

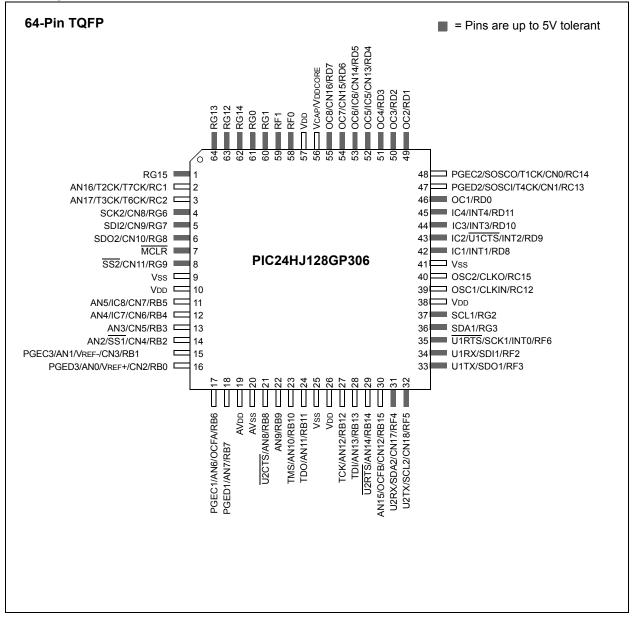
Welcome to E-XFL.COM

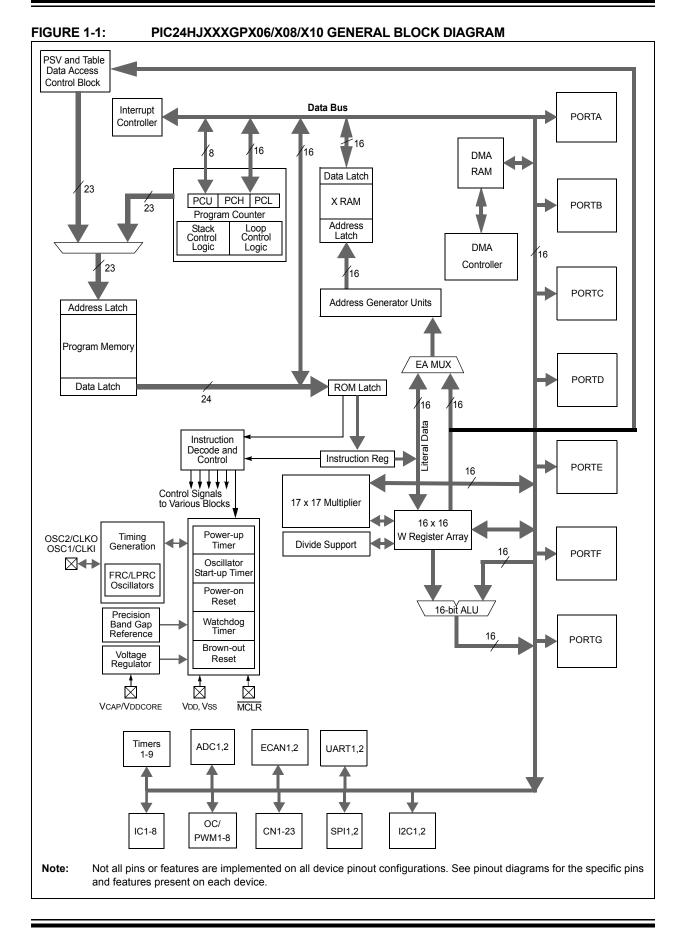
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XF


Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp506-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

SR: CPU STATUS REGISTER **REGISTER 3-1:** U-0 U-0 U-0 U-0 U-0 U-0 U-0 R/W-0 DC bit 15 bit 8 R/W-0⁽¹⁾ R/W-0⁽²⁾ R/W-0⁽²⁾ R-0 R/W-0 R/W-0 R/W-0 R/W-0 IPL<2:0>(2) RA Ν OV Ζ С bit 7 bit 0 Leaend: C = Clear only bit U = Unimplemented bit, read as '0' R = Readable bit S = Set only bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-9 Unimplemented: Read as '0' bit 8 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred 0 = No carry-out from the 4th low-order bit (for byte sized data) or 8th low-order bit (for word sized data) of the result occurred IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾ bit 7-5 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) bit 4 **RA:** REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress bit 3 N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive) bit 2 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude which causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred Z: MCU ALU Zero bit bit 1 1 = An operation which affects the Z bit has set it at some time in the past 0 = The most recent operation which affects the Z bit has cleared it (i.e., a non-zero result) bit 0 C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit (MSb) of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note 1: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.

2: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).

5.2 RTSP Operation

The PIC24HJXXXGPX06/X08/X10 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 24-12 displays typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned, from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers in sequential order. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 24-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +85°C, the FRC accuracy will be $\pm 2\%$. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the Minimum Row Write Time is:

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (1 + 0.02) \times (1 - 0.00375)} = 1.48 \text{ms}$$

and, the Maximum Row Write Time is:

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.02) \times (1 - 0.00375)} = 1.54 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

There are two SFRs used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

Flag Bit	Setting Event	Clearing Event
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPUWR (RCON<14>)	Illegal opcode or uninitialized W register access	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	BOR, POR	—
POR (RCON<0>)	POR	—

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen, as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator Configuration bits. Refer to **Section 9.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	Oscillator Configuration bits
BOR	(FNOSC<2:0>)
MCLR	COSC Control bits
WDTR	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. The system Reset signal is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code also depends on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable reset delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the reset signal is released.

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	.DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit	:	U = Unimplemented bit, read as '0'			
-n = Value at POF	२	'1' = Bit is set	t is set '0' = Bit is cleared x = Bit is u		x = Bit is unknow	/n	

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

9.2 Clock Switching Operation

Applications are free to switch between any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects that could result from this flexibility, PIC24HJXXXGPX06/X08/X10 devices have a safe-guard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

9.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 21.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.2.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70227) in the "PIC24H Family Reference Manual" for details.

9.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

If an oscillator failure occurs, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

NOTES:

NOTES:

REGISTER 19-6: CIINTF: ECAN[™] MODULE INTERRUPT FLAG REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	—	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15							bit 8

R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7 bit 0							

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	TXBO: Transmitter in Error State Bus Off bit
bit 12	TXBP: Transmitter in Error State Bus Passive bit
bit 11	RXBP: Receiver in Error State Bus Passive bit
bit 10	TXWAR: Transmitter in Error State Warning bit
bit 9	RXWAR: Receiver in Error State Warning bit
bit 8	EWARN: Transmitter or Receiver in Error State Warning bit
bit 7	IVRIF: Invalid Message Received Interrupt Flag bit
bit 6	WAKIF: Bus Wake-up Activity Interrupt Flag bit
bit 5	ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register)
bit 4	Unimplemented: Read as '0'
bit 3	FIFOIF: FIFO Almost Full Interrupt Flag bit
bit 2	RBOVIF: RX Buffer Overflow Interrupt Flag bit
bit 1	RBIF: RX Buffer Interrupt Flag bit
bit 0	TBIF: TX Buffer Interrupt Flag bit

REGISTER 19-7: CIINTE: ECAN™ MODULE INTERRUPT ENABLE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—	—	_	_	—	—	_		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE		
bit 7							bit C		
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-8	Unimplemen	ted: Read as '	0'						
bit 7	IVRIE: Invalio	I Message Rec	eived Interrup	t Enable bit					
bit 6	WAKIE: Bus	WAKIE: Bus Wake-up Activity Interrupt Flag bit							
L:4 F									

- bit 5 ERRIE: Error Interrupt Enable bit bit 4 Unimplemented: Read as '0'
- bit 3 **FIFOIE:** FIFO Almost Full Interrupt Enable bit
- bit 2 **RBOVIE:** RX Buffer Overflow Interrupt Enable bit
- bit 1 **RBIE:** RX Buffer Interrupt Enable bit
- bit 0 TBIE: TX Buffer Interrupt Enable bit

REGISTER 19-11: CIFEN1: ECAN™ MODULE ACCEPTANCE FILTER ENABLE REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 19-12: CIBUFPNT1: ECAN™ MODULE FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3BP<3:0>				F2BF	P<3:0>		
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BP	<3:0>			F0BF	P<3:0>	
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown
bit 15-12	F3BP<3:0>:	RX Buffer Writt	en when Filte	r 3 Hits bits			
bit 11-8	F2BP<3:0>:	RX Buffer Writt	en when Filte	r 2 Hits bits			
bit 7-4	F1BP<3:0>:	RX Buffer Writt	en when Filte	r 1 Hits bits			
bit 3-0	F0BP<3:0>:	RX Buffer Writ	ten when Filte	er 0 Hits bits			
	1111 = Filter	r hits received ir	n RX FIFO bu	ffer			
	1110 = Filte i	r hits received ir	n RX Buffer 14	4			
	•						
	•						
	•						
	0001 = Filte r	r hits received ir	DV Buffor 1				
		This received in					

REGISTER 19-26: CiTRmnCON: ECAN™ MODULE TX/RX BUFFER m CONTROL REGISTER

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENn	TXABTN TXLARBN TXERRN TXREQN RTRENN TXnPF						RI<1:0>
bit 15		I					bit
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-8	See Definitio	n for Bits 7-0,	Controls Buff	fer n			
bit 7		RX Buffer Sele					
		Bn is a transmi Bn is a receive					
bit 6		essage Aborted					
	1 = Message	•	- Dit				
		completed trar	smission succ	essfully			
bit 5	TXLARBm:	Message Lost	Arbitration bit ⁽¹)			
		lost arbitration did not lose arl					
bit 4	•	ror Detected D		•			
		or occurred whi	•	•			
bit 3		or did not occui essage Send F		saye was bei	ng sent		
DIL D		•	•	essage The h	it will automatica	ally clear when	the message
					equest a messag		and moodag
bit 2	RTRENm: Au	ito-Remote Tra	nsmit Enable b	oit			
		emote transmit	,				
		emote transmit	,		unaffected		
bit 1-0		>: Message Tr		iority bits			
		message priori ermediate mes					
	01 = Low inte						

Note 1: This bit is cleared when TXREQ is set.

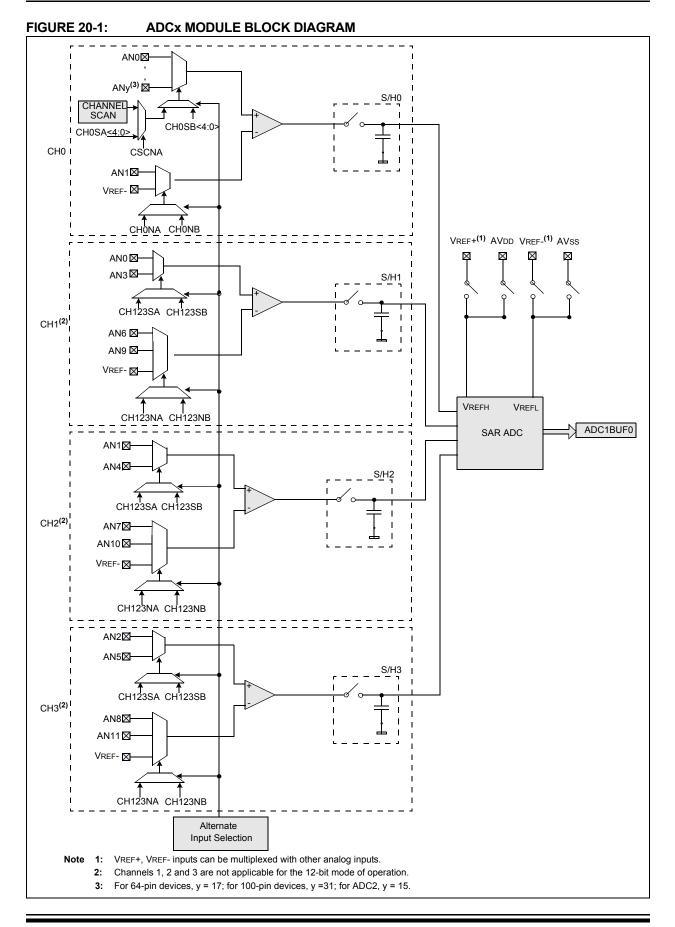
REGISTER 19-29: CiTRBnDLC: ECAN™ MODULE BUFFER n DATA LENGTH CONTROL (n = 0, 1, ..., 31)

R/W-x							
	R/W-x						
RB1	RTR	EID0	EID1	EID2	EID3	EID4	EID5
bit 8							bit 15
							bit 15

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10	EID<5:0>: Extended Identifier bits
bit 9	RTR: Remote Transmission Request bit
	1 = Message will request remote transmission0 = Normal message
bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits


REGISTER 19-30: CiTRBnDm: ECANTM MODULE BUFFER n DATA FIELD BYTE m $(n = 0, 1, ..., 31; m = 0, 1, ..., 7)^{(1)}$

| R/W-x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRBnDm7 | TRBnDm6 | TRBnDm5 | TRBnDm4 | TRBnDm3 | TRBnDm2 | TRBnDm1 | TRBnDm0 |
| bit 7 | • | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 TRnDm<7:0>: Data Field Buffer 'n' Byte 'm' bits

Note 1: The Most Significant Byte contains byte (m + 1) of the buffer.

21.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 families of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 23. "Code-Guard[™] Security" (DS70239), Section 24. "Programming and Diagnostics" (DS70246), and Section 25. "Device Configuration" (DS70231) in the "PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).

PIC24HJXXXGPX06/X08/X10 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard™ Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- In-Circuit Emulation

21.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The device Configuration register map is shown in Table 21-1.

The individual Configuration bit descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT and FPOR Configuration registers are shown in Table 21-2.

Note that address 0xF80000 is beyond the user program memory space. In fact, it belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The upper byte of all device Configuration registers should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

To prevent inadvertent configuration changes during code execution, all programmable Configuration bits are write-once. After a bit is initially programmed during a power cycle, it cannot be written to again. Changing a device configuration requires that power to the device be cycled.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	FBS	RBS	<1:0>	—	_		BSS<2:0>		BWRP
0xF80002	FSS	RSS	<1:0>	_	_		SSS<2:0>		SWRP
0xF80004	FGS	_	—	_	_	—	GSS<1	:0>	GWRP
0xF80006	FOSCSEL	IESO	Reserved ⁽²⁾	_	_	—	FNC)SC<2:0>	
0xF80008	FOSC	FCKSI	VI<1:0>	_	_	—	OSCIOFNC	POSCN	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	_	WDTPRE		WDTPOST-	<3:0>	
0xF8000C	FPOR	_	_	_	_	—	FPW	/RT<2:0>	
0xF8000E	FICD	Rese	ved ⁽¹⁾	JTAGEN	_	—	—	ICS<	:1:0>
0xF80010	FUID0				User Unit ID E	Byte 0			
0xF80012	FUID1		User Unit ID Byte 1						
0xF80014	FUID2		User Unit ID Byte 2						
0xF80016	FUID3				User Unit ID E	Byte 3			

TABLE 21-1: DEVICE CONFIGURATION REGISTER MAP

Note 1: When read, these bits will appear as '1'. When you write to these bits, set these bits to '1'.

2: When read, this bit returns the current programmed value.

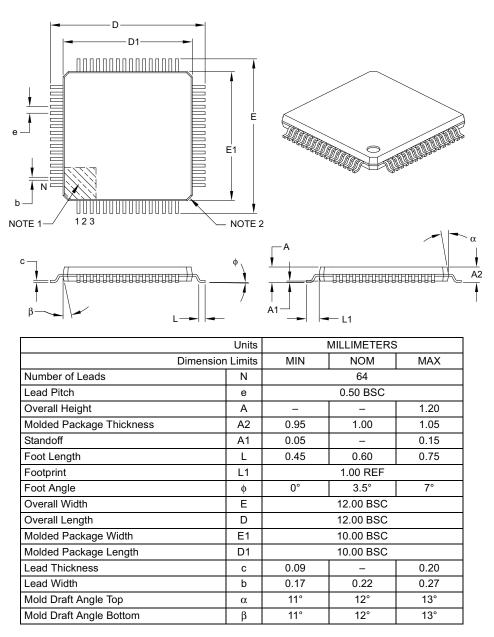

Bit Field	Register	Description
BWRP	FBS	Boot Segment Program Flash Write Protection 1 = Boot segment may be written 0 = Boot segment is write-protected
BSS<2:0>	FBS	 Boot Segment Program Flash Code Protection Size X11 = No Boot program Flash segment Boot space is 1K IW less VS 110 = Standard security; boot program Flash segment starts at End of VS, ends at 0x0007FE 010 = High security; boot program Flash segment starts at End of VS, ends at 0x0007FE Boot space is 4K IW less VS 101 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE 001 = High security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x001FFE Boot space is 8K IW less VS 100 = Standard security; boot program Flash segment starts at End of VS, ends at 0x003FFE 000 = High security; boot program Flash segment starts at End of VS, ends at 0x003FFE
RBS<1:0>	FBS	Boot Segment RAM Code Protection 11 = No Boot RAM defined 10 = Boot RAM is 128 Bytes 01 = Boot RAM is 256 Bytes 00 = Boot RAM is 1024 Bytes
SWRP	FSS	Secure Segment Program Flash Write Protection 1 = Secure segment may be written 0 = Secure segment is write-protected

TABLE 21-2: PIC24HJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION

25.2 Package Details

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

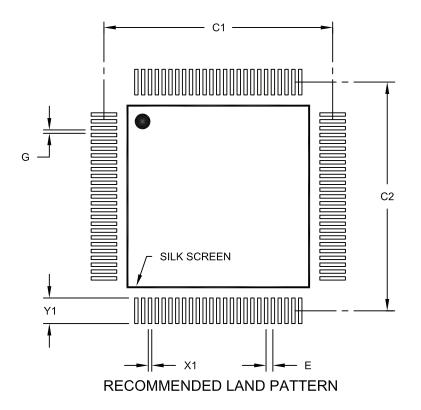
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIM	ETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		13.40	
Contact Pad Spacing	C2		13.40	
Contact Pad Width (X100)	X1			0.20
Contact Pad Length (X100)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100A

INDEX

Α	
AC Characteristics	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC1 Register Map	
ADC2 Register Map	
Alternate Interrupt Vector Table (AIVT)	67
Analog-to-Digital Converter	
DMA	
Initialization	
Key Features	
Arithmetic Logic Unit (ALU)	24
Assembler	
MPASM Assembler	
Automatic Clock Stretch	

В

Block Diagrams	
16-bit Timer1 Module	141
ADC1 Module	202
Connections for On-Chip Voltage Regulator	218
ECAN Module	176
Input Capture	149
Output Compare	151
PIC24H	12
PIC24H CPU Core	20
PIC24H Oscillator System Diagram	121
PIC24H PLL	123
Reset System	63
Shared Port Structure	139
SPI	155
Timer2 (16-bit)	145
Timer2/3 (32-bit)	144
UART	169
Watchdog Timer (WDT)	219

С

C Compilers
MPLAB C18
MPLAB C30 230
Clock Switching
Enabling129
Sequence129
Code Examples
Erasing a Program Memory Page60
Initiating a Programming Sequence61
Loading Write Buffers61
Port Write/Read140
PWRSAV Instruction Syntax131
Code Protection
Configuration Bits
Description (Table)214
Configuration Register Map 213
Configuring Analog Port Pins 140
CPU
Control Register 21
CPU Clocking System 122
PLL Configuration 122
Selection 122
Sources
Customer Change Notification Service
Customer Support

D

Data Address Space	27
Alignment	
Memory Map for PIC24HJXXXGPX06/X08/X1	
with 16 KB RAM	
Memory Map for PIC24HJXXXGPX06/X08/X1	
with 8 KB RAM	
Near Data Space	27
Software Stack	
Width	
DC Characteristics	234
I/O Pin Input Specifications	239
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	237
Operating Current (IDD)	236
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	235
Development Support	
DMA Module	
DMA Register Map	39
DMAC Registers	112
DMAXCNT	112
DMAxCON	112
DMAxPAD	112
DMAxREQ	112
DMAxSTA	112
DMAxSTB	112

Ε

ECAN Module	
CiFMSKSEL2 register 1	193
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)	41
ECAN1 Register Map (C1CTRL1.WIN = 0)	41
ECAN1 Register Map (C1CTRL1.WIN = 1)	42
ECAN2 Register Map (C2CTRL1.WIN = 0 or 1)	44
ECAN2 Register Map (C2CTRL1.WIN = 0)	44
ECAN2 Register Map (C2CTRL1.WIN = 1)	45
Frame Types 1	175
Modes of Operation 1	177
Overview1	175
ECAN Registers	
Filter 15-8 Mask Selection Register (CiFMSKSEL2) 1	93
Electrical Characteristics	233
AC	242
Enhanced CAN Module 1	175
Equations	
Device Operating Frequency 1	22
FOSC Calculation 1	22
XT with PLL Mode Example 1	23
Errata	10
F	
•	
Flash Program Memory	
Control Registers	
Onerationa	EO

Operations	58
Programming Algorithm	60
RTSP Operation	58
Table Instructions	57
Flexible Configuration	213
FSCM	
Delay for Crystal and PLL Clock Sources	66
Device Resets	66