

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
	0400- 041E			•					See definit	ion when V	VIN = x	•	·	·			•	
C1BUFPNT1	0420		F3BF	P<3:0>			F2BF	P<3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BP<3:0> F6BP<3:0>						F5BP	<3:0>			F4BP	<3:0>		0000		
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13BF	P<3:0>			F12BF	?<3:0>		0000
C1RXM0SID	0430				SID<	10:3>					SID<2:0>		—	MIDE		EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		—	MIDE		EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE		EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C1RXF1EID	0446		EID<15:8>							EID<	7:0>				xxxx			
C1RXF2SID	0448		SID<10:3>						SID<2:0>		—	EXIDE		EID<	17:16>	xxxx		
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF10SID	0468				SID<	:10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C1RXF10EID	046A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx

TABLE 4-20: ECAN1 REGISTER MAP WHEN C1CTRL1.WIN = 1 FOR PIC24HJXXXGP506/510/610 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable reset delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the reset signal is released.

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0 R/W-1 R/W-0 U-0 U-0 U-0 U-0 — DMA5IP<2:0> — — — — — bit 7 bit								
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 — Is	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
U-0 R/W-1 R/W-0 R/W-0 U-0 U-0 U-0 U-0 — Is	—	—	—	—	—		—	_
DMA5IP<2:0> - - - - - bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 	bit 15							bit 8
DMA5IP<2:0> - - - - - bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 								
bit 7 bit Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	—		DMA5IP<2:0>		—	—	—	—
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) . . . <td>bit 7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>bit 0</td>	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) • • 001 = Interrupt is priority 1 000 = Interrupt source is disabled	Legend:							
<pre>bit 15-7 Unimplemented: Read as '0' bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)</pre>	R = Readable	bit	W = Writable b	bit	U = Unimplen	nented bit, read	as '0'	
bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 6-4 DMA5IP<2:0>: DMA Channel 5 Data Transfer Complete Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)								
<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>	bit 15-7	Unimplemen	ted: Read as '0)'				
• • • • • • • • • • • • • • • • • • •	bit 6-4	DMA5IP<2:0	>: DMA Channe	el 5 Data Trai	nsfer Complete	Interrupt Priorit	y bits	
000 = Interrupt source is disabled								
000 = Interrupt source is disabled		111 = Interru	ot is priority 7 (h	nighest priorit	y interrupt)			
000 = Interrupt source is disabled		111 = Interruj •	ot is priority 7 (h	nighest priorit	y interrupt)			
000 = Interrupt source is disabled		111 = Interruj • •	ot is priority 7 (h	ighest priorit	y interrupt)			
		•		iighest priorit	y interrupt)			
bit 2.0 Unimplemented: Read as 'o'		• • 001 = Interru	ot is priority 1		y interrupt)			
bit 3-0 Unimplemented: Read as '0'		• • 001 = Interru	ot is priority 1		y interrupt)			

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CHEN	SIZE	DIR	HALF	NULLW	—	_	—				
bit 15	·						bit				
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0				
 bit 7	_	AMOD	E<1:0>	—	—	MODE	-<1:0> bit				
							DIL				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15		nel Enable bit									
	1 = Channel e 0 = Channel e										
bit 14		ransfer Size bit	ł								
	1 = Byte		•								
	0 = Word										
bit 13	DIR: Transfer	DIR: Transfer Direction bit (source/destination bus select)									
				to peripheral ad o DMA RAM ad							
bit 12	HALF: Early	IALF: Early Block Transfer Complete Interrupt Select bit									
		 1 = Initiate block transfer complete interrupt when half of the data has been moved 0 = Initiate block transfer complete interrupt when all of the data has been moved 									
bit 11	NULLW: Null	Data Peripher	al Write Mode	e Select bit							
	1 = Null data 0 = Normal o		eral in additio	n to DMA RAM	write (DIR bit	must also be cle	ar)				
bit 10-6	Unimplemen	ted: Read as '	0'								
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating I	Mode Select bit	S						
	01 = Register	ral Indirect Ado Indirect witho	ut Post-Incren	nent mode							
	-	r Indirect with F		nt mode							
bit 3-2		ted: Read as '									
bit 1-0				ode Select bits	anefor from/to	each DNAA DAM	buffer)				
		ous, Ping-Pong i ous, Ping-Pong				each DMA RAM	buller)				
	01 = One-Sh	ot, Ping-Pong	nodes disable	ed							
	00 = Continue	oue Ding Dong	n modae dieat								

REGISTER 8-1: DMAxCON: DMA CHANNEL x CONTROL REGISTER

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
—		COSC<2:0>		—		NOSC<2:0> ⁽²⁾	
bit 15							bit 8
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOCK	_	LOCK	_	CF	_	LPOSCEN	OSWEN
bit 7				0.			bit 0
Legend:	••	•	•	ation bits on P		C = Clear	r only bit
R = Readable I		W = Writable	bit	-	nented bit, rea		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimplemen	ted: Read as ') '				
bit 14-12	-	Current Oscilla		bits (read-only)		
51(11)2		C oscillator (FF			/		
		C oscillator (FF					
		y oscillator (XT					
		y oscillator (XT		PLL			
		dary oscillator (ower RC oscilla					
		C oscillator (FF		e-by-16			
		C oscillator (FF					
bit 11	Unimplemen	ted: Read as '	כ'				
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	₃ (2)			
		C oscillator (FF					
		C oscillator (FF					
		y oscillator (XT y oscillator (XT		PU			
		dary oscillator (
	101 = Low-P	ower RC oscilla	tor (LPRC)				
		C oscillator (FF					
hit 7		C oscillator (FF Clock Lock Ena	-	e-by-n			
bit 7		M0 = 1), then c		configurations	are locked		
		MO = 1), then C $MO = 0$), then c				ied	
		d PLL selection					
bit 6	Unimplemen	ted: Read as '	כ'				
bit 5	LOCK: PLL L	ock Status bit (read-only)				
		that PLL is in I					
		that PLL is out		up timer is in p	progress or PL	L is disabled	
bit 4	-	ted: Read as '					
bit 3		il Detect bit (rea		plication)			
		as detected clo as not detected					
bit 2	Unimplemen	ted: Read as ')				

Note 1: Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator**" (DS70227) in the *"PIC24H Family Reference Manual"* (available from the Microchip website) for details.

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 1 C1MD: ECAN1 Module Disable bit
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled
 - 0 = ADC1 module is enabled

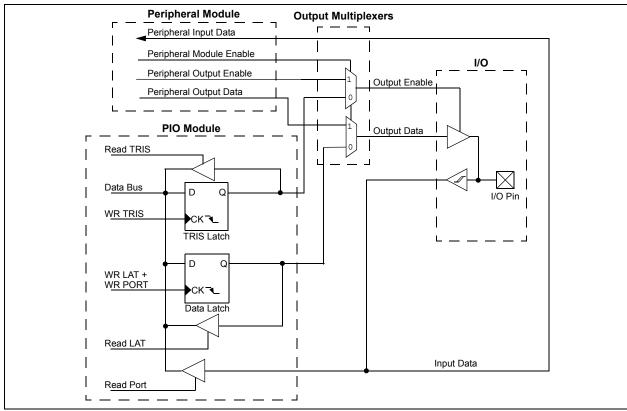
11.0 I/O PORTS

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 10. "I/O Ports" (DS70230), which is available from the Microchip website (www.microchip.com).

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKIN) are shared between the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

A parallel I/O port that shares a pin with a peripheral is, in general, subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through", in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected. When a peripheral is enabled and actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin may be read, but the output driver for the parallel port bit will be disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin may be driven by a port.


All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx), read the latch. Writes to the latch, write the latch. Reads from the port (PORTx), read the port pins, while writes to the port pins, write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. That means the corresponding LATx and TRISx registers and the port pins will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs. An example is the INT4 pin.

Note: The voltage on a digital input pin can be between -0.3V to 5.6V.

FIGURE 11-1: BLOCK DIAGRAM OF A TYPICAL SHARED PORT STRUCTURE

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—	—		_	—	—	FRMDLY	—	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 14	0 = Framed S SPIFSD: Fran 1 = Frame sy 0 = Frame sy	Plx support dis me Sync Pulse nc pulse input (nc pulse output	abled Direction Co slave) (master)	in used as fram ntrol bit	e sync pulse	input/output)		
bit 13	1 = Frame sy	FRMPOL: Frame Sync Pulse Polarity bit 1 = Frame sync pulse is active-high 0 = Frame sync pulse is active-low						
bit 12-2	Unimplemen	ted: Read as 'o)'					
bit 1 bit 0	1 = Frame sy 0 = Frame sy Unimplemen	ime Sync Pulse nc pulse coincio nc pulse preceo ted: Read as 'o	des with first des first bit cl	bit clock ock				
	i his dit must	not be set to '1	by the user	application.				

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT	—	_	—	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	U = Unimplemented b	oit, read as '0'	C = Clear only bit
R = Readable bit	W = Writable bit	HS = Set in hardware	HSC = Hardware set/cleared
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

ACKSTAT: Acknowledge Status bit (when operation) (when operating as I ² C master, applicable to master transmit operation)
 1 = NACK received from slave 0 = ACK received from slave
Hardware set or clear at end of slave Acknowledge.
TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
Unimplemented: Read as '0'
BCL: Master Bus Collision Detect bit
 1 = A bus collision has been detected during a master operation 0 = No collision
Hardware set at detection of bus collision.
GCSTAT: General Call Status bit
 1 = General call address was received 0 = General call address was not received
Hardware set when address matches general call address. Hardware clear at Stop detection.
ADD10: 10-Bit Address Status bit
1 = 10-bit address was matched 0 = 10-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
IWCOL: Write Collision Detect bit
1 = An attempt to write the I2CxTRN register failed because the I^2C module is busy 0 = No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
I2COV: Receive Overflow Flag bit
 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
D_A: Data/Address bit (when operating as I ² C slave)
1 = Indicates that the last byte received was data
 Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.

REGISTER 18-1: UXMODE: UARTX MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾	⁽¹⁾ — USIDL IREN ⁽²⁾ RTSMD —				UEN	<1:0>		
bit 15							bit 8	
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL	
bit 7							bit C	
Legend:		HC = Hardwa	ro alcarad					
R = Readable	hit	W = Writable		II – I Inimple	mented bit, read	l as '0'		
-n = Value at F		'1' = Bit is set		$0^{\circ} = \text{Bit is cle}$		x = Bit is unkr	2011/2	
	OR	I - DILIS SEL			aleu	X - DILISUIIKI	IOWII	
bit 15	UARTEN: UA	RTx Enable bi	t(1)					
	1 = UARTx is	s enabled; all L	IARTx pins are	e controlled by	/ UARTx as defi	ned by UEN<1	:0>	
	0 = UARTx is minimal	s disabled; all l	JARTx pins ar	e controlled by	y port latches; U	ARTx power co	onsumption	
bit 14	Unimplemen	ted: Read as '	0'					
bit 13	USIDL: Stop	in Idle Mode bi	t					
		ue module ope module opera			dle mode			
bit 12		Encoder and D						
DIL 12		coder and dec						
		coder and dec						
bit 11	RTSMD: Mod	le Selection for	UxRTS Pin b	it				
		in in Simplex n in in Flow Con						
bit 10	Unimplemen	ted: Read as '	0'					
bit 9-8	UEN<1:0>: U	ARTx Enable I	oits					
					l; UxCTS pin co	ntrolled by port	latches	
		IxRX, UxCTS a						
					ed; UxCTS pin c S and UxRTS/E			
	port latcl							
bit 7	WAKE: Wake	-up on Start bi	t Detect Durin	g Sleep Mode	Enable bit			
	1 = UARTx w	vill continue to	sample the Ux	RX pin; interro	upt generated o	n falling edge; l	bit cleared	
		are on following	g rising edge					
h # 0	0 = No wake	•	Mada Oalaat	L.'4				
bit 6	LPBACK: UARTx Loopback Mode Select bit 1 = Enable Loopback mode							
		k mode is disal						
bit 5	-	o-Baud Enable						
		aud rate meas ny data; cleared			er – requires re	ception of a Sy	nc field (0x55)	
		e measuremen						
					amily Referenc	e <i>Manual"</i> for i	nformation or	
en	abling the UAR	T module for r	eceive or trans	smit operation.				

2: This feature is only available for the 16x BRG mode (BRGH = 0).

19.0 ENHANCED CAN (ECAN™) MODULE

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70226), which is available from the Microchip website (www.microchip.com).

19.1 Overview

The Enhanced Controller Area Network (ECAN[™]) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The PIC24HJXXXGPX06/X08/X10 devices contain up to two ECAN modules.

The CAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH specification. The module will support CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader may refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- · 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to 8 transmit buffers with application specified prioritization and abort capability (each buffer may contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer may contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- 3 full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- · Programmable clock source
- Programmable link to input capture module (IC2 for both CAN1 and CAN2) for time-stamping and

network synchronization

· Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

19.2 Frame Types

The CAN module transmits various types of frames which include data messages, remote transmission requests and as other frames that are automatically generated for control purposes. The following frame types are supported:

· Standard Data Frame:

A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit standard identifier (SID) but not an 18-bit extended identifier (EID).

Extended Data Frame:

An extended data frame is similar to a standard data frame but includes an extended identifier as well.

· Remote Frame:

It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data frame as a response to this remote request.

Error Frame:

An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.

· Overload Frame:

An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of 2 sequential overload frames to delay the start of the next message.

· Interframe Space:

Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

21.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Code-Guard[™] Security" (DS70239), Section 24. "Programming and Diagnostics" (DS70246), and Section 25. "Device Configuration" (DS70231) in the "PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

PIC24HJXXXGPX06/X08/X10 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- In-Circuit Emulation

21.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 21-1.

The individual Configuration bit descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT and FPOR Configuration registers are shown in Table 21-2.

Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS<1:0>		—	_	BSS<2:0> E			BWRP
0xF80002	FSS	RSS<1:0>		_	_	SSS<2:0> SW			SWRP
0xF80004	FGS	_	—	_	_	— GSS<1:0> G		GWRP	
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	_	_	—	— FNOSC<2:0>		
0xF80008	FOSC	FCKSI	VI<1:0>	_	_	—	- OSCIOFNC POSCMD<1:		1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE	WDTPOST<3:0>			
0xF8000C	FPOR	_	_	_	_	—	FPWRT<2:0>		
0xF8000E	FICD	Reserved ⁽¹⁾		JTAGEN	_	—	—	ICS<	:1:0>
0xF80010	FUID0	User Unit ID Byte 0							
0xF80012	FUID1	User Unit ID Byte 1							
0xF80014	FUID2	User Unit ID Byte 2							
0xF80016	FUID3	User Unit ID Byte 3							

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: When read, these bits will appear as '1'. When you write to these bits, set these bits to '1'.

2: When read, this bit returns the current programmed value.

Bit Field	Register	Description
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
JTAGEN	FICD	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved

TABLE 21-2: PIC24HJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

All instructions are a single word, except for certain double word instructions, which were made double word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or double word instruction. Moreover, double word moves require two cycles. The double word instructions execute in two instruction cycles.

Note: For more details on the instruction set, refer to the *"dsPIC30F/33F Programmer's Reference Manual"* (DS70157).

Field	Description			
#text	Means literal defined by "text"			
(text)	Means "content of text"			
[text]	Means "the location addressed by text"			
{ }	Optional field or operation			
<n:m></n:m>	Register bit field			
.b	Byte mode selection			
.d	Double Word mode selection			
.S	Shadow register select			
.w	Word mode selection (default)			
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}			
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero			
Expr	Absolute address, label or expression (resolved by the linker)			
f	File register address ∈ {0x00000x1FFF}			
lit1	1-bit unsigned literal $\in \{0,1\}$			
lit4	4-bit unsigned literal ∈ {015}			
lit5	5-bit unsigned literal $\in \{031\}$			
lit8	8-bit unsigned literal ∈ {0255}			
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode			
lit14	14-bit unsigned literal ∈ {016384}			
lit16	16-bit unsigned literal ∈ {065535}			
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be '0'			
None	Field does not require an entry, may be blank			
PC	Program Counter			
Slit10	10-bit signed literal ∈ {-512511}			
Slit16	16-bit signed literal ∈ {-3276832767}			
Slit6	6-bit signed literal ∈ {-1616}			
Wb	Base W register ∈ {W0W15}			
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }			
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }			
Wm,Wn	Dividend, Divisor working register pair (direct addressing)			
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}			
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}			
Wn	One of 16 working registers ∈ {W0W15}			

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

23.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

23.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 and PIC24 families of microcontrollers and the dsPIC30 and dsPIC33 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

23.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

23.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

23.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

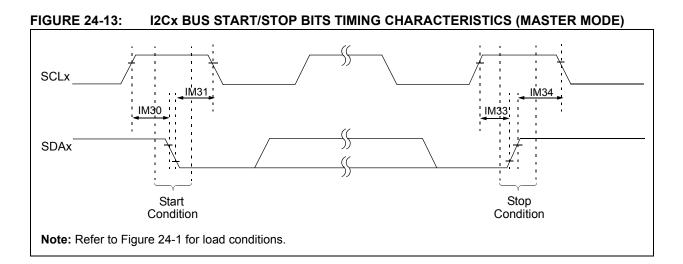
TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Parameter No.	Typical ⁽¹⁾	Мах	Units Conditions				
Operating Cur	rent (IDD) ⁽²⁾		•	·			
DC20d	27	30	mA	-40°C			
DC20a	27	30	mA	+25°C	3.3V	10 MIPS	
DC20b	27	30	mA	+85°C	_		
DC21d	36	40	mA	-40°C		16 MIPS	
DC21a	37	40	mA	+25°C	3.3V		
DC21b	38	45	mA	+85°C	_		
DC22d	43	50	mA	-40°C		20 MIPS	
DC22a	46	50	mA	+25°C	3.3V		
DC22b	46	55	mA	+85°C	_		
DC23d	65	70	mA	-40°C			
DC23a	65	70	mA	+25°C	3.3V	30 MIPS	
DC23b	65	70	mA	+85°C			
DC24d	84	90	mA	-40°C			
DC24a	84	90	mA	+25°C	3.3V	40 MIPS	
DC24b	84	90	mA	+85°C			

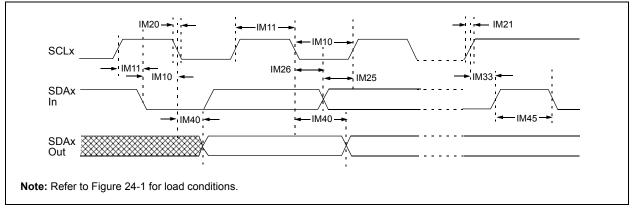
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

IADLE	24-31: SP	IX MODULE SLAVE MODE (Standard Operating Conditions: 3.0V to 3.6V					
АС СНА	RACTERIS	TICS	(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions	
SP70	TscL	SCKx Input Low Time	30		_	ns	—	
SP71	TscH	SCKx Input High Time	30	_	_	ns	_	
SP72	TscF	SCKx Input Fall Time ⁽³⁾	_	10	25	ns	—	
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	—	
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾		_	_	ns	See parameter D032	
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	_	_	_	ns	See parameter D031	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			30	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20			ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	120	_	_	ns	—	
SP51	TssH2doZ	SSx	10		50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	—	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	_	


TABLE 24-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

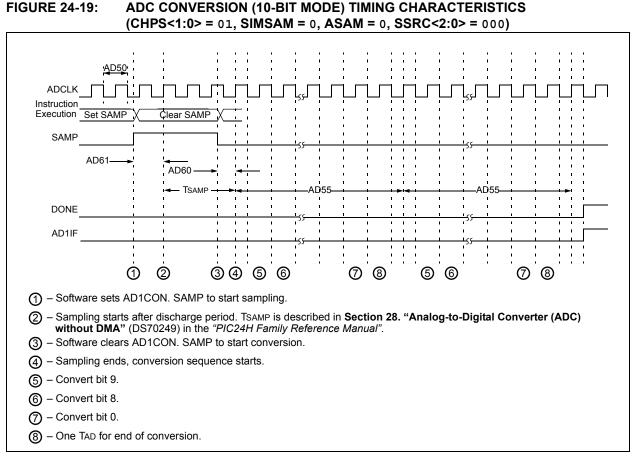
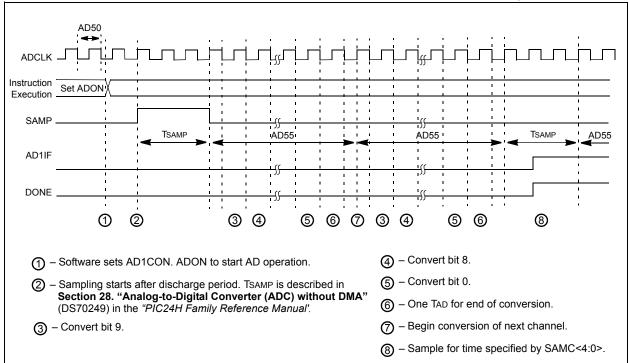



FIGURE 24-20: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla		 Examples: a) PIC24HJ256GP210I/PT: General-purpose PIC24H, 256 KB program memory, 100-pin, Industrial temp., TQFP package. b) PIC24HJ64GP506I/PT-ES: General-purpose PIC24H, 64 KB program memory, 64-pin, Industrial temp., TQFP package, Engineering Sample. 		
Architecture:	24 = 16-bit Microcontroller			
Flash Memory Family:	HJ = Flash program memory, 3.3V, High-speed			
Product Group:	GP2=General purpose familyGP3=General purpose familyGP5=General purpose familyGP6=General purpose family			
Pin Count:	06 = 64-pin 10 = 100-pin			
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)			
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flat- pack) PF = 14x14 mm TQFP (Thin Quad Flatpack)			
Pattern:	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample			