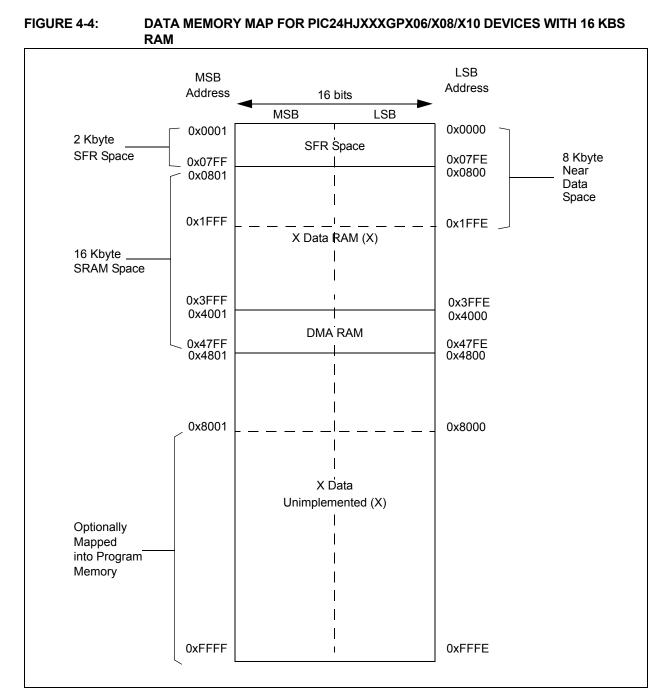


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b, 18x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2.5 DMA RAM

Every PIC24HJXXXGPX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

TABLE 4-9: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	—	_	_	_	_	-	_	_				Receive	Register				0000
I2C1TRN	0202	_	_	_	Receive Register 0000 0007 0007 0007 0007 Baud Rate Generator Register 00000													
I2C1BRG	0204	_	_	_	_	_	_	_		Image: Constraint of the second state of the second sta						0000		
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	Image: Constraint of the second se						1000			
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	—		-								Address	Register					0000
I2C1MSK	020C	—	_	-	_	—				Address Mask Register								0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-10: I2C2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C2RCV	0210	—	_	—	_	-	—	_					Receive	Register				0000
I2C2TRN	0212	_	_	_	_	_	_	_	— — Transmit Register — Baud Rate Generator Register							OOFF		
I2C2BRG	0214	_	_	_	_	_	_	_		Baud Rate Generator Register								0000
I2C2CON	0216	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN								SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C2ADD	021A	_			—					Address Register								0000
I2C2MSK	021C	_			—					Address Mask Register								0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-11: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD										0000		
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	F TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA									0110
U1TXREG	0224	_	_	_	_	_	_	_				UART	Transmit Reg	gister				xxxx
U1RXREG	0226	_	— — — — — — UART Receive Register									0000						
U1BRG	0228	Baud Rate Generator Prescaler											0000					

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-28: PORTE REGISTER MAP⁽¹⁾

									-		-	-	-					
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	-	—	_	_	-	—	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
LATE	02DC	_	_	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	_	TRISF13	TRISF12	_	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	-	_	RF13	RF12	-	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	-	_	LATF13	LATF12	-	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF ⁽²⁾	06DE	_	_	ODCF13	ODCF12	_	—	—	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	XXXX
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	XXXX
ODCG ⁽²⁾	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

	REGISTER 7-6:	IFS1: INTERRUPT FLAG STATUS REGISTER 1
--	---------------	---

U2TXIF bit 15 R/W-0 IC8IF bit 7	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	
R/W-0 IC8IF		•		141	00416	OCSIF	DMA21IF
IC8IF			·				bit 8
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
bit 7	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF
			1	1			bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	U2TXIF: UAF	RT2 Transmitte	r Interrupt Flag	g Status bit			
		request has oc request has no					
bit 14	U2RXIF: UAF	RT2 Receiver li	nterrupt Flag S	Status bit			
		request has oc					
L:1 1 0	•	request has no					
bit 13		rnal Interrupt 2 request has oc	-	t			
		request has no					
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
		request has oc					
	•	request has no					
bit 11		Interrupt Flag request has oc					
		request has no					
bit 10	OC4IF: Outp	ut Compare Ch	annel 4 Interru	upt Flag Status	s bit		
		request has oc request has no					
bit 9	-	ut Compare Ch		upt Flag Status	s bit		
	1 = Interrupt	request has oc request has no	curred				
bit 8	DMA21IF: DI	MA Channel 2 I	Data Transfer	Complete Inte	rrupt Flag Statu	ıs bit	
		request has oc					
	•	request has no					
bit 7		Capture Chann request has oc	•	-lag Status bit			
		request has no					
bit 6	IC7IF: Input (Capture Chann	el 7 Interrupt F	lag Status bit			
		request has oc request has no					
bit 5	AD2IF: ADC2	2 Conversion C	omplete Interr	upt Flag Statu	s bit		
		request has oc					
	-	request has no					
bit 4		rnal Interrupt 1	-	t			
		request has oc request has no					

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit

- 1 = Interrupt request enabled
 - 0 = Interrupt request on abled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>				OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC2IP<2:0>				DMA0IP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as 'o)'				
bit 14-12	-	Timer2 Interrupt					
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 11	-	ented: Read as 'o					
bit 10-8		>: Output Compa		-	rity bits		
	111 = Interr	upt is priority 7 (I	lignest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	ahlad				
bit 7		ented: Read as '					
bit 6-4	-	Input Capture C		errupt Priority h	oits		
		upt is priority 7 (I			110		
	•		0	, i,			
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 3	Unimpleme	ented: Read as 'o)'				
bit 2-0	DMA0IP<2:	0>: DMA Channe	el 0 Data Tra	nsfer Complete	e Interrupt Pric	ority bits	
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

REGISTER 7-33: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	-	—	_		IL	R<3:0>	
bit 15							bit 8
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
				VECNUM<6:0	>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 11-8	1111 = CPL • •	lew CPU Interrup J Interrupt Priorit	y Level is 15	el bits			
	0000 = CPL	J Interrupt Priorit	y Level is 0				
bit 7	•	nted: Read as '					
bit 6-0	1111111 = • •	:0>: Vector Num Interrupt Vector	pending is nur	mber 135	i		
		Interrupt Vector Interrupt Vector	U U				

REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
_	_		—		LSTC	H<3:0>						
bit 15							bit 8					
		D 0	D 0	D 0								
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
bit 7							bit 0					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-12	Unimplemen	ted: Read as 'o)'									
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active b	oits								
			s occurred sin	ce system Res	et							
	1110-1000 =	Reserved		annol 7								
		data transfer wa										
	0101 = Last c	data transfer wa	as by DMA Ch	annel 5								
	0100 = Last c	0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4										
		0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2										
		lata transfer wa lata transfer wa										
		data transfer wa										
bit 7	PPST7: Chan	nel 7 Ping-Pon	ig Mode Statu	s Flag bit								
		B register selec										
		A register selec										
bit 6		nnel 6 Ping-Pon	-	s Flag bit								
		B register selec A register selec										
bit 5	PPST5: Chan	nnel 5 Ping-Pon	ig Mode Statu	s Flag bit								
		B register selec A register selec										
bit 4		nel 4 Ping-Pon		s Elag bit								
		B register selec	-	o :								
		A register selec										
bit 3	PPST3: Chan	nnel 3 Ping-Pon	ig Mode Statu	s Flag bit								
		B register selec A register selec										
bit 2		nel 2 Ping-Pon		s Flag bit								
	1 = DMA2STE	B register selec	ted	Ū								
bit 1		nel 1 Ping-Pon		s Elag bit								
		B register selec	•									
	0 = DMA1STA	•										
		Tregister Selec	leu									
bit 0	PPST0: Chan	nel 0 Ping-Pon		s Flag bit								

11.2 **Open-Drain Configuration**

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the "Pin Diagrams" for the available pins and their functionality.

11.3 **Configuring Analog Port Pins**

The use of the ADxPCFGH, ADxPCFGL and TRIS registers control the operation of the Analog-to-Digital port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

Clearing any bit in the ADxPCFGH or ADxPCFGL register configures the corresponding bit to be an analog pin. This is also the Reset state of any I/O pin that has an analog (ANx) function associated with it.

Note:	In devices with two ADC modules, if the
	corresponding PCFG bit in either
	AD1PCFGH(L) and AD2PCFGH(L) is
	cleared, the pin is configured as an analog
	input.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

Note:	The voltage on an analog input pin can be
	between -0.3V to (VDD + 0.3 V).

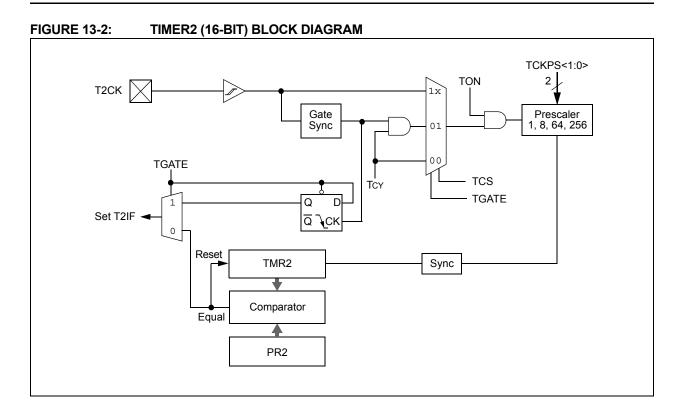
EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV W0, TRISBB NOP PORTB, #13 btss

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

11.5 Input Change Notification


The input change notification function of the I/O ports allows the PIC24HJXXXGPX06/X08/X10 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature is capable of detecting input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 24 external signals (CN0 through CN23) that can be selected (enabled) for generating an interrupt request on a change-of-state.

There are four control registers associated with the CN module. The CNEN1 and CNEN2 registers contain the CN interrupt enable (CNxIE) control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source that is connected to the pin and eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the weak pull-up enable (CNxPUE) bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

MOV 0xFF00, W0 ; Configure PORTB<15:8> as inputs ; and PORTB<7:0> as outputs ; Delay 1 cycle ; Next Instruction

NOTES:

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD		UEN	<1:0>	
bit 15							bit 8	
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	
bit 7							bit C	
Legend:		HC = Hardwa	ro cloared					
R = Readable	hit	W = Writable		LI – Unimplo	mented bit, read			
				$0^{\circ} = \text{Bit is cle}$				
-n = Value at F	'UR	'1' = Bit is set			ared	x = Bit is unkr	IOWN	
bit 15	UARTEN: UA	RTx Enable bi	_t (1)					
				e controlled by	UARTx as defi	ned by UEN<1:	:0>	
					y port latches; U			
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	USIDL: Stop	in Idle Mode bi	t					
		ue module ope			dle mode			
h:: 40		module opera						
bit 12		Encoder and D		e dit'-'				
	 1 = IrDA[®] encoder and decoder enabled 0 = IrDA[®] encoder and decoder disabled 							
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it				
		in in Simplex n in in Flow Con						
bit 10	Unimplemen	ted: Read as '	0'					
bit 9-8	UEN<1:0>: ∪	ARTx Enable I	oits					
	11 = UxTX, U	xRX and BCL	<pins are="" ena<="" td=""><td>bled and used</td><td>I; UxCTS pin co</td><td>ntrolled by port</td><td>latches</td></pins>	bled and used	I; UxCTS pin co	ntrolled by port	latches	
		xRX, UxCTS a						
					ed; UxCTS pin c			
	port latcl						lolled by	
bit 7	WAKE: Wake	up on Start bi	t Detect Durin	g Sleep Mode	Enable bit			
	1 = UARTx w	/ill continue to	sample the Ux	RX pin; interro	upt generated o	n falling edge; l	oit cleared	
		are on following	g rising edge					
	0 = No wake	•						
bit 6		RTx Loopback		bit				
		oopback mode k mode is disal						
bit 5	-	-Baud Enable						
	1 = Enable b	aud rate meas	urement on th		er – requires re	ception of a Sy	nc field (0x55)	
		ny data; cleared e measuremen		•	on			
					amily Referenc	e <i>Manual"</i> for i	nformation or	
en	abling the UAR	T module for re	eceive or trans	smit operation.				

2: This feature is only available for the 16x BRG mode (BRGH = 0).

UxSTA: UARTx STATUS AND CONTROL REGISTER

REGISTER 18-2:

R/W-0 R/W-0 R/W-0 U-0 **R/W-0 HC** R/W-0 R-0 R-1 UTXEN⁽¹⁾ UTXBF UTXISEL1 UTXINV UTXISEL0 UTXBRK TRMT ____ bit 15 bit 8 R/W-0 R/W-0 R/W-0 R-1 R-0 R-0 R/C-0 R-0 RIDLE PERR FERR URXDA URXISEL<1:0> ADDEN OERR bit 7 bit 0 Legend: HC = Hardware cleared C = Clear only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits 11 = Reserved; do not use 10 = Interrupt when a character is transferred to the Transmit Shift Register, and as a result, the transmit buffer becomes empty 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer) UTXINV: Transmit Polarity Inversion bit bit 14 If IREN = 0: 1 = UxTX Idle state is '0' 0 = UxTX Idle state is '1' If IREN = 1: 1 = IrDA[®] encoded UxTX Idle state is '1' 0 = IrDA[®] encoded UxTX Idle state is '0' bit 12 Unimplemented: Read as '0' bit 11 UTXBRK: Transmit Break bit 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion 0 = Sync Break transmission disabled or completed bit 10 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port. bit 9 UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written bit 8 **TRMT:** Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed) 0 = Transmit Shift Register is not empty, a transmission is in progress or queued bit 7-6 URXISEL<1:0>: Receive Interrupt Mode Selection bits 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters.

Note 1: Refer to Section 17. "UART" (DS70232) in the "PIC24H Family Reference Manual" for information on enabling the UART module for transmit operation.

19.0 ENHANCED CAN (ECAN™) MODULE

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70226), which is available from the Microchip website (www.microchip.com).

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06/X08/X10 devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- · 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- 3 full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and

network synchronization

· Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

· Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

Extended Data Frame:

An extended data frame is similar to a standard data frame but includes an extended identifier as well.

· Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

· Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

REGISTER 19-24: CIRXOVF1: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8

| R/C-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| RXOVF7 | RXOVF6 | RXOVF5 | RXOVF4 | RXOVF3 | RXOVF2 | RXOVF1 | RXOVF0 |
| bit 7 | • | | | • | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF<15:0>:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

REGISTER 19-25: CIRXOVF2: ECAN™ MODULE RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 **RXOVF<31:16>:** Receive Buffer n Overflow bits

1 = Module pointed a write to a full buffer (set by module)

0 = Overflow is cleared (clear by application software)

21.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Code-Guard[™] Security" (DS70239), Section 24. "Programming and Diagnostics" (DS70246), and Section 25. "Device Configuration" (DS70231) in the "PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

PIC24HJXXXGPX06/X08/X10 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- In-Circuit Emulation

21.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 21-1.

The individual Configuration bit descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT and FPOR Configuration registers are shown in Table 21-2.

Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS	<1:0>	—	_		BSS<2:0> BWF		
0xF80002	FSS	RSS	<1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_	—	_	_	—	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	_	_	—	FNC)SC<2:0>	
0xF80008	FOSC	FCKSI	VI<1:0>	_	_	—	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST-	<3:0>	
0xF8000C	FPOR	_	_	_	_	—	FPW	/RT<2:0>	
0xF8000E	FICD	Rese	ved ⁽¹⁾	JTAGEN	_	—	—	ICS<	:1:0>
0xF80010	FUID0				User Unit ID E	Byte 0			
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3				User Unit ID E	Byte 3			

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: When read, these bits will appear as '1'. When you write to these bits, set these bits to '1'.

2: When read, this bit returns the current programmed value.

22.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section in the "PIC24H Family Reference Manual", which is available from the Microchip website (www.microchip.com).

The PIC24H instruction set is identical to that of the PIC24F, and is a subset of the dsPIC30F/33F instruction set.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- · Word or byte-oriented operations
- · Bit-oriented operations
- Literal operations
- DSP operations
- · Control operations

Table 22-1 shows the general symbols used in describing the instructions.

The PIC24H instruction set summary in Table 22-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

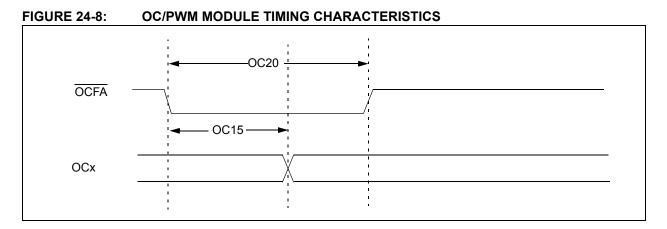
However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:


- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand) which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

TABLE 24-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions				Conditions
OC15	Tfd	Fault Input to PWM I/O Change	_	_	50	ns	—
OC20	TFLT	Fault Input Pulse-Width	50	_	_	ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

Standard Operating Conditions: 3.0V to 3.6V **AC CHARACTERISTICS** (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial Param Symbol Min Conditions Characteristic Max Units IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 Device must operate at a μs minimum of 1.5 MHz 400 kHz mode 1.3 Device must operate at a μs minimum of 10 MHz 1 MHz mode⁽¹⁾ 0.5 μs IS11 100 kHz mode THI:SCL **Clock High Time** 4.0 Device must operate at a μs minimum of 1.5 MHz 400 kHz mode 0.6 Device must operate at a ____ μs minimum of 10 MHz 1 MHz mode⁽¹⁾ 0.5 μs IS20 SDAx and SCLx 100 kHz mode 300 CB is specified to be from TF:SCL ns Fall Time 10 to 400 pF 400 kHz mode 300 20 + 0.1 CB ns 1 MHz mode⁽¹⁾ 100 ns ____ 100 kHz mode IS21 TR:SCL SDAx and SCLx 1000 CB is specified to be from ns **Rise Time** 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode⁽¹⁾ 300 ns IS25 Data Input 100 kHz mode 250 TSU:DAT ns Setup Time 400 kHz mode 100 ns 1 MHz mode⁽¹⁾ 100 ns IS26 THD:DAT Data Input 100 kHz mode 0 μs Hold Time 400 kHz mode 0 0.9 μs 1 MHz mode⁽¹⁾ 0 0.3 μs IS30 TSU:STA Start Condition 100 kHz mode 4.7 Only relevant for Repeated μs Setup Time Start condition 400 kHz mode 0.6 μs 1 MHz mode⁽¹⁾ 0.25 μs IS31 THD:STA Start Condition 100 kHz mode 4.0 After this period, the first μs Hold Time clock pulse is generated 400 kHz mode 0.6 μs ____ 1 MHz mode⁽¹⁾ 0.25 μs IS33 Stop Condition 100 kHz mode 4.7 Tsu:sto ____ μs Setup Time 400 kHz mode 0.6 μs 1 MHz mode⁽¹⁾ 0.6 μs 100 kHz mode 4000 IS34 Stop Condition THD:STO ns Hold Time 400 kHz mode 600 ns 1 MHz mode⁽¹⁾ 250 ns IS40 TAA:SCL Output Valid 100 kHz mode 0 3500 ns From Clock 400 kHz mode 0 1000 ns 1 MHz mode⁽¹⁾ 0 350 ns IS45 **Bus Free Time** 100 kHz mode 4.7 TBF:SDA Time the bus must be free μs _ before a new transmission 400 kHz mode 1.3 μs can start 1 MHz mode⁽¹⁾ 0.5 μs **Bus Capacitive Loading** 400 IS50 Св pF

TABLE 24-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

L

VO Darta	100
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	140
I ² C	
Operating Modes	161
Registers	
I ² C Module	
I2C1 Register Map	36
I2C2 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	213, 220
Input Capture	
Registers	
Input Change Notification Module	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	
Instruction Set	
Overview	
Summary	
Instruction-Based Power-Saving Modes	
Idle	132
Sleep	131
Internal RC Oscillator	
Use with WDT	219
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTTREG	
IPCx	
Interrupt Setup Procedures	
Initialization	110
Interrupt Disable	110
Interrupt Service Routine	
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions.	
interrupto confident with tower dave instructions.	192
J	
JTAG Boundary Scan Interface	010
TAG Boundary Scall Interface	
14	

Μ

Memory Organization	25
Microchip Internet Web Site	
Modes of Operation	
Disable	177
Initialization	177
Listen All Messages	177
Listen Only	177
Loopback	177
Normal Operation	177
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-C	ircuit Em-
ulator	
MPLAB Integrated Development Environment Softw	are 229
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	

MPLINK Object Linker/MPLIB Object Librarian
Multi-Bit Data Shifter24
N
NVM Module
Register Map 49
0
Open-Drain Configuration 140
Output Compare
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD) 132
PICSTART Plus Development Programmer
Pinout I/O Descriptions (table)
Register Map 49
POR and Long Oscillator Start-up Times
PORTA
Register Map 47
PORTB Register Map 47
PORTC
Register Map
PORTD
Register Map
PORTE Register Map 48
PORTF
Register Map
PORTG
Register Map
Power-Saving Features
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility55 Data Access from Program Memory Using Table Instruc-
tions
Data Access from. Address Generation
Memory Map25
Table Read Instructions
TBLRDH
TBLRDL
Program Memory
Interrupt Vector
Organization
Reset Vector
R
Reader Response
Registers
ADxCHS0 (ADCx Input Channel 0 Select
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 209 ADxCON1 (ADCx Control 1) 204
ADxCON1 (ADCx Control 1)
ADXCON2 (ADCX Control 2)
ADxCON4 (ADCx Control 4) 208
ADxCSSH (ADCx Input Scan Select High)
ADxCSSL (ADCx Input Scan Select Low)
ADxPCFGH (ADCx Port Configuration High)