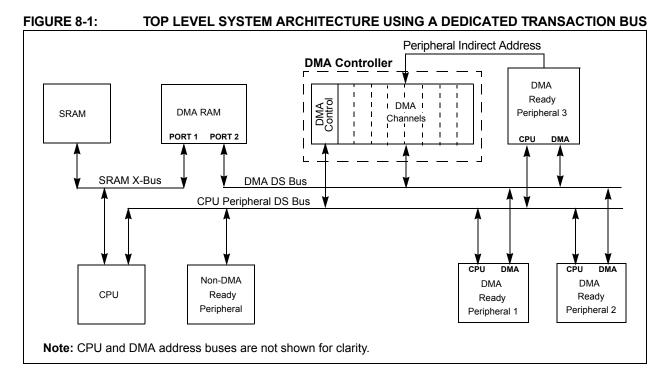
Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal intervention. The CPU DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The PIC24HJXXXGPX06/X08/X10 peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1 :	PERIPHERALS WITH DMA
	SUPPORT

Peripheral	IRQ Number
INT0	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71

The DMA controller features eight identical data transfer channels.

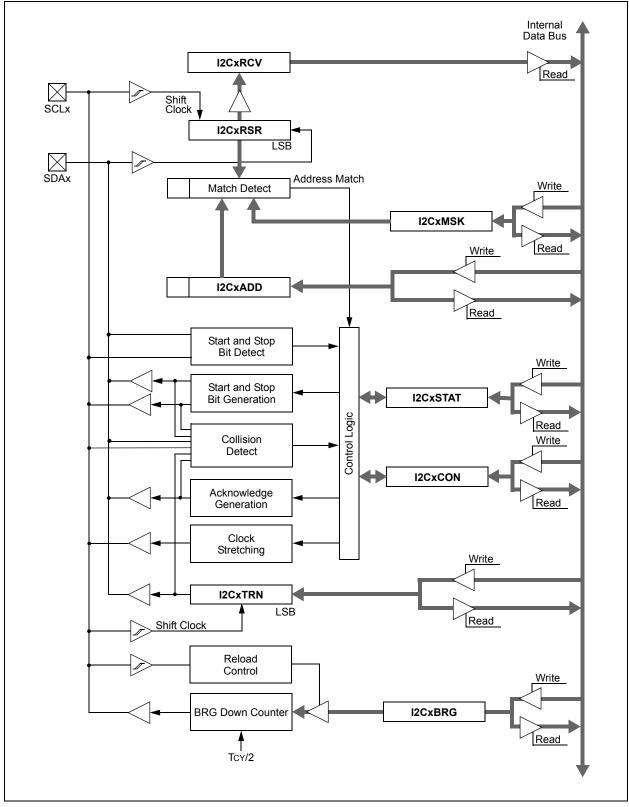

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- · Automatic or manual initiation of block transfers
- Each channel can select from 19 possible sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

^{© 2009} Microchip Technology Inc.


8.1 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address Offset register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address Offset register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1 are common to all DMAC channels.

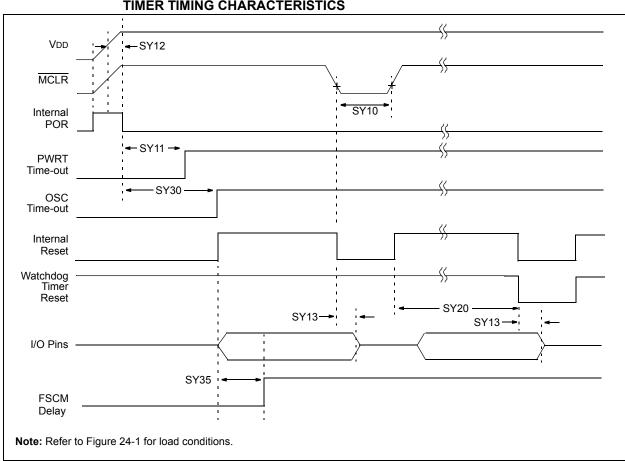
FIGURE 17-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1 OR 2)

REGISTER 19-4: CIFCTRL: ECAN[™] MODULE FIFO CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	DMABS<2:0>	•	_		_	_	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
0-0	0-0	0-0	R/W-U	R/W-0	FSA<4:0>	R/W-U	R/W-U
 bit 7					F3A54.02		bit 0
							DILU
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	100 = 16 bur 011 = 12 bur 010 = 8 buff 001 = 6 buff 000 = 4 buff	ffers in DMA RA ffers in DMA RA ffers in DMA RA ers in DMA RAN ers in DMA RAN ers in DMA RAN	M M 1 1				
bit 12-5	-	nted: Read as '					
bit 4-0	FSA<4:0>: F 11111 = RB 11110 = RB • • • • • • • • • • • • • • • • • • •	30 buffer B1 buffer	with Buffer b	its			

REGISTER 19-7: CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_		—	_	—	—		_		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-8	Unimplemen	ted: Read as '	0'						
bit 7	IVRIE: Invalio	I Message Rec	eived Interrup	t Enable bit					
bit 6	WAKIE: Bus	Wake-up Activi	ty Interrupt FI	ag bit					
1. 1. F									


- bit 5 ERRIE: Error Interrupt Enable bit bit 4 Unimplemented: Read as '0'
- bit 3 **FIFOIE:** FIFO Almost Full Interrupt Enable bit
- bit 2 **RBOVIE:** RX Buffer Overflow Interrupt Enable bit
- bit 1 **RBIE:** RX Buffer Interrupt Enable bit
- bit 0 TBIE: TX Buffer Interrupt Enable bit

DC CHARACT	ERISTICS		(unless oth	perating Condition erwise stated) emperature -40°C	s: 3.0V to 3.6V ≤ Ta ≤ +85°C for In	dustrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions						
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾										
DC40d	3	25	mA	-40°C						
DC40a	3	25	mA	+25°C	3.3V	10 MIPS				
DC40b	3	25	mA	+85°C	0.5 V					
DC41d	4	25	mA	-40°C		16 MIPS				
DC41a	5	25	mA	+25°C	3.3V					
DC41b	6	25	mA	+85°C						
DC42d	8	25	mA	-40°C		20 MIPS				
DC42a	9	25	mA	+25°C	3.3V					
DC42b	10	25	mA	+85°C						
DC43a	15	25	mA	+25°C		30 MIPS				
DC43d	15	25	mA	-40°C	3.3V					
DC43b	15	25	mA	+85°C						
DC44d	16	25	mA	-40°C						
DC44a	16	25	mA	+25°C	3.3V	40 MIPS				
DC44b	16	25	mA	+85°C						

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

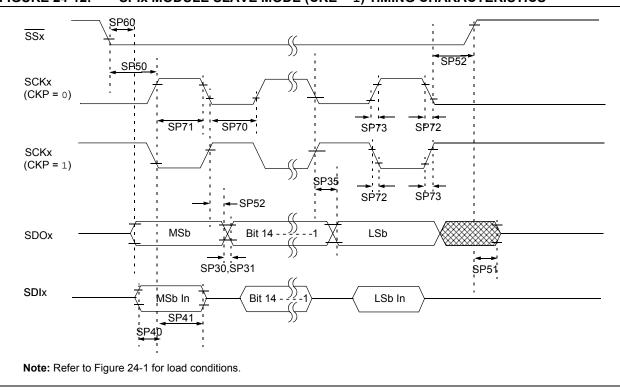

FIGURE 24-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 24-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SY10	TMCL	MCLR Pulse-Width (low)	2	_	_	μs	-40°C to +85°C	
SY11	Tpwrt	Power-up Timer Period	_	2 4 16 32 64 128	_	ms	-40°C to +85°C User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_	
SY20	Twdt1	Watchdog Timer Time-out Period	—	—	_	_	See Section 21.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 24-19)	
SY30	Tost	Oscillator Start-up Timer Period	—	1024 Tosc	_	—	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay		500	900	μs	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

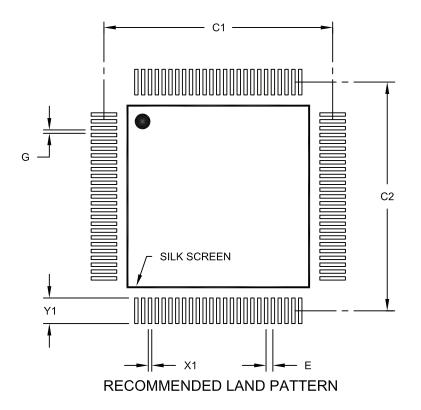

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 24-12: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

NOTES: