

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp210-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance, 16-Bit Microcontrollers

Operating Range:

- Up to 40 MIPS operation (at 3.0-3.6V):
 - Industrial temperature range (-40°C to +85°C)

High-Performance CPU:

- · Modified Harvard architecture
- · C compiler optimized instruction set
- · 16-bit wide data path
- · 24-bit wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 71 base instructions: mostly 1 word/1 cycle
- Sixteen 16-bit General Purpose Registers
- · Flexible and powerful Indirect Addressing modes
- · Software stack
- 16 x 16 multiply operations
- 32/16 and 16/16 divide operations
- · Up to ±16-bit data shifts

Direct Memory Access (DMA):

- 8-channel hardware DMA
- 2 Kbytes dual ported DMA buffer area (DMA RAM) to store data transferred via DMA:
 - Allows data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most peripherals support DMA

Interrupt Controller:

- 5-cycle latency
- · Up to 61 available interrupt sources
- · Up to five external interrupts
- Seven programmable priority levels
- Flve processor exceptions

Digital I/O:

- Up to 85 programmable digital I/O pins
- Wake-up/Interrupt-on-Change on up to 24 pins
- · Output pins can drive from 3.0V to 3.6V
- All digital input pins are 5V tolerant
- · 4 mA sink on all I/O pins

On-Chip Flash and SRAM:

- · Flash program memory, up to 256 Kbytes
- Data SRAM, up to 16 Kbytes (includes 2 Kbytes of DMA RAM)

System Management:

- · Flexible clock options:
 - External, crystal, resonator, internal RC
 - Fully integrated PLL
 - Extremely low jitter PLL
- · Power-up Timer
- Oscillator Start-up Timer/Stabilizer
- · Watchdog Timer with its own RC oscillator
- · Fail-Safe Clock Monitor
- · Reset by multiple sources

Power Management:

- On-chip 2.5V voltage regulator
- · Switch between clock sources in real time
- · Idle, Sleep and Doze modes with fast wake-up

Timers/Capture/Compare/PWM:

- Timer/Counters, up to nine 16-bit timers:
 - Can pair up to make four 32-bit timers
 - One timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to eight channels):
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to eight channels):
- Single or Dual 16-Bit Compare mode
- 16-bit Glitchless PWM mode

Table of Contents

PIC2	4H Product Families	3
1.0	Device Overview	11
2.0	Guidelines for Getting Started with 16-Bit Microcontrollers	15
3.0	CPU	19
4.0	Memory Organization	25
5.0	Flash Program Memory	55
6.0	Reset	61
7.0	Interrupt Controller	65
8.0	Direct Memory Access (DMA)	109
9.0	Oscillator Configuration	119
10.0	Power-Saving Features	129
11.0	I/O Ports	137
12.0	Timer1	139
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	141
14.0	Input Capture	147
15.0	Output Compare	149
16.0	Serial Peripheral Interface (SPI)	153
17.0	Inter-Integrated Circuit™ (I ² C™)	159
18.0	Universal Asynchronous Receiver Transmitter (UART)	167
19.0	Enhanced CAN (ECAN™) Module	173
20.0	10-Bit/12-Bit Analog-to-Digital Converter (ADC)	199
21.0	Special Features	211
22.0	Instruction Set Summary	219
23.0	Development Support	227
24.0	Electrical Characteristics	231
25.0	Packaging Information	267
Appe	ndix A: Revision History	275
Index	(281
The M	Vicrochip Web Site	285
Custo	omer Change Notification Service	285
Custo	omer Support	285
Read	ler Response	286
Produ	uct Identification System	287

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

· Microchip's Worldwide Web site; http://www.microchip.com

Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT MICROCONTROLLERS

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, which is available from the Microchip website (www.microchip.com).

2.1 Basic Connection Requirements

Getting started with the PIC24HJXXXGPX06/X08/X10 family of 16-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors") • VCAP/VDDCORE

- (see Section 2.3 "Capacitor on Internal Voltage Regulator (VCAP/VDDCORE)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.5 "ICSP Pins**")
- OSC1 and OSC2 pins when external oscillator source is used

(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

 VREF+/VREF- pins used when external voltage reference for ADC module is implemented

Note:	The	AVdd	and	AVss	pins	mu	st be
	conn	ected	indep	endent	of	the	ADC
	volta	ge refe	rence	source.			

2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Out	put Compar	e 1 Second	ary Register							xxxx
OC1R	0182								Output Co	ompare 1 R	egister							xxxx
OC1CON	0184	_		OCSIDL	_	—	_	_	_	_	—	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC2RS	0186							Out	put Compar	e 2 Second	ary Register							xxxx
OC2R	0188								Output Co	ompare 2 Re	egister							xxxx
OC2CON	018A	_	_	OCSIDL	—	—	_	_	—	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC3RS	018C							Out	put Compar	e 3 Second	ary Register							xxxx
OC3R	018E								Output Co	ompare 3 Re	egister							xxxx
OC3CON	0190	_	_	OCSIDL	_	_	_	_	_	_	_	_	OCFLT	OCTSEL		OCM<2:0>		0000
OC4RS	0192							Out	tput Compai	e 4 Second	ary Register							xxxx
OC4R	0194								Output Co	ompare 4 Re	egister							xxxx
OC4CON	0196	—	—	OCSIDL	_	—	_	_	—		—		OCFLT	OCTSEL		OCM<2:0>		0000
OC5RS	0198							Out	tput Compar	e 5 Second	ary Register							xxxx
OC5R	019A								Output Co	ompare 5 Re	egister							xxxx
OC5CON	019C	_	_	OCSIDL	_	—	—	—	—	_	—		OCFLT	OCTSEL		OCM<2:0>		0000
OC6RS	019E							Out	tput Compai	e 6 Second	ary Register							xxxx
OC6R	01A0								Output Co	ompare 6 Re	egister							xxxx
OC6CON	01A2	—	—	OCSIDL	_	—	_	_	—		—		OCFLT	OCTSEL		OCM<2:0>		0000
OC7RS	01A4							Out	tput Compai	e 7 Second	ary Register							xxxx
OC7R	01A6								Output Co	ompare 7 Re	egister							xxxx
OC7CON	01A8	—	—	OCSIDL	_	—	_	_	—		—		OCFLT	OCTSEL		OCM<2:0>		0000
OC8RS	01AA							Out	put Compar	e 8 Second	ary Register							xxxx
OC8R	01AC								Output Co	ompare 8 R	egister							xxxx
OC8CON	01AE	—	—	OCSIDL	—	—	_	—	—	—	—	—	OCFLT	OCTSEL		OCM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-23: ECAN2 REGISTER MAP WHEN C2CTRL1.WIN = 1 FOR PIC24HJ256GP610 DEVICES ONLY (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF11EID	056E				EID<	:15:8>							EID<7	7:0>				xxxx
C2RXF12SID	0570				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C2RXF12EID	0572				EID<	:15:8>				EID<7:0>					xxxx			
C2RXF13SID	0574		SID<10:3>					SID<2:0> — EXIDE -				_	EID<1	7:16>	xxxx			
C2RXF13EID	0576				EID<	:15:8>				EID<7:0>						xxxx		
C2RXF14SID	0578				SID<	:10:3>				SID<2:0> — EXIDE — EID<17:1				7:16>	xxxx			
C2RXF14EID	057A		EID<15:8>							EID<7	7:0>				xxxx			
C2RXF15SID	057C		SID<10:3>					SID<2:0>		_	EXIDE	_	EID<1	7:16>	xxxx			
C2RXF15EID	057E		EID<15:8>							EID<7	7:0>				xxxx			

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER

R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
—	ERASE	_			NVMOF	o<3:0>(2)	
bit 7							bit 0

1			
Legena:	SO = Settable only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

WR: Write Control bit
1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete.
Program or erase operation is complete and inactive
WREN: Write Enable bit
1 = Enable Flash program/erase operations0 = Inhibit Flash program/erase operations
WRERR: Write Sequence Error Flag bit
 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) The means are accurately accuratel
0 = The program or erase operation completed normally
Unimplemented: Read as '0'
ERASE: Erase/Program Enable bit
 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command
Unimplemented: Read as '0'
NVMOP<3:0>: NVM Operation Select bits ⁽²⁾
<pre>1111 = Memory bulk erase operation (ERASE = 1) or no operation (ERASE = 0) 1110 = Reserved</pre>
1101 = Erase General Segment and FGS Configuration Register (ERASE = 1) or no operation (ERASE = 0)
1100 = Erase Secure Segment and FSS Configuration Register (ERASE = 1) or no operation (ERASE = 0)
1011-0100 = Reserved
0011 = Memory word program operation (ERASE = 0) or no operation (ERASE = 1)
0010 = Memory page erase operation (ERASE = 1) or no operation (ERASE = 0)
0000 = Program or erase a single Configuration register byte

Note 1: These bits can only be reset on POR.

2: All other combinations of NVMOP<3:0> are unimplemented.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable reset delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the reset signal is released.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	_		_	—	—	—		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0		
C2TXIE	C1TXIE	DMA7IE	DMA6IE	—	U2EIE	U1EIE	—		
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown		
h# 45 0		ta du Danadara (- ¹						
DIT 15-8	Unimplemen	ted: Read as							
bit 7	C2TXIE: ECA	N2 Transmit D	ata Request I	nterrupt Enabl	e bit				
	1 = Interrupt r	equest enable	a abled						
bit 6	C1TXIE: ECA	N1 Transmit D	ata Request I	nterrupt Enabl	e bit				
	1 = Interrupt r	equest enable	d						
	0 = Interrupt r	equest not ena	abled						
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Enab	le Status bit				
	1 = Interrupt r	equest enable	d						
	0 = Interrupt r	equest not ena	abled						
bit 4	DMA6IE: DM	A Channel 6 D	ata Transfer C	Complete Enab	le Status bit				
	1 = Interrupt r	request enable	d						
hit 0		equest not ena	abieu						
DIL 3		ted: Read as							
DIT 2	U2EIE: UAR12 Error Interrupt Enable bit								
	1 = Interrupt r 0 = Interrupt r	equest enable request not ena	u abled						
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit						
	1 = Interrupt r	request enable	d						
	0 = Interrupt r	equest not ena	abled						
bit 0	Unimplemented: Read as '0'								

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0			
_	—	—	_	—	DMA1IP<2:0>					
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	AD1IP<2:0> — U1TXIP<2:0>									
bit 7							bit C			
Legend:										
R = Readab	ole bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-11	Unimplement	ted: Read as 'o)'							
bit 10-8	DMA1IP<2:0>	: DMA Channe	el 1 Data Tra	nsfer Complete	e Interrupt Prior	ity bits				
	111 = Interrup	ot is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
	001 = Interrug	ot is priority 1								
	000 = Interrup	ot source is disa	abled							
bit 7	Unimplement	ted: Read as 'o)'							
bit 6-4	AD1IP<2:0>:	ADC1 Convers	ion Complet	e Interrupt Pric	ority bits					
	111 = Interrup	ot is priority 7 (ł	nighest priori	ty interrupt)	-					
	•									
	•									
	• 001 - Interrur	ot is priority 1								
	001 = Interruption	ot source is disa	abled							
bit 3	Unimplement	ted: Read as 'o)'							
bit 2-0	U1TXIP<2:0>	: UART1 Trans	mitter Interru	upt Priority bits						
	111 = Interrup	ot is priority 7 (h	nighest priori	ty interrupt)						
	•	i -2 (-	U							
	•									
	•									
		ot is priority 1	ماما							

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

	D // / /	DAMA					
0-0	R/W-1	R/W-U	R/W-0	0-0	R/W-1	R/W-0	R/W-0
		IC8IP<2:0>		—		IC7IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		AD2IP<2:0>				INT1IP<2:0>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15	Unimpleme	nted: Read as 'o)'				
bit 14-12	IC8IP<2:0>:	Input Capture C	hannel 8 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (r	highest priori	ty interrupt)			
	•						
	•						
	001 = Interre	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	nted: Read as 'o)'				
bit 10-8	IC7IP<2:0>:	Input Capture C	hannel 7 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 7	Unimpleme	nted: Read as 'o)'				
bit 6-4	AD2IP<2:0>	ADC2 Conversion	ion Complet	e Interrupt Prio	rity bits		
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 3	Unimpleme	nted: Read as 'o)'				
bit 2-0	INT1IP<2:0>	>: External Interr	upt 1 Priority	bits			
	111 = Interr	upt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
—	—	—	_	—		C2IP<2:0>		
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				

bit 15-3 Unimplemented: Read as '0'

C2IP<2:0>: ECAN2 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

bit 2-0

001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 7-30: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	_	_	—		_	—	
bit 15							bit 8	
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
		DMA5IP<2:0>		_			_	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unknown		
bit 15-7	Unimplemen	ted: Read as 'o)'					
bit 6-4	DMA5IP<2:0	>: DMA Channe	el 5 Data Trar	nsfer Complete	e Interrupt Priorit	ty bits		
	111 = Interru	pt is priority 7 (I	nighest priorit	y interrupt)				
	•							
	•							
	•							
	001 = Interru	pt is priority 1						
	000 = Interru	pt source is dis	abled					
bit 3-0	Unimplemen	ted: Read as 'o) '					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y	
—		COSC<2:0>			,	NOSC<2:0> ⁽²⁾		
bit 15					I		bit 8	
R/W-0	U-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0	
CLKLOCK	—	LOCK	—	CF	—	LPOSCEN	OSWEN	
bit 7							bit 0	
Legend:		y = Value set	from Configura	ation bits on P	OR	C = Clear	only bit	
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	5	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	wn	
bit 15 bit 14-12 bit 11 bit 11	 Unimplemented: Read as '0' COSC<2:0>: Current Oscillator Selection bits (read-only) 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n 							
	NOSC<2:0>: New Oscillator Selection bits ⁽²⁾ 000 = Fast RC oscillator (FRC) 001 = Fast RC oscillator (FRC) with PLL 010 = Primary oscillator (XT, HS, EC) 011 = Primary oscillator (XT, HS, EC) with PLL 100 = Secondary oscillator (SOSC) 101 = Low-Power RC oscillator (LPRC) 110 = Fast RC oscillator (FRC) with Divide-by-16 111 = Fast RC oscillator (FRC) with Divide-by-n							
bit 7	CLKLOCK: C 1 = If (FCKSI If (FCKSI 0 = Clock and	Clock Lock Ena M0 = 1), then c M0 = 0), then c d PLL selectior	ble bit lock and PLL lock and PLL is are not lock	configurations configurations ed, configurati	are locked may be modifi ions may be mo	ed odified		
bit 6	Unimplemen	ted: Read as '	0'					
bit 5	LOCK: PLL L	ock Status bit (read-only)					
	1 = Indicates0 = Indicates	that PLL is in I that PLL is our	ock, or PLL st t of lock, start-	art-up timer is up timer is in p	satisfied progress or PLI	_ is disabled		
bit 4	Unimplemen	ted: Read as '	0'					
bit 3	CF: Clock Fai	I Detect bit (rea	ad/clear by ap	plication)				
	1 = FSCM ha	as detected clo as not detected	ck failure clock failure					
bit 2	Unimplemen	ted: Read as '	0'					
Note 1: Wr	ites to this reg	ister require a	n unlock sequ	ence. Refer to	Section 7. "	Oscillator" (DS7	0227) in the	

Note 1: Writes to this register require an unlock sequence. Refer to Section 7. "Oscillator" (DS70227) in the "PIC24H Family Reference Manual" (available from the Microchip website) for details.

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the *"PIC24H Family Reference Manual"*, Section 18. "Serial Peripheral Interface (SPI)" (DS70243), which is available from the Microchip website (www.microchip.com).

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, Analog-to-Digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1 and SPI2. Special Function Registers will follow a similar notation. For example, SPIxCON refers to the control register for the SPI1 or SPI2 module. Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates various status conditions.

The serial interface consists of 4 pins: SDIx (serial data input), SDOx (serial data output), SCKx (shift clock input or output), and SSx (active-low slave select).

In Master mode operation, SCK is a clock output but in Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

S: Start bit
 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.
R_W: Read/Write Information bit (when operating as I ² C slave)
 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
RBF: Receive Buffer Full Status bit
 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
TBF: Transmit Buffer Full Status bit
 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

NOTES:

20.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "PIC24H Family Reference Manual", Section 16. "Analog-to-Digital Converter (ADC)" (DS70225), which is available from the Microchip website (www.microchip.com).

The PIC24HJXXXGPX06/X08/X10 devices have up to 32 Analog-to-Digital input channels. These devices also have up to 2 Analog-to-Digital converter modules (ADCx, where 'x' = 1 or 2), each with its own set of Special Function Registers.

The AD12B bit (ADxCON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4-sample/hold ADC (default configuration) or a 12-bit, 1-sample/hold ADC.

Note: The ADC module needs to be disabled before modifying the AD12B bit.

20.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Two result alignment options (signed/unsigned)
- · Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only 1 sample/hold amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.

Depending on the particular device pinout, the Analog-to-Digital Converter can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration will depend on the specific device. Refer to the device data sheet for further details.

A block diagram of the Analog-to-Digital Converter is shown in Figure 20-1.

20.2 Analog-to-Digital Initialization

The following configuration steps should be performed.

- 1. Configure the ADC module:
 - a) Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - b) Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>)
 - c) Select the analog conversion clock to match desired data rate with processor clock (ADxCON3<7:0>)
 - d) Determine how many S/H channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>)
 - e) Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>)
 - f) Select how conversion results are presented in the buffer (ADxCON1<9:8>)
 - g) Turn on the ADC module (ADxCON1<15>)
 - Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit

2.

b) Select ADC interrupt priority

20.3 ADC and DMA

If more than one conversion result needs to be buffered before triggering an interrupt, DMA data transfers can be used. Both ADC1 and ADC2 can trigger a DMA data transfer. If ADC1 or ADC2 is selected as the DMA IRQ source, a DMA transfer occurs when the AD1IF or AD2IF bit gets set as a result of an ADC1 or ADC2 sample conversion sequence.

The SMPI<3:0> bits (ADxCON2<5:2>) are used to select how often the DMA RAM buffer pointer is incremented.

The ADDMABM bit (ADxCON1<12>) determines how the conversion results are filled in the DMA RAM buffer area being used for ADC. If this bit is set, DMA buffers are written in the order of conversion. The module will provide an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer. If the ADDMABM bit is cleared, then DMA buffers are written in Scatter/Gather mode. The module will provide a scatter/gather address to the DMA channel, based on the index of the analog input and the size of the DMA buffer.

TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Power-Down Current (IPD) ⁽²⁾								
DC60d	55	500	μA	-40°C				
DC60a	211	500	μA	+25°C	3.3V	Base Power-Down Current ^(3,4)		
DC60b	244	500	μA	+85°C				
DC61d	8	13	μA	-40°C				
DC61a	10	15	μA	+25°C	3.3V	Watchdog Timer Current: △IwDT ⁽³⁾		
DC61b	12	20	μA	+85°C]			

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

2: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

3: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

4: These currents are measured on the device containing the most memory in this family.

DC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Parameter No. Typical ⁽¹⁾ Max				Units	Conditions			
DC73a	11	35	1:2	mA				
DC73f	11	30	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	11	30	1:128	mA				
DC70a	42	50	1:2	mA				
DC70f	26	30	1:64	mA	+25°C	3.3V	40 MIPS	
DC70g	25	30	1:128	mA				
DC71a	41	50	1:2	mA				
DC71f	25	30	1:64	mA	+85°C	C 3.3V	40 MIPS	
DC71g	24	30	1:128	mA				

TABLE 24-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A