

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b, 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj256gp610t-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Communication Modules:

- 3-wire SPI (up to two modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C[™] (up to two modules):
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART (up to two modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - $\ensuremath{\text{IrDA}}\xspace^{\ensuremath{\mathbb{R}}}$ encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN[™] module) 2.0B active (up to two modules):
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and 3 masks
 - Loopback, Listen Only and Listen All Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support

Analog-to-Digital Converters:

- Up to two Analog-to-Digital Converter (ADC) modules in a device
- 10-bit, 1.1 Msps or 12-bit, 500 ksps conversion:
 Two, four, or eight simultaneous samples
 - Up to 32 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Conversion possible in Sleep mode
 - ±1 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity

CMOS Flash Technology:

- · Low-power, high-speed Flash technology
- · Fully static design
- 3.3V (±10%) operating voltage
- · Industrial temperature
- Low-power consumption

Packaging:

- 100-pin TQFP (14x14x1 mm and 12x12x1 mm)
- 64-pin TQFP (10x10x1 mm)

Note: See the device variant tables for exact peripheral features per device.

Pin Name	Pin Type	Buffer Type	Description
AN0-AN31	I	Analog	Analog input channels.
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	Ground reference for analog modules.
CLKI CLKO	I O	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.
C1RX	I	ST	ECAN1 bus receive pin.
C1TX	0	_	ECAN1 bus transmit pin.
C2RX		ST	ECAN2 bus receive pin.
C21X	0	—	ECAN2 bus transmit pin.
PGED1	I/O	ST	Data I/O pin for programming/debugging communication channel 1.
PGEC1		SI	Clock input pin for programming/debugging communication channel 1.
PGED2	1/0	51	Data I/O pin for programming/debugging communication channel 2.
PGEC2		ST	Data I/O nin for programming/debugging communication channel 3
PGEC3	"O	ST	Clock input pin for programming/debugging communication channel 3.
IC1-IC8	1	ST	Capture inputs 1 through 8.
INTO	1	ST	External interrunt 0
INT1	i	ST	External interrupt 1.
INT2	I	ST	External interrupt 2.
INT3	I	ST	External interrupt 3.
INT4	I	ST	External interrupt 4.
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
OCFA	I	ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).
OCFB	I	ST	Compare Fault B input (for Compare Channels 5, 6, 7 and 8).
0C1-0C8	0	_	Compare outputs 1 through 8.
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
RA0-RA7	I/O	ST	PORTA is a bidirectional I/O port.
RA9-RA10	I/O	ST	
RA12-RA15	I/O	ST	
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.
RC1-RC4 RC12-RC15	1/O 1/O	ST ST	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.
RE0-RE7	I/O	ST	PORTE is a bidirectional I/O port.
RF0-RF8 RF12-RF13	I/O	ST	PORTF is a bidirectional I/O port.
RG0-RG3 RG6-RG9 RG12-RG15	I/O I/O I/O	ST ST ST	PORTG is a bidirectional I/O port.

TABLE 1-1:	PINOUT I/O DESCRIPTIONS
------------	--------------------------------

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog inputP = PowerO = OutputI = Input

SCK1 I/O ST Synchronous serial clock input/output for SPI1. SDI1 I ST SPI1 data in. SDO1 O — SPI1 data out. SS1 I/O ST SPI1 data out. SD2 O — SPI2 data in. SD02 O — SPI2 data out. SD2 I ST SPI2 data out. SD2 O — SPI2 data out. SS2 I/O ST SPI2 data out. SD1 I/O ST Synchronous serial clock input/output for I2C1. SD2 O — Synchronous serial clock input/output for I2C2. SD1 I/O ST Synchronous serial clock input/output for I2C2. SD2 I/O ST Synchronous serial clock input/output for I2C2. SOSCI I ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSCO O — 32.768 kHz low-power oscillator crystal output. TCK I ST JTAG test clock input. TDD O — JTAG test clock input. <	Pin Name	Pin Type	Buffer Type	Description
SDI1 I ST SPI1 data in. SDO1 0 SPI1 data out. SS1 I/O ST Synchronous serial clock input/output for SPI2. SDD2 0 SPI2 data out. SD02 0 SPI2 data out. SQD2 0 SPI2 data out. SQD3 0 SPI2 data out. SQD4 I/O ST Synchronous serial clock input/output for I2C1. SQL1 I/O ST Synchronous serial clock input/output for I2C2. SQD4 I/O ST Synchronous serial clock input/output for I2C2. SQC4 I/O ST Synchronous serial clock input/output for I2C2. SQSC0 0 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SQSC0 0 32.768 kHz low-power oscillator crystal output. TK 1 ST JTAG test clock input. TCK 1 ST JTAG test clock input. TDI 1 ST Timer1 externa	SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.
$\overline{\text{SDOT}}$ O SPI1 data out.SS1I/OSTSPI1 slave synchronization or frame pulse I/O.SCK2I/OSTSynchronous serial clock input/output for SPI2.SD12ISTSPI2 data out.SS2I/OSTSynchronous serial clock input/output for I2C1.SCL1I/OSTSynchronous serial clock input/output for I2C1.SCL2I/OSTSynchronous serial clock input/output for I2C2.SDA2I/OSTSynchronous serial clock input/output for I2C2.SOSCIIST/CMOS32.768 kHz low-power oscillator crystal input; CMOS otherwise.SOSCOO	SDI1	I	ST	SPI1 data in.
SS1 I/O ST SPI1 slave synchronization or frame pulse I/O. SCK2 I/O ST Synchronous serial clock input/output for SPI2. SD02 0 - SPI2 data out. SD02 0 - SPI2 data out. SD2 VO ST SPI2 slave synchronization or frame pulse I/O. SCL1 I/O ST Synchronous serial clock input/output for I2C1. SDA1 I/O ST Synchronous serial clock input/output for I2C2. SDA2 I/O ST Synchronous serial clock input/output for I2C2. SOSCI I STr/GKMCS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSCO 0 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSCO 0 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSCO 0 32.768 kHz low-power oscillator crystal output. TKK 1 ST JTAG test data output pin. TDI 1 ST JTAG test data output pin. TDC 0 - JTAG test data output pin. T1CK 1 ST Timer1 external clock input. T3CK 1 ST Timer3 external clock input. T4CK	SDO1	0	_	SPI1 data out.
SCR2 I/O ST Synchronous serial clock input/output for SPI2. SDI2 I ST SPI2 data in. SDO2 O	SS1	I/O	ST	SPI1 slave synchronization or frame pulse I/O.
SDI2 I ST SPI2 data in. SDO2 O SPI2 data out. SS2 I/O ST SPI2 data out. SCL1 I/O ST Synchronous serial clock input/output for I2C1. SDA1 I/O ST Synchronous serial clock input/output for I2C2. SDA2 I/O ST Synchronous serial clock input/output for I2C2. SOSC0 O - 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSC0 O - 32.768 kHz low-power oscillator crystal output. TMS I ST JTAG test mode select pin. TCK I ST JTAG test mode select pin. TDN I ST JTAG test data output pin. TDC O - JTAG test data output pin. T2CK I ST Timer1 external clock input. T4CK I ST Timer3 external clock input. T4CK I ST Timer6 external clock input. T6CK I ST Timer6 exte	SCK2	I/O	ST	Synchronous serial clock input/output for SPI2.
SD02O	SDI2	I	ST	SPI2 data in.
SS2 I/O ST SPI2 slave synchronization or frame pulse I/O. SCL1 I/O ST Synchronous serial data input/output for I2C1. SDA1 I/O ST Synchronous serial data input/output for I2C1. SCL2 I/O ST Synchronous serial data input/output for I2C2. SDA2 I/O ST Synchronous serial data input/output for I2C2. SOSCI I ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSCO O - 32.768 kHz low-power oscillator crystal output. TMS I ST JTAG test clock input pin. TDI I ST JTAG test data input pin. TDO O - JTAG test data output pin. TICK I ST Timer1 external clock input. T2CK I ST Timer2 external clock input. T3CK I ST Timer2 external clock input. T4CK I ST Timer3 external clock input. T5CK I ST Timer6 external clock input. T6CK I ST Timer6 external clock input. T6CK I ST Timer6 external clock input. T8CK I ST Timer6 external clock input. <td>SDO2</td> <td>0</td> <td></td> <td>SPI2 data out.</td>	SDO2	0		SPI2 data out.
SCL1 I/O ST Synchronous serial clock input/output for I2C1. SDA1 I/O ST Synchronous serial clock input/output for I2C1. SCL2 I/O ST Synchronous serial clock input/output for I2C2. SDA2 I/O ST Synchronous serial clock input/output for I2C2. SOSC0 O - 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSC0 O - 32.768 kHz low-power oscillator crystal output. TMS I ST JTAG test dock input pin. TDI I ST JTAG test data input pin. TDO O - JTAG test data output pin. TICK I ST Timer1 external clock input. TXCK I ST Timer2 external clock input. TXCK I ST Timer3 external clock input. TXCK I ST Timer3 external clock input. TGCK I ST Timer6 external clock input.	SS2	I/O	ST	SPI2 slave synchronization or frame pulse I/O.
SDA1I/OSTSynchronous serial data input/output for I2C1.SCL2I/OSTSynchronous serial data input/output for I2C2.SDA2I/OSTSynchronous serial data input/output for I2C2.SOSCIIST/CMOS32.768 kHz low-power oscillator crystal input; CMOS otherwise.SOSCOO32.768 kHz low-power oscillator crystal output.TMSISTJTAG Test mode select pin.TCKISTJTAG test clock input pin.TDIISTJTAG test data output pin.TDOOJTAG test data output pin.TCKISTTimer1 external clock input.T3CKISTTimer2 external clock input.T3CKISTTimer4 external clock input.T4CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T7CKISTTimer9 external clock input.T8CKISTTimer9 external clock input.T1RSO-UART1 clear to send.U1RTSO-UART1 reacive.U1RTSO-UART2 clear to send.U2RTSO-UART2 reacive.U2RTSO-UART2 reacive.U2RTSO-CPU logic filter capacitor connection.VobP-Positive supply for	SCL1	I/O	ST	Synchronous serial clock input/output for I2C1.
SCL2 I/O ST Synchronous serial clock input/output for I2C2. SDA2 I/O ST Synchronous serial data input/output for I2C2. SOSCI I ST/CMOS 32.768 kHz low-power oscillator crystal input; CMOS otherwise. SOSCO O - 32.768 kHz low-power oscillator crystal output. TMS I ST JTAG Test mode select pin. TCK I ST JTAG test data input pin. TDI I ST Timer1 external clock input. T2CK I ST Timer1 external clock input. T2CK I ST Timer2 external clock input. T3CK I ST Timer3 external clock input. T4CK I ST Timer4 external clock input. T5CK I ST Timer5 external clock input. T6CK I ST Timer6 external clock input. T6CK I ST Timer6 external clock input. T8CK I ST Timer6 external clock input. T9CK I ST Timer6 external clock input. T0CTS I ST UART1 ready to send. U1RTS O - UART1 ready to send. U1RX I ST	SDA1	I/O	ST	Synchronous serial data input/output for I2C1.
SDA2I/OSTSynchronous serial data input/output for I2C2.SOSCIIST/CMOS32.768 kHz low-power oscillator crystal input; CMOS otherwise.SOSCOO32.768 kHz low-power oscillator crystal output.TMSISTJTAG test mode select pin.TCKISTJTAG test clock input pin.TDIISTJTAG test data output pin.TDOOJTAG test data output pin.TCKISTTimer1 external clock input.TCKISTTimer2 external clock input.TCKISTTimer2 external clock input.T3CKISTTimer6 external clock input.T4CKISTTimer6 external clock input.T5CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T8CKISTTimer6 external clock input.T9CKISTUART1 clear to send.U1RTSOUART1 receive.U1RXISTUART1 receive.U2RTSOUART2 clear to send.U2RTSOUART2 receive.U2RXISTUART2 receive.U2RXISTUART2 receive.U2RXOCPU logic filter capacitor connection.VssPGroun	SCL2	I/O	ST	Synchronous serial clock input/output for I2C2.
SOSCIIST/CMOS32.768 kHz low-power oscillator crystal input; CMOS otherwise.SOSCOO-32.768 kHz low-power oscillator crystal output.TMSISTJTAG Test mode select pin.TCKISTJTAG test clock input pin.TDIISTJTAG test clock input pin.TDOO-JTAG test data input pin.TCKISTTimer1 external clock input.T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer6 external clock input.T4CKISTTimer6 external clock input.T4CKISTTimer6 external clock input.T4CKISTTimer6 external clock input.T5CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T8CKISTTimer6 external clock input.T1CTSISTUART1 ready to send.U1RTSO-UART1 receive.U1RXISTUART2 clear to send.U2RTSO-UART2 receive.U2RXISTUART2 receive.U2RXISTUART2 receive.U2RXO-CPU logic filter capacitor connection.VssP-CPU logic filter capacitor connection.VssP-Ground r	SDA2	I/O	ST	Synchronous serial data input/output for I2C2.
SOSCOO—32.768 kHz low-power oscillator crystal output.TMSISTJTAG Test mode select pin.TCKISTJTAG test clock input pin.TDIISTJTAG test data output pin.TDOO—JTAG test data output pin.T1CKISTTimer1 external clock input.T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T3CKISTTimer6 external clock input.T5CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RXISTUART1 receive.U1TXO—UART1 receive.U2CTSISTUART2 receive.U2TXO—UART2 receive.U2TXO—UART2 transmit.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—Ground reference for logic and I/O pins.VREF-IAnalog voltage reference (lidp) input.	SOSCI	I	ST/CMOS	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
TMSISTJTAG Test mode select pin.TCKISTJTAG test clock input pin.TDIISTJTAG test clock input pin.TDOOJTAG test data output pin.T1CKISTTimer1 external clock input.T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer4 external clock input.T5CKISTTimer5 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T7CKISTTimer9 external clock input.T8CKISTTimer9 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSOUART1 ready to send.U1RXISTUART2 ready to send.U2CTSISTUART2 ready to send.U2RTSOUART2 ready to send.U2RXISTUART2 receive.U2RXISTUART2 receive.U2RXISTCPU logic filter capacitor connection.VcAP/VDDCOREPCPU lo	SOSCO	0	—	32.768 kHz low-power oscillator crystal output.
TCKISTJTAG test clock input pin.TDIISTJTAG test data input pin.TDOO-JTAG test data output pin.T1CKISTTimer1 external clock input.T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer4 external clock input.T5CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T6KKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer9 external clock input.T9CKISTUART1 clear to send.U1RTSO-UART1 receive.U1TXO-UART2 clear to send.U2CTSISTUART2 clear to send.U2RXISTUART2 receive.U2RXISTUART2 receive.U2RXISTUART2 receive.U2RXISTUART2 receive.U2RXISTCPU logic filter capacitor connection.VssP-Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.	TMS	I	ST	JTAG Test mode select pin.
TDIISTJTAG test data input pin.TDOOJTAG test data output pin.TDOISTTimer1 external clock input.T1CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer6 external clock input.T5CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T8CKISTTimer7 external clock input.T8CKISTTimer7 external clock input.T8CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSOUART1 receive.U1RXISTUART1 receive.U2CTSISTUART2 clear to send.U2RTSOUART2 ready to send.U2RTSOUART2 ready to send.U2RTSOUART2 ready to send.U2RTSOUART2 receive.U2RXISTUART2 receive.U2RXOCPU logic filter capacitor connection.VbDPPositive supply for peripheral logic and I/O pins.VcaP/VbDcorePGround reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.VREF-IAnalogAnalog voltage referenc	тск	I	ST	JTAG test clock input pin.
TDOO—JTAG test data output pin.T1CKISTTimer1 external clock input.T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer4 external clock input.T5CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer8 external clock input.T9CKISTTimer9 external clock input.T9CKISTTimer9 external clock input.UITTSO—UART1 clear to send.U1RTSO—UART1 receive.U1TXO—UART1 receive.U2RTSISTUART2 clear to send.U2RTSO—UART2 receive.U2TXO—UART2 receive.U2TXO—CPU logic filter capacitor connection.VDDP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.	TDI	I	ST	JTAG test data input pin.
T1CKISTTimer1 external clock input.T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer4 external clock input.T5CKISTTimer5 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer9 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSO-UART1 receive.U1TXO-UART1 receive.U2CTSISTUART2 clear to send.U2RTSO-UART1 receive.U2RTSO-UART2 receive.U2RXISTUART2 receive.U2TXO-UART2 receive.VDDP-Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP-CPU logic filter capacitor connection.VssP-Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.	TDO	0	—	JTAG test data output pin.
T2CKISTTimer2 external clock input.T3CKISTTimer3 external clock input.T4CKISTTimer4 external clock input.T5CKISTTimer6 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer6 external clock input.T8CKISTTimer9 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSO—UART1 receive.U1TXO—UART1 receive.U2CTSISTUART2 clear to send.U2RTSO—UART2 receive.U2RXISTUART2 receive.U2TXO—UART2 receive.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalog voltage reference (low) input.	T1CK	I	ST	Timer1 external clock input.
T3CKISTTimer3 external clock input.T4CKISTTimer4 external clock input.T5CKISTTimer5 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer9 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.UITTSO—UART1 receive.U1TXO—UART1 receive.U2CTSISTUART2 clear to send.U2RTSO—UART2 ready to send.U2RTSO—UART2 ready to send.U2RXISTUART2 receive.U2TXO—UART2 receive.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.	T2CK	I	ST	Timer2 external clock input.
T4CKISTTimer4 external clock input.T5CKISTTimer5 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer9 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSO—UART1 ready to send.U1TXO—UART1 receive.U1TXO—UART2 clear to send.U2RTSISTUART2 clear to send.U2RTSO—UART2 ready to send.U2RTSO—UART2 ready to send.U2RXISTUART2 ready to send.VDDP—Positive supply for peripheral logic and I/O pins.VcAP/VDDCOREP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.VREF-IAnalogAnalog voltage reference (low) input.<	T3CK	I	ST	Timer3 external clock input.
T5CKISTTimer5 external clock input.T6CKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer8 external clock input.T9CKISTTimer9 external clock input.UICTSISTTimer9 external clock input.UIRTSO—UART1 clear to send.U1RXISTUART1 receive.U1TXO—UART1 receive.U2CTSISTUART2 clear to send.U2RTSO—UART2 receive.U2RXISTUART2 receive.U2TXO—UART2 receive.U2TXO—UART2 receive.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.VREF-IAnalogAnalog voltage reference (low) input.	T4CK	I	ST	Timer4 external clock input.
T6CKISTTimer6 external clock input.T7CKISTTimer7 external clock input.T8CKISTTimer8 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSO-UART1 ready to send.U1RXISTUART1 receive.U1TXO-UART1 transmit.U2CTSISTUART2 clear to send.U2RTSO-UART1 transmit.U2RXISTUART2 ready to send.U2RXISTUART2 receive.U2TXO-UART2 receive.VDDP-Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP-CPU logic filter capacitor connection.VssP-Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	T5CK	I	ST	Timer5 external clock input.
T7CKISTTimer7 external clock input.T8CKISTTimer8 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.UIRTSO-UART1 ready to send.U1RXISTUART1 receive.U1TXO-UART1 transmit.U2CTSISTUART2 clear to send.U2RTSO-UART2 ready to send.U2RXISTUART2 receive.U2TXO-UART2 receive.U2TXO-UART2 transmit.VDDP-Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP-CPU logic filter capacitor connection.VssP-Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (low) input.	T6CK	I	ST	Timer6 external clock input.
T8CKISTTimer8 external clock input.T9CKISTTimer9 external clock input.UICTSISTUART1 clear to send.U1RTSO-UART1 ready to send.U1RXISTUART1 receive.U1TXO-UART1 transmit.U2CTSISTUART2 clear to send.U2RTSO-UART2 ready to send.U2RXISTUART2 receive.U2TXO-UART2 receive.U2TXO-UART2 transmit.VDDP-Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP-CPU logic filter capacitor connection.VssP-Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	T7CK	I	ST	Timer7 external clock input.
T9CKISTTimer9 external clock input.U1CTSISTUART1 clear to send.U1RTSO—UART1 ready to send.U1RXISTUART1 receive.U1TXO—UART1 transmit.U2CTSISTUART2 clear to send.U2RXISTUART2 ready to send.U2RXISTUART2 receive.U2TXO—UART2 receive.U2TXO—UART2 transmit.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	T8CK	I	ST	Timer8 external clock input.
U1CTS U1RTSISTUART1 clear to send.U1RTSO-UART1 ready to send.U1RXISTUART1 receive.U1TXO-UART1 transmit.U2CTSISTUART2 clear to send.U2RTSO-UART2 ready to send.U2RXISTUART2 receive.U2TXO-UART2 transmit.VDDP-Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP-CPU logic filter capacitor connection.VssP-Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.	T9CK	I	ST	Timer9 external clock input.
U1RTSO—UART1 ready to send.U1RXISTUART1 receive.U1TXO—UART1 transmit.U2CTSISTUART2 clear to send.U2RTSO—UART2 ready to send.U2RXISTUART2 receive.U2TXO—UART2 transmit.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	U1CTS	I	ST	UART1 clear to send.
U1RXISTUART1 receive.U1TXOUART1 transmit.U2CTSISTUART2 clear to send.U2RTSOUART2 ready to send.U2RXISTUART2 receive.U2TXOUART2 transmit.VDDPPositive supply for peripheral logic and I/O pins.VCAP/VDDCOREPCPU logic filter capacitor connection.VssPGround reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	U1RTS	0	—	UART1 ready to send.
U1TX U2CTS U2RTSO I—UART1 transmit. UART2 clear to send. UART2 ready to send. UART2 ready to send. U2RX U2TXO I—UART2 ready to send. UART2 receive. UART2 transmit.VDDP—UART2 transmit.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	U1RX	I	ST	UART1 receive.
U2CTS U2RTSISTUART2 clear to send. UART2 ready to send. UART2 receive. UART2 receive. UART2 transmit.VDDP—UART2 transmit.VDDP—Positive supply for peripheral logic and I/O pins.VCAP/VDDCOREP—CPU logic filter capacitor connection.VssP—Ground reference for logic and I/O pins.VREF+IAnalogAnalog voltage reference (high) input.VREF-IAnalogAnalog voltage reference (low) input.	U1TX	0		UART1 transmit.
U2RTS O — UART2 ready to send. U2RX I ST UART2 receive. U2TX O — UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VCAP/VDDCORE P — CPU logic filter capacitor connection. Vss P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	U2CTS		ST	UART2 clear to send.
U2RX I ST UART2 receive. U2TX O — UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VCAP/VDDCORE P — CPU logic filter capacitor connection. Vss P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	U2RTS	0		UART2 ready to send.
U2TX O — UART2 transmit. VDD P — Positive supply for peripheral logic and I/O pins. VCAP/VDDCORE P — CPU logic filter capacitor connection. Vss P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	U2RX		ST	UART2 receive.
VDD P — Positive supply for peripheral logic and I/O pins. VCAP/VDDCORE P — CPU logic filter capacitor connection. Vss P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	U2TX	0	—	UART2 transmit.
VCAP/VDDCORE P — CPU logic filter capacitor connection. Vss P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	Vdd	Р	—	Positive supply for peripheral logic and I/O pins.
Vss P — Ground reference for logic and I/O pins. VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	VCAP/VDDCORE	Р	—	CPU logic filter capacitor connection.
VREF+ I Analog Analog voltage reference (high) input. VREF- I Analog Analog voltage reference (low) input.	Vss	Р	_	Ground reference for logic and I/O pins.
VREF- I Analog Analog voltage reference (low) input.	VREF+	I	Analog	Analog voltage reference (high) input.
	VREF-	I	Analog	Analog voltage reference (low) input.

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels

Analog = Analog input O = Output P = Power I = Input

TABLE 4-18:	ECAN1 REGISTER MAP	WHEN C1CTRL1.WIN =	OOR 1 FOR PIC	C24HJXXXGP506/510/610	DEVICES ONLY
--------------------	--------------------	--------------------	---------------	-----------------------	--------------

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	—	—	CSIDL	ABAT	—	R	EQOP<2:0	>	OPI	MODE<2:0	>	—	CANCAP	—	—	WIN	0480
C1CTRL2	0402	_	_	_	_	_	_	_	_	_	_	_		D	NCNT<4:0	>		0000
C1VEC	0404	_	_	_		F	ILHIT<4:0>			_				CODE<6:0	>			0000
C1FCTRL	0406	[DMABS<2:0)>	—	—	—	-	-	—	—	-			FSA<4:0>			0000
C1FIFO	0408	_	_			FBP<	:5:0>			—	—			FNRB	<5:0>			0000
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_	—	—	_	—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E				TERRC	NT<7:0>							RERRCN	IT<7:0>				0000
C1CFG1	0410	_	_	_	—	_	—	—	_	SJW<	1:0>			BRP<	:5:0>			0000
C1CFG2	0412	_	WAKFIL	_	_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	SEG1PH<2:0> PRSEG<2:0>			0000		
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MS	K<1:0>	F6MSI	K<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<1:0> F2MSK<1:0> F1MSK<1:0> F0MSK<1:0>			K<1:0>	0000				
C1FMSKSEL2	041A	F15MS	SK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	SK<1:0>	F11MSK	<1:0>	> F10MSK<1:0> F9MSK<1:0> F8MSK<1:0>			0000			

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-19: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 0 FOR PIC24HJXXXGP506/510/610 DEVICES ONLY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E							See	e definition	when WIN	= x							
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CO N	0430	TXEN1	TX ABT1	TX LARB1	TX ERR1	TX REQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TX ABAT0	TX LARB0	TX ERR0	TX REQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CO N	0432	TXEN3	TX ABT3	TX LARB3	TX ERR3	TX REQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TX ABAT2	TX LARB2	TX ERR2	TX REQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CO N	0434	TXEN5	TX ABT5	TX LARB5	TX ERR5	TX REQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TX ABAT4	TX LARB4	TX ERR4	TX REQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CO N	0436	TXEN7	TX ABT7	TX LARB7	TX ERR7	TX REQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TX ABAT6	TX LARB6	TX ERR6	TX REQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440								Recieved	Data Word								xxxx
C1TXD	0442		Transmit Data Word xxxx															

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610 DEVICES ONLY (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11EID	056E		EID<15:8>					EID<7:0>								xxxx		
C2RXF12SID	0570		SID<10:3>					SID<2:0> — EXIDE — EID<17:1					7:16>	xxxx				
C2RXF12EID	0572				EID<	:15:8>							EID<7	7:0>				xxxx
C2RXF13SID	0574		SID<10:3>						SID<2:0>		—	EXIDE	_	EID<1	7:16>	xxxx		
C2RXF13EID	0576				EID<	:15:8>							EID<7	7:0>				xxxx
C2RXF14SID	0578				SID<	:10:3>				SID<2:0> — EXIDE — EID<17						7:16>	xxxx	
C2RXF14EID	057A	EID<15:8>										EID<7	7:0>				xxxx	
C2RXF15SID	057C	SID<10:3>					SID<2:0> — EXIDE — EI				EID<1	7:16>	xxxx					
C2RXF15EID	057E	EID<15:8>								EID<7	7:0>				xxxx			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

NOTES:

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	FSCM Delay	Notes
POR	EC, FRC, LPRC	Tpor + Tstartup + Trst	_	_	1, 2, 3
	ECPLL, FRCPLL	Tpor + Tstartup + Trst	TLOCK	TFSCM	1, 2, 3, 5, 6
	XT, HS, SOSC	Tpor + Tstartup + Trst	Tost	TFSCM	1, 2, 3, 4, 6
	XTPLL, HSPLL	Tpor + Tstartup + Trst	Tost + Tlock	TFSCM	1, 2, 3, 4, 5, 6
MCLR	Any Clock	Trst	_		3
WDT	Any Clock	Trst	—	_	3
Software	Any clock	Trst	—		3
Illegal Opcode	Any Clock	Trst	—	_	3
Uninitialized W	Any Clock	Trst	—	_	3
Trap Conflict	Any Clock	TRST		_	3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μs nominal).

2: TSTARTUP = Conditional POR delay of 20 μs nominal (if on-chip regulator is enabled) or 64 ms nominal Power-up Timer delay (if regulator is disabled). TSTARTUP is also applied to all returns from powered-down states, including waking from Sleep mode, only if the regulator is enabled.

- 3: TRST = Internal state Reset time (20 µs nominal).
- **4:** TOST = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5**: TLOCK = PLL lock time (20 μ s nominal).
- **6:** TFSCM = Fail-Safe Clock Monitor delay (100 μs nominal).

6.2.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the Reset signal is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.2.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it begins to monitor the system clock source when the Reset signal is released. If a valid clock source is not available at this time, the device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine.

6.2.2.1 FSCM Delay for Crystal and PLL Clock Sources

When the system clock source is provided by a crystal oscillator and/or the PLL, a small delay, TFSCM, is automatically inserted after the POR and PWRT delay times. The FSCM does not begin to monitor the system clock source until this delay expires. The FSCM delay time is nominally 500 μ s and provides additional time for the oscillator and/or PLL to stabilize. In most cases, the FSCM delay prevents an oscillator failure trap at a device Reset when the PWRT is disabled.

6.3 Special Function Register Reset States

Most of the Special Function Registers (SFRs) associated with the CPU and peripherals are reset to a particular value at a device Reset. The SFRs are grouped by their peripheral or CPU function and their Reset values are specified in each section of this manual.

The Reset value for each SFR does not depend on the type of Reset, with the exception of two registers. The Reset value for the Reset Control register, RCON, depends on the type of device Reset. The Reset value for the Oscillator Control register, OSCCON, depends on the type of Reset and the programmed values of the oscillator Configuration bits in the FOSC Configuration register.

 $FCY = \frac{FOSC}{2} = \frac{1}{2} \left(\frac{10000000 \cdot 32}{2 \cdot 2} \right)$

XT WITH PLL MODE

= 40 MIPS

EXAMPLE

EQUATION 9-3:

For example, suppose a 10 MHz crystal is being used, with "XT with PLL" being the selected oscillator mode. If PLLPRE<4:0> = 0, then N1 = 2. This yields a VCO input of 10/2 = 5 MHz, which is within the acceptable range of 0.8-8 MHz. If PLLDIV<8:0> = 0x1E, then M = 32. This yields a VCO output of 5 x 32 = 160 MHz, which is within the 100-200 MHz ranged needed.

If PLLPOST<1:0> = 0, then N2 = 2. This provides a Fosc of 160/2 = 80 MHz. The resultant device operating speed is 80/2 = 40 MIPS.

FIGURE 9-2: PIC24HJXXXGPX06/X08/X10 PLL BLOCK DIAGRAM

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	Ι
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	Ι
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	-
Primary Oscillator (XT)	Primary	01	010	_
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator with PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

10.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 9. "Watchdog Timer and Power-Saving Modes" (DS70236), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. PIC24HJXXXGPX06/X08/X10 devices can manage power consumption in four different ways:

- Clock frequency
- · Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

PIC24HJXXXGPX06/X08/X10 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSC-CON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 9.0 "Oscillator Configuration"**.

10.2 Instruction-Based Power-Saving Modes

PIC24HJXXXGPX06/X08/X10 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

10.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation is disabled in Sleep mode.

The device will wake-up from Sleep mode on any of these events:

- Any interrupt source that is individually enabled.
- · Any form of device Reset.
- A WDT time-out.

On wake-up from Sleep, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV#SLEEP_MODE; Put the device into SLEEP modePWRSAV#IDLE_MODE; Put the device into IDLE mode

REGISTER	10-3: PMD	3: PERIPHER		E DISABLE C	ONTROL R	EGISTER 3	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
T9MD	T8MD	T7MD	T6MD	—			_
bit 15		-					bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
			_			I2C2MD	AD2MD
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15 bit 14 bit 13 bit 12	T9MD: Timer 1 = Timer9 m 0 = Timer9 m T8MD: Timer 1 = Timer8 m 0 = Timer8 m T7MD: Timer 1 = Timer7 m 0 = Timer7 m T6MD: Timer 1 = Timer6 m 0 = Timer6 m 0 = Timer6 m	9 Module Disa nodule is disabl nodule is enable 8 Module Disa nodule is disabl nodule is enable 7 Module Disa nodule is enable 6 Module Disa nodule is disabl nodule is disabl	ble bit ed ble bit ed ble bit ed ble bit ed ble bit ed				
bit 11-2 bit 1 bit 0	Unimplement I2C2MD: I2C 1 = I2C2 mod 0 = I2C2 mod AD2MD: AD2 1 = AD2 mod 0 = AD2 mod	nted: Read as ' 2 Module Disal dule is disabled dule is enabled 2 Module Disab dule is disabled dule is enabled	o' ble bit le bit				

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾		TSIDL ⁽²⁾	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS<1:0> ⁽¹⁾		—	—	TCS ^(1,3)	—
bit 7							bit 0

Legend:								
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15	TON: Tir	mery On bit ⁽¹⁾						
	1 = Start 0 = Stop	s 16-bit Timery s 16-bit Timery						
bit 14	Unimple	emented: Read as '0'						
bit 13	TSIDL: S	Stop in Idle Mode bit ⁽²⁾						
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 							
bit 12-7	Unimple	Unimplemented: Read as '0'						
bit 6	TGATE:	Timery Gated Time Accumula	ation Enable bit ⁽¹⁾					
	When To	<u>CS = 1:</u>						
	This bit i	s ignored.						
	When $I($	CS = 0:						
	0 = Gate	ed time accumulation disabled	1					
bit 5-4	TCKPS<	<1:0>: Timer3 Input Clock Pre	escale Select bits ⁽¹⁾					
	11 = 1:2	56						
	10 = 1:6	4						
	01 = 1:8							
bit 3-2	Unimple	mented: Read as '0'						
bit 1	TCS: Tir	merv Clock Source Select bit ⁽	1,3)					
Sit 1	1 = Exte	rnal clock from pin TvCK (on	the risina edae)					
	0 = Inter	nal clock (FCY)						
bit 0	Unimple	emented: Read as '0'						
Note 1:	When 32-bit functions are	operation is enabled (T2CON e set through T2CON.	<3> = 1), these bits have no e	ffect on Timery operation; all timer				

- 2: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.
- 3: The TyCK pin is not available for all timers. Refer to the "Pin Diagrams" section for the available pins.

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2)

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	—	OCSIDL	—			—	—
bit 15							bit 8
U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7	•						bit 0

|--|

Legend:	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0'
OCSIDL: Stop Output Compare in Idle Mode Control bit
1 = Output Compare x halts in CPU Idle mode
0 = Output Compare x continues to operate in CPU Idle mode
Unimplemented: Read as '0'
OCFLT: PWM Fault Condition Status bit
 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (this bit is only used when OCM<2:0> = 111)
OCTSEL: Output Compare Timer Select bit
1 = Timer3 is the clock source for Compare x
0 = Timer2 is the clock source for Compare x
OCM<2:0>: Output Compare Mode Select bits
111 = PWM mode on OCx, Fault pin enabled
110 = PWM mode on OCx, Fault pin disabled
101 = Initialize OCX pin low, generate continuous output pulses on OCX pin
100 = Initialize OCX pin low, generate single output pulse on OCX pin
010 = Initialize OCx pin high, compare event forces OCx pin low
001 = Initialize OCx pin low, compare event forces OCx pin high
000 = Output compare channel is disabled

REGISTER 19-20: CIRXMnSID: ECAN™ MODULE ACCEPTANCE FILTER MASK n STANDARD IDENTIFIER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3			
bit 15			•		•	•	bit 8			
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x			
SID2	SID1	SID0	—	MIDE	_	EID17	EID16			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x					x = Bit is unki	nown				
bit 15-5	SID<10:0>: \$	Standard Identi	fier bits							
	1 = Include bi 0 = Bit SIDx i	it SIDx in filter o s don't care in f	comparison filter comparis	son						
bit 4	Unimplemen	ted: Read as '	0'							
bit 3	MIDE: Identi	fier Receive Mo	ode bit							
 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) 										
bit 2	Unimplemen	ted: Read as '	0'							
bit 1-0	EID<17:16>:	Extended Ider	ntifier bits							
	 1 = Include bit EIDx in filter comparison 0 = Bit EIDx is don't care in filter comparison 									

REGISTER 19-21: CIRXMnEID: ECAN™ TECHNOLOGY ACCEPTANCE FILTER MASK n EXTENDED IDENTIFIER

R/W-x	R/W-x	R/W-x	K R/W-X R/W-X		R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8

R/W-x	R/W-x	R/W-x	x R/W-x R/W-x		R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

23.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

23.7 MPLAB ICE 2000 High-Performance In-Circuit Emulator

The MPLAB ICE 2000 In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers. Software control of the MPLAB ICE 2000 In-Circuit Emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The architecture of the MPLAB ICE 2000 In-Circuit Emulator allows expansion to support new PIC microcontrollers.

The MPLAB ICE 2000 In-Circuit Emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows[®] 32-bit operating system were chosen to best make these features available in a simple, unified application.

23.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The MPLAB REAL ICE probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with the popular MPLAB ICD 2 system (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

MPLAB REAL ICE is field upgradeable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added, such as software breakpoints and assembly code trace. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, real-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

23.9 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PIC MCUs and can be used to develop for these and other PIC MCUs and dsPIC DSCs. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers costeffective, in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single stepping and watching variables, and CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real time. MPLAB ICD 2 also serves as a development programmer for selected PIC devices.

23.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

TABLE 24-20: I/O TIMING REQUIREMENTS								
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time			10	25	ns	—
DO32	TIOF	Port Output Fall Time		—	10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (output)		20			ns	—
DI40	Trbp	CNx High or Low Tim	ne (input)	2	_	_	TCY	_

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

25.0 PACKAGING INFORMATION

25.1 Package Marking Information

64-Lead TQFP (10x10x1 mm)

100-Lead TQFP (12x12x1 mm)

100-Lead TQFP (14x14x1mm)

100-Lead TQFP (14x14x1mm)

Legend	: XXX Y YY WW NNN (e3) *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.			
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.				

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED	LAND	PAT	TERN
-------------	------	-----	------

	MILLIMETERS						
Dimension	MIN	NOM	MAX				
Contact Pitch E		0.50 BSC					
Contact Pad Spacing	C1		11.40				
Contact Pad Spacing	C2		11.40				
Contact Pad Width (X64)	X1			0.30			
Contact Pad Length (X64)	Y1			1.50			
Distance Between Pads	G	0.20					

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085A