

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Active
PIC
16-Bit
40 MIPs
I ² C, IrDA, LINbus, SPI, UART/USART
Brown-out Detect/Reset, DMA, POR, PWM, WDT
85
256KB (85.5K x 24)
FLASH
-
16K x 8
3V ~ 3.6V
A/D 32x10b, 32x12b
Internal
-40°C ~ 85°C (TA)
Surface Mount
100-TQFP
100-TQFP (12x12)
https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp210t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued) 100-Pin TQFP Pins are up to 5V tolerant AN22/CN22/RA6 AN23/CN23/RA7 OC7/CN15/RD6 OC6/CN14/RD5 IC6/CN19/RD13 OC5/CN13/RD4 OC8/CN16/RD7 VCAP/VDDCORE C1TX/RF1 C1RX/RF0 **AN27/RE3 AN26/RE2** AN24/RE0 OC4/RD3 OC3/RD2 OC2/RD1 **AN28/RE4** IC5/RD12 AN25/RE RG13 RG12 RG14 RG1 RGO VDD cRG15 75 Vss 74 PGEC2/SOSCO/T1CK/CN0/RC14 VDD 2 73 PGED2/SOSCI/CN1/RC13 AN29/RE5 3 72 OC1/RD0 AN30/RE6 71 IC4/RD11 AN31/RE7 5 70 IC3/RD10 AN16/T2CK/T7CK/RC1 6 IC2/RD9 69 AN17/T3CK/T6CK/RC2 7 68 IC1/RD8 AN18/T4CK/T9CK/RC3 8 AN19/T5CK/T8CK/RC4 67 INT4/RA15 9 INT3/RA14 SCK2/CN8/RG6 10 66 Vss SDI2/CN9/RG7 11 65 SDO2/CN10/RG8 OSC2/CLKO/RC15 12 64 MCLR OSC1/CLKIN/RC12 13 63 PIC24HJ64GP510 SS2/CN11/RG9 14 62 VDD PIC24HJ128GP510 TDO/RA5 Vss 15 61 VDD 16 60 TDI/RA4 TMS/RA0 17 59 SDA2/RA3 AN20/INT1/RA12 18 58 SCL2/RA2 AN21/INT2/RA13 19 57 SCL1/RG2 AN5/CN7/RB5 20 56 SDA1/RG3 AN4/CN6/RB4 21 55 SCK1/INT0/RF6 AN3/CN5/RB3 22 54 SDI1/RF7 AN2/SS1/CN4/RB2 23 53 SDO1/RF8 PGEC3/AN1/CN3/RB1 24 52 U1RX/RF2 PGED3/AN0/CN2/RB0 25 51 U1TX/RF3 50< U2RX/CN17/RF4 U2TX/CN18/RF5 TCK/RA1 U2RTS/RF13 U2CTS/RF12 AN12/RB12 [AN13/RB13 [AN14/RB14 [AVDD AVSS AN8/RB8 [AN9/RB9 [AN10/RB10 AN11/RB11 IC7/U1CTS/CN20/RD14 ۵۵ VSS ۵۵۸ IC8/U1RTS/CN21/RD15 PGEC1/AN6/OCFA/RB6 PGED1/AN7/RB7 VREF-/RA9 VREF+/RA10 Vss AN15/OCFB/CN12/RB15

TABLE 4-12: UART2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	_	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	_<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	_	_	_	_	_	-	_				UART	Transmit Re	egister				xxxx
U2RXREG	0236	_	_	_	_	_	-	_				UART	Receive Re	gister				0000
U2BRG	0238	Baud Rate Generator Prescaler 000								0000								

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-13: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	-	SPISIDL	—	—	—	_	—	—	SPIROV	—	—	—	—	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>	•	PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	smit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-14: SPI2 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI2STAT	0260	SPIEN	—	SPISIDL		—	—	—	—	—	SPIROV			—	-	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI2BUF	0268							SPI2 Tran	smit and Re	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-31: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	-	—	—	—	—	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	xxxx(1)
OSCCON	0742	_		COSC<2:0	>	_	1	NOSC<2:0	>	CLKLOCK	_	LOCK	_	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI		DOZE<2:0>	>	DOZEN	F	RCDIV<2:0)>	PLLPOS	ST<1:0>	_		F	PLLPRE<4	:0>		3040
PLLFBD	0746	_	_	_	_	_	_	_				F	PLLDIV<8:0)>				0030
OSCTUN	0748	_	_	_	_	_	_	_	_	_	_			TUN	<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-32: NVM REGISTER MAP

File Nar	ne Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	I 0760	WR	WREN	WRERR	_	_	_	—	_	_	ERASE	—	—		NVMO	P<3:0>		0000 (1)
NVMKEY	0766		—	—	_	_	_	—	_				NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-33: PMD REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	_	_	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	T9MD	T8MD	T7MD	T6MD	_	_	_	_	_	_	_	_	_	_	I2C2MD	AD2MD	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 5. *"Flash Programming"* (DS70228), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- 2. Run-Time Self-Programming (RTSP)

ICSP programming capability allows a PIC24HJXXXGPX06/X08/X10 device to be serially programmed while in the end application circuit. This is simply done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx, and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user can write program memory data either in blocks or 'rows' of 64 instructions (192 bytes) at a time, or single instructions and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits<7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

REGISTE	R 6-1: RCON	: RESET CO	NTROL REC	GISTER ⁽¹⁾							
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
TRAPR	IOPUWR			_	—	—	VREGS				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR				
bit 7		1			•	1	bit 0				
Legend:											
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	TRAPR: Trap 1 = A Trap Cc 0 = A Trap Cc	Reset Flag bit onflict Reset ha onflict Reset ha	s occurred s not occurre	d							
DIT 14	1 = An illega Address 0 = An illegal	gal Opcode or I opcode dete Pointer caused I opcode or unit	Chinitialized ction, an illeg a Reset nitialized W R	vv Access Res gal address m Reset has not o	et Flag bit ode or uninitial ccurred	ized W registe	er used as an				
bit 13-9	Unimplemen	ted: Read as 'o	o'								
bit 8	VREGS: Volta 1 = Voltage r 0 = Voltage r	 VREGS: Voltage Regulator Standby During Sleep bit 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Standby mode during Sleep 									
bit 7	EXTR: Extern 1 = A Master 0 = A Master	nal Reset (<mark>MCL</mark> Clear (pin) Res Clear (pin) Res	R) Pin bit set has occurr set has not oc	red curred							
bit 6	SWR: Softwa 1 = A RESET 0 = A RESET	re Reset (Instru instruction has instruction has	uction) Flag b been execute not been exe	it ed ecuted							
bit 5	SWDTEN: So 1 = WDT is er 0 = WDT is di	oftware Enable/ nabled isabled	Disable of WI	DT bit ⁽²⁾							
bit 4	WDTO: Watcl 1 = WDT time 0 = WDT time	hdog Timer Tim e-out has occur e-out has not oo	ne-out Flag bi red ccurred	t							
bit 3	SLEEP: Wake 1 = Device ha 0 = Device ha	e-up from Slee as been in Slee as not been in S	p Flag bit p mode Sleep mode								
bit 2	IDLE: Wake-u 1 = Device wa 0 = Device wa	up from Idle Fla as in Idle mode as not in Idle m	ıg bit ode								
bit 1	BOR: Brown- 1 = A Brown- 0 = A Brown-0	out Reset Flag out Reset has c out Reset has r	bit occurred not occurred								
bit 0	POR: Power-0 1 = A Power-0 0 = A Power-0	on Reset Flag l on Reset has o on Reset has n	bit ccurred ot occurred								
Note 1:	All of the Reset sta cause a device Re	atus bits may b eset.	e set or cleare	ed in software.	Setting one of th	nese bits in soft	ware does not				

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

FIGURE 7-1	PIC24H.IXXXGPX06/X08/X10 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector	1	
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Tran Vector		
	DMA Error Trap Vector	-	
	Reserved	-	
	Reserved	-	
	Interrupt Vector 0	0x000014	1
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT)(")
<u> </u>	Interrupt Vector 54	0x000080	
2	~	1	
E	~		
	~		
5	Interrupt Vector 116	0x0000FC	
0	Interrupt Vector 117	0x0000FE	<u>-</u>
	Reserved	0x000100	
Ž	Reserved	0x000102	
	Reserved		
200	Oscillator Fail Trap Vector		
5	Address Error Trap Vector		
2	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved	1 –	7
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~	_	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		1
	Interrupt Vector 116		
¥	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T1IP<2:0>				OC1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		IC1IP<2:0>		_		INT0IP<2:0>	1 11 0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimpleme	nted: Read as '0	,				
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1	abled				
bit 11		nted: Read as 'o	,				
bit 10-8	OC1IP<2:0>	: Output Compa	re Channel 1	Interrupt Prior	itv bits		
	111 = Interru	upt is priority 7 (h	ighest priority	v interrupt)			
	•		U	, ,			
	•						
	001 = Interru	upt is priority 1	abled				
bit 7		nted: Read as '0	,				
bit 6-4	IC1IP<2:0>:	Input Capture C	hannel 1 Inte	rrupt Priority b	its		
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1	abled				
bit 3	Unimpleme	nted: Read as '0	,				
bit 2-0	INT0IP<2:0>	: External Interru	upt 0 Priority	bits			
	111 = Interru	upt is priority 7 (h	ighest priority	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is disa	abled				

8.0 DIRECT MEMORY ACCESS (DMA)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 22. "Direct Memory Access (DMA)" (DS70223), which is available from the Microchip website (www.microchip.com).

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal intervention. The CPU DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and, therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The PIC24HJXXXGPX06/X08/X10 peripherals that can utilize DMA are listed in Table 8-1 along with their associated Interrupt Request (IRQ) numbers.

TABLE 8-1:	PERIPHERALS WITH DMA
	SUPPORT

Peripheral	IRQ Number
INTO	0
Input Capture 1	1
Input Capture 2	5
Output Compare 1	2
Output Compare 2	6
Timer2	7
Timer3	8
SPI1	10
SPI2	33
UART1 Reception	11
UART1 Transmission	12
UART2 Reception	30
UART2 Transmission	31
ADC1	13
ADC2	21
ECAN1 Reception	34
ECAN1 Transmission	70
ECAN2 Reception	55
ECAN2 Transmission	71

The DMA controller features eight identical data transfer channels.

Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Word or byte sized data transfers.
- Transfers from peripheral to DMA RAM or DMA RAM to peripheral.
- Indirect Addressing of DMA RAM locations with or without automatic post-increment.
- Peripheral Indirect Addressing In some peripherals, the DMA RAM read/write addresses may be partially derived from the peripheral.
- One-Shot Block Transfers Terminating DMA transfer after one block transfer.
- Continuous Block Transfers Reloading DMA RAM buffer start address after every block transfer is complete.
- Ping-Pong Mode Switching between two DMA RAM start addresses between successive block transfers, thereby filling two buffers alternately.
- · Automatic or manual initiation of block transfers
- Each channel can select from 19 possible sources of data sources or destinations.

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

^{© 2009} Microchip Technology Inc.

12.0 TIMER1

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 11. "Timers" (DS70244), which is available from the Microchip website (www.microchip.com).

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Timer1 also supports these features:

- · Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 12-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Set the TON bit (= 1) in the T1CON register.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 4. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 5. Load the timer period value into the PR1 register.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.

A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

Note: Only Timer2 and Timer3 can trigger a DMA data transfer.

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user

TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See Section 13. "Output Compare" in the "PIC24H Family Reference Manual" (DS70247) for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	'0', if OCxR is zero '1', if OCxR is non-zero	No interrupt
111	PWM with Fault Protection	'0', if OCxR is zero'1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4

FIGURE 15-2: OUTPUT COMPARE OPERATION

17.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70235), which is available from the Microchip website (www.microchip.com).

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The PIC24HJXXXGPX06/X08/X10 devices have up to two I²C interface modules, denoted as I2C1 and I2C2. Each I²C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I^2C module 'x' (x = 1 or 2) offers the following key features:

- I²C interface supporting both master and slave operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C Port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation; detects bus collision and will arbitrate accordingly.

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the l^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The I^2C module can operate either as a slave or a master on an I^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7 or 10-bit address

For details about the communication sequence in each of these modes, please refer to the *"PIC24H Family Reference Manual"*.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write.

I2CxRSR is the shift register used for shifting data, whereas I2CxRCV is the buffer register to which data bytes are written, or from which data bytes are read. I2CxRCV is the receive buffer. I2CxTRN is the transmit register to which bytes are written during a transmit operation.

The I2CxADD register holds the slave address. A status bit, ADD10, indicates 10-bit Address mode. The I2CxBRG acts as the Baud Rate Generator (BRG) reload value.

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV and an interrupt pulse is generated.

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

FIGURE 19-1: ECAN™ MODULE BLOCK DIAGRAM

REGISTER 19-7: CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	_	_	_	_	_	_	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
IVRIE	WAKIE	ERRIE	-	FIFOIE	RBOVIE	RBIE	TBIE		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15-8	bit 15-8 Unimplemented: Read as '0'								
bit 7	IVRIE: Invalid	Message Rec	eived Interrup	t Enable bit					
bit 6	bit 6 WAKIE: Bus Wake-up Activity Interrupt Flag bit								

- bit 5 ERRIE: Error Interrupt Enable bit bit 4 Unimplemented: Read as '0'
- bit 3 **FIFOIE:** FIFO Almost Full Interrupt Enable bit
- bit 2 **RBOVIE:** RX Buffer Overflow Interrupt Enable bit
- bit 1 **RBIE:** RX Buffer Interrupt Enable bit
- bit 0 TBIE: TX Buffer Interrupt Enable bit

REGISTER 19-15: CIBUFPNT4: ECAN™ MODULE FILTER 12-15 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F15B	P<3:0>			F14BP<3:0>					
bit 15							bit 8			
										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F13B	P<3:0>			F12E	3P<3:0>				
bit 7				•			bit 0			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-12	F15BP<3:0	: RX Buffer Wri	itten when Fil	ter 15 Hits bits						
bit 11-8	F14BP<3:0	RX Buffer Wri	itten when Fil	ter 14 Hits bits						
bit 7-4	bit 7-4 F13BP<3:0>: RX Buffer Written when Filter 13 Hits bits									

bit 3-0 F12BP<3:0>: RX Buffer Written when Filter 12 Hits bits

REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15N	F15MSK<1:0>		F14MSK<1:0>		F13MSK<1:0>		SK<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11M	15K<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MS	K<1.0>	
bit 7				1 01110	11.0	1 0100	bit 0	
2.1.1								
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'		
-n = Value a	t POR	'1' = Bit is set	= Bit is set '0		'0' = Bit is cleared		nown	
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	5 bit				
	11 = Reserve	ed						
	10 = Accepta	ance Mask 2 re	gisters contai	n mask				
	01 = Accepta	ance Mask 1 re	gisters contai	n mask				
1.1.10.10				n mask				
bit 13-12	F14MSK<1:0	J>: Mask Sourc	tor Filter 14	bit (same value	es as bit 15-14)		
bit 11-10	F13MSK<1:0	D>: Mask Source	e for Filter 13	bit (same value	es as bit 15-14))		
bit 9-8	F12MSK<1:0	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)						
bit 7-6	F11MSK<1:0	>: Mask Sourc	e for Filter 11	bit (same value	es as bit 15-14)			
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10) bit (same value	es as bit 15-14)		
bit 3-2	F9MSK<1:02	. Mask Source	for Filter 9 bi	t (same values	as bit 15-14)			

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bit 15-14)

DC CHA	Standard (unless Operatin	d Opera otherwi g tempe	ting Cond se stated erature -	ditions:) 40°C ≤	3.0V to 3.6V TA \leq +85°C for Industrial		
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 Vdd	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V	
DI18		I/O Pins with I ² C	Vss	_	0.3 Vdd	V	SMbus disabled
DI19		I/O Pins with I ² C	Vss	—	0.2 Vdd	V	SMbus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	0.8 VDD 0.8 VDD		VDD 5.5	V V	
		I/O Pins Not 5V Tolerant ⁽⁴⁾ I/O Pins 5V Tolerant ⁽⁴⁾	2 2		Vdd 5.5	V V	VDD = 3.3V VDD = 3.3V
DI26		I/O Pins with OSC1 or SOSCI	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C	0.7 Vdd	_	5.5	V	SMbus disabled
DI29		I/O Pins with I ² C	0.8 Vdd	_	5.5	V	SMbus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O Pins	_	_	±2	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±2	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	-	_	±2	μA	Shared with external reference pins
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	-	_	±3.5	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	-	_	±8	μA	Analog pins shared with external reference pins
DI55		MCLR	_	_	±2	μA	$Vss \le Vpin \le Vdd$
DI56		OSC1	-	_	±2	μA	$Vss \le VPIN \le VDD,$ XT and HS modes

TABLE 24-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for a list of 5V tolerant pins.

TABLE 24-38:	ADC CONVERSION (12-BIT MODE	TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$						
Param No.	Symbol	Characteristic	Min.	Typ ⁽²⁾	Max.	Units	Conditions		
		Clock	Paramete	ers ⁽¹⁾					
AD50	TAD	ADC Clock Period	117.6	_	—	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns	—		
	Conversion Rate								
AD55	tCONV	Conversion Time	_	14 Tad		ns	—		
AD56	FCNV	Throughput Rate	—	—	500	ksps	—		
AD57	TSAMP	Sample Time	3 Tad	—	—	—	—		
		Timin	ig Parame	ters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2.0 Tad	—	3.0 Tad	—	Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2.0 Tad	—	3.0 Tad	—	—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	_	0.5 TAD		_			
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ^(2,3)			20	μs			

Note 1: Because the sample caps eventually loses charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: tDPU is the time required for the ADC module to stabilize when it is turned on (AD1CON1<ADON> = 1). During this time, the ADC result is indeterminate.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimension	MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC		
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A