

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b, 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp610-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the PIC24HJXXXGPX06/X08/X10 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors") • VCAP/VDDCORE

- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence	source.			

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

REGISTER 3-2:	CORCON: C	ORE CONTROL	REGISTER
---------------	-----------	-------------	----------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
		_	_		_	—	_	
bit 15							bit 8	
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0	
—	_		—	IPL3 ⁽¹⁾	PSV	—	—	
bit 7							bit 0	
Legend:		C = Clear only	/ bit					
R = Readable I	oit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set		
0' = Bit is cleared 'x = Bit is unkr			nown	n U = Unimplemented bit, read as '0'				
bit 15-4	Unimplement	ted: Read as '	o'					
bit 3	IPL3: CPU Int	errupt Priority	Level Status b	oit 3 ⁽¹⁾				
	1 = CPU inter	rupt priority lev	el is greater th	nan 7				
	0 = CPU interrupt priority level is 7 or less							
bit 2	PSV: Program	n Space Visibili	ty in Data Spa	ce Enable bit				
	1 = Program space visible in data space 0 = Program space not visible in data space							

bit 1-0 Unimplemented: Read as '0'

Note 1: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

IADLE 4-2	I. 6		CEGISTE			520 I KL	1.VVIIN -	U UK .		FIGZ4HJA	250000		VICES					
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	—	—	CSIDL	ABAT	—	RI	EQOP<2:0	>	OPN	MODE<2:0)>	—	CANCAP	—	—	WIN	0480
C2CTRL2	0502	_	—	—	_	_	_	—	—	_	—	—		C	NCNT<4:()>		0000
C2VEC	0504	_	_	_		FI	LHIT<4:0>			_				ICODE<6:	0>			0000
C2FCTRL	0506	[DMABS<2:0	>	—	_	_	—	—	—	—	—			FSA<4:0>			0000
C2FIFO	0508	_	_			FBP<	5:0>			_	_			FNR	3<5:0>			0000
C2INTF	050A	_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	_	_	_	—	_	_	—	—	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E			TERRCNT<7:0>					RERRCNT<7:0>				0000					
C2CFG1	0510	_	_	_	_	_	_	_	_	SJW<	1:0>			BRP	<5:0>			0000
C2CFG2	0512	_	WAKFIL	—	—	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SI	EG1PH<2	2:0>	P	RSEG<2:)>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C2FMSKSEL1	0518	F7MS	K<1:0>	F6MS	< <1:0>	F5MSI	< <1:0>	F4MS	K<1:0>	F3MSK	<1:0>	F2MS	< <1:0>	F1MS	<<1:0>	F0MS	K<1:0>	0000
C2FMSKSEL2	051A	F15MS	SK<1:0>	F14MS	K<1:0>	F13MS	K<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSI	< <1:0>	F8MS	K<1:0>	0000

TABLE 4-21: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 OR 1 FOR PIC24HJ256GP610 DEVICES ONLY

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-22: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 0 FOR PIC24HJ256GP610 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0500- 051E							See	e definition	when WIN	= x							
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TX ABAT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TX ABAT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TX ABAT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TX ABAT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C2RXD	0540								Recieved	Data Word								xxxx
C2TXD	0542								Transmit	Data Word								xxxx

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

4.4.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE **INSTRUCTIONS**

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit, word wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word sized (16-bit) data to and from program space. Both function as either byte or word operations.

TBLRDL (Table Read Low): In Word mode, it 1. maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

2. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.

In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-7: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the page (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - Perform a dummy table write operation (TBLWTL) to any address within the page that needs to be erased.
 - d) Write 0x55 to NVMKEY.
 - e) Write 0xAA to NVMKEY.
 - f) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block	erase operation	
MOV #0x4042, W	10 ;	
MOV W0, NVMCON	J ;	Initialize NVMCON
; Init pointer to row to	be ERASED	
MOV #tblpage(F	PROG_ADDR), W0 ;	
MOV W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV #tbloffset	(PROG_ADDR), W0 ;	Initialize in-page EA<15:0> pointer
TBLWTL W0, [W0]	;	Set base address of erase block
DISI #5	;	Block all interrupts with priority <7
	;	for next 5 instructions
MOV #0x55, W0		
MOV W0, NVMKEY	;	Write the 55 key
MOV #0xAA, W1	;	
MOV W1, NVMKEY	;	Write the AA key
BSET NVMCON, #W	IR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

Note: A program memory page erase operation is set up by performing a dummy table write (TBLWTL) operation to any address within the page. This methodology is different from the page erase operation on dsPIC30F/33F devices in which the erase page was selected using a dedicated pair of registers (NVMADRU and NVMADR).

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Compare 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1:INTERRUPT VECTORS

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0				
ALTIVT	DISI	—	—	_	—	—	_				
bit 15	·	•				•	bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	it U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown				
bit 15	ALTIVT: Enab	ole Alternate In	terrupt Vector	Table bit							
	1 = Use alterr	ate vector tabl	e								
	0 = Use standard (default) vector table										
bit 14	DISI: DISI In	DISI: DISI Instruction Status bit									
		ruction is active	e ctive								
bit 13-5		ted: Read as '	0'								
bit 4	INT4EP: Exte	rnal Interrupt 4	Edae Detect	Polarity Select	t bit						
	1 = Interrupt of	on negative ed	g ge								
	0 = Interrupt c	on positive edg	e								
bit 3	INT3EP: Exte	rnal Interrupt 3	Edge Detect	Polarity Select	t bit						
	1 = Interrupt o	on negative edg	ge								
	0 = Interrupt c	on positive edg	e								
bit 2	INT2EP: Exte	rnal Interrupt 2	Edge Detect	Polarity Select	t bit						
	1 = Interrupt on negative edge										
bit 1	0 – interrupt on positive edge INT1ED: External Interrupt 1 Edge Detect Polarity Select bit										
bit i	1 = Interrupt of	IN ITEP: External interrupt T Edge Detect Polarity Select bit									
	0 = Interrupt o	on positive edg	e								
bit 0	INT0EP: Exte	rnal Interrupt 0	Edge Detect	Polarity Select	t bit						
	1 = Interrupt o	on negative edg	ge								
	0 = Interrupt o	on positive edg	e								

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-0. II ST. INTERROFT LAG STATUS REGISTER	REGISTER 7-6:	IFS1: INTERRUPT FLAG STATUS REGISTER 1
--	---------------	--

R/W-0	R/W-0	R/W-0	R/W-0	R/W/-0	R/W-0	R/W-0	R/W-0
	U2RXIE	INT2IE	T5IF	T4IF	OC4IE	OC3IE	DMA21IF
bit 15	021041		1011		00111	0001	bit 8
L							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
IC8IF	IC7IF	AD2IF	INT1IF	CNIF	—	MI2C1IF	SI2C1IF
bit 7							bit 0
Legend:	L.11		L 14			l (0)	
R = Readable		vv = vvritable	DIT	0' = 0	mented bit, read	as U	2014/2
	OR	I = DILIS SEL			areu	X = DILIS UNKI	IOWI
bit 15	U2TXIF: UAR	RT2 Transmitte	· Interrupt Fla	a Status bit			
	1 = Interrupt r	request has oc	curred	5			
	0 = Interrupt i	request has no	t occurred				
bit 14	U2RXIF: UAF	RT2 Receiver Ir	nterrupt Flag S	Status bit			
	1 = Interrupt r	request has oc	curred				
bit 13	INT2IF: Exter	mal Interrupt 2	Flag Status bi	it			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
	1 = Interrupt r	request has oc request has no	curred				
bit 11	T4IF: Timer4	Interrupt Flag S	Status bit				
2	1 = Interrupt r	request has oc	curred				
	0 = Interrupt i	request has no	t occurred				
bit 10	OC4IF: Outpu	ut Compare Ch	annel 4 Interr	upt Flag Status	s bit		
	1 = Interrupt r	request has oc request has no	curred t occurred				
bit 9	OC3IF: Outpu	ut Compare Ch	annel 3 Interr	upt Flag Status	s bit		
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt i	request has no	t occurred				
bit 8	DMA21IF: DM	MA Channel 2 I	Data Transfer	Complete Inte	rrupt Flag Statu	s bit	
	1 = Interrupt i	request has oc request has no	curred t occurred				
bit 7	IC8IF: Input C	Capture Channe	el 8 Interrupt I	Flag Status bit			
	1 = Interrupt r	request has oc	curred	0			
	0 = Interrupt r	request has no	t occurred				
bit 6	IC7IF: Input C	Capture Chann	el 7 Interrupt I	Flag Status bit			
	1 = Interrupt i 0 = Interrupt i	request has oc request has no	currea t occurred				
bit 5	AD2IF: ADC2	2 Conversion C	omplete Inter	rupt Flag Statu	ıs bit		
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt i	request has no	toccurred				
bit 4	INT1IF: Exter	nal Interrupt 1	Flag Status bi	it			
	$\perp = interrupt i0 = Interrupt i$	request has oc	t occurred				

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit

- 1 = Interrupt request enabled
 - 0 = Interrupt request on abled

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAD)R<15:8>			
bit 15 bit 8							
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unkn	iown	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	_	_	_	_	_		PLLDIV<8>
bit 15						•	bit 8
R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
			PLLD	V<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-9	Unimplemer	nted: Read as 'o	o'				
bit 8-0	PLLDIV<8:0	>: PLL Feedbac	k Divisor bits	(also denoted	as 'M', PLL mu	lltiplier)	
	000000000	= 2				. ,	
	000000001	= 3					
	000000010	= 4					
	•						
	•						
	•						
	000110000	= 50 (default)					
	•						
	•						
	•						
	111111111	= 513					

© 2009 Microchip Technology Inc.

REGISTER						GISTERT	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
T5MD	T4MD	T3MD	T2MD	T1MD	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD
bit 7							bit 0
Legend:	. 1.9		•••				
R = Readabl		vv = vvritable i	DI	U = Unimplen	nented bit, read		
-n = value at	POR	= Bit is set		"U" = Bit is clea	ared	x = Bit is unkr	lown
bit 15	T5MD: Timer	5 Module Disah	le hit				
bit 15	1 = Timer5 m	odule is disable	nc bir nd				
	0 = Timer5 m	odule is enable	d				
bit 14	T4MD: Timer4	4 Module Disab	le bit				
	1 = Timer4 m	odule is disable	ed				
	0 = Timer4 m	odule is enable	d				
bit 13	T3MD: Timer	3 Module Disab	le bit				
	1 = 1 mer3 mer3	odule is disable odule is enable	a d				
bit 12	T2MD: Timer2	2 Module Disab	e bit				
	1 = Timer2 m	odule is disable	ed				
	0 = Timer2 m	odule is enable	d				
bit 11	T1MD: Timer	1 Module Disab	le bit				
	1 = Timer1 m	odule is disable odule is enable	ed d				
bit 10-8	Unimplemen	ted: Read as ')'				
bit 7	I2C1MD: I ² C1	1 Module Disab	le bit				
	$1 = I^2 C1 \mod I^2$	ule is disabled					
h:1 0	$0 = I^2 C1 \mod I$	ule is enabled	-l:+				
DIT 6	1 - LIAPT2 m	2 Module Disa					
	0 = UART2 m	odule is enable	ed				
bit 5	U1MD: UART	1 Module Disal	ble bit				
	1 = UART1 m	odule is disable	ed				
	0 = UART1 m	odule is enable	ed				
bit 4	SPI2MD: SPI	2 Module Disat	ole bit				
	1 = SPI2 mod 0 = SPI2 mod	lule is disabled					
bit 3	SPI1MD: SPI	1 Module Disat	ole bit				
	1 = SPI1 mod	lule is disabled					
	0 = SPI1 mod	lule is enabled					
bit 2	C2MD: ECAN	12 Module Disa	ble bit				
	1 = ECAN2 m	odule is disable	ed				
	0 = EGAN2 M	iouule is enable	eu				

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

NOTES:

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_	_	_	_	_
bit 15							
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE	TCKPS	S<1:0>	_	TSYNC	TCS	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
		-					
bit 15	TON: Timer1	On bit					
	1 = Starts 16- 0 = Stops 16-	bit Timer1					
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	TSIDL: Stop i	n Idle Mode bit					
	1 = Discontinu	ue module oper	ation when d	evice enters Id	lle mode		
	0 = Continue	module operati	on in Idle mo	de			
bit 12-7	Unimplemen	ted: Read as 'o)'				
bit 6	TGATE: Time	r1 Gated Time	Accumulatior	n Enable bit			
	When T1CS =	<u>= 1:</u>					
	When T1CS =	= 0.					
	1 = Gated tim	e accumulation	enabled				
	0 = Gated tim	e accumulation	disabled				
bit 5-4	TCKPS<1:0>	: Timer1 Input (Clock Prescal	e Select bits			
	11 = 1:256						
	01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as 'd)'				
bit 2	TSYNC: Time	er1 External Clo	ock Input Syno	chronization Se	elect bit		
	When TCS =	<u>1:</u>	al. :				
	1 = Synchronize external clock input 0 = Do not synchronize external clock input						
	When $TCS = 0$:						
	This bit is igno	ored.					
bit 1	TCS: Timer1	Clock Source S	elect bit				
	1 = External c	clock from pin T	1CK (on the	rising edge)			
hit 0		tod: Dood on 'r	`,				
	ommplemen		J				

15.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 15-1 lists the different bit settings for the Output Compare modes. Figure 15-2 illustrates the output compare operation for various modes. The user

TABLE 15-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the Output Compare Control registers to avoid malfunctions.

Note: See Section 13. "Output Compare" in the "PIC24H Family Reference Manual" (DS70247) for OCxR and OCxRS register restrictions.

OCM<2:0>	Mode	Mode OCx Pin Initial State	
000	Module Disabled	Controlled by GPIO register	
001	Active-Low One-Shot	0	OCx rising edge
010	Active-High One-Shot	1	OCx falling edge
011	Toggle	Current output is maintained	OCx rising and falling edge
100	Delayed One-Shot	0	OCx falling edge
101	Continuous Pulse	0	OCx falling edge
110	PWM without Fault Protection	'0', if OCxR is zero '1', if OCxR is non-zero	No interrupt
111	PWM with Fault Protection	'0', if OCxR is zero'1', if OCxR is non-zero	OCFA falling edge for OC1 to OC4

FIGURE 15-2: OUTPUT COMPARE OPERATION

REGISTER 19-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15MSK<1:0>		F14MSK<1:0>		F13MSK<1:0>		F12MSK<1:0>			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11M	15K<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MS	K<1.0>		
bit 7		1 TOMIC		1 01110	11.0	1 0100	bit 0		
2.1.1									
Legend:									
R = Readab	le bit	W = Writable	W = Writable bit		U = Unimplemented bit, read				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	F15MSK<1:0	>: Mask Sourc	e for Filter 15	5 bit					
	11 = Reserve	11 = Reserved							
	10 = Accepta	ance Mask 2 re	gisters contai	n mask					
	01 = Accepta	ance Mask 1 re	gisters contai	n mask					
1.1.10.10				n mask					
bit 13-12	F14MSK<1:0	J>: Mask Sourc	tor Filter 14	bit (same value	es as bit 15-14)			
bit 11-10	F13MSK<1:0	D>: Mask Source	e for Filter 13	r 13 bit (same values as bit 15-14)					
bit 9-8	F12MSK<1:0	F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)							
bit 7-6	F11MSK<1:0	F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)							
bit 5-4	F10MSK<1:0	>: Mask Sourc	e for Filter 10) bit (same value	es as bit 15-14)			
bit 3-2	F9MSK<1:02	F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)							

bit 1-0 **F8MSK<1:0>:** Mask Source for Filter 8 bit (same values as bit 15-14)

23.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

24.1 DC Characteristics

Characteristic	VDD Range	Temp Range	Max MIPS		
	(in Volts)	(in °C)	PIC24HJXXXGPX06/X08/X10		
	3.0-3.6V	-40°C to +85°C	40		

TABLE 24-1: OPERATING MIPS VS. VOLTAGE

TABLE 24-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$	PD		Pint + Pi/c)	W
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 24-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 100-pin TQFP (14x14x1 mm)	θja	40	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12x1 mm)	θја	40	—	°C/W	1
Package Thermal Resistance, 64-pin TQFP (10x10x1 mm)	θја	40	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC24HJXXXGPX06/X08/X10	Literature Number: DS70175H
Ques	stions:	
1. \	What are the best features of this docu	ment?
-		
- 2	low does this document meet your ba	rdware and software development peeds?
2. 1	iow does this document meet you ha	
-		
3. E	Do you find the organization of this doo	cument easy to follow? If not, why?
-		
	What additions to the document do you	think would enhance the structure and subject?
ч . 1		
-		
5. N	What deletions from the document cou	Id be made without affecting the overall usefulness?
-		
_		
6. I	s there any incorrect or misleading info	ormation (what and where)?
-		
- 7. ł	How would you improve this document	?
_	· ·	
_		