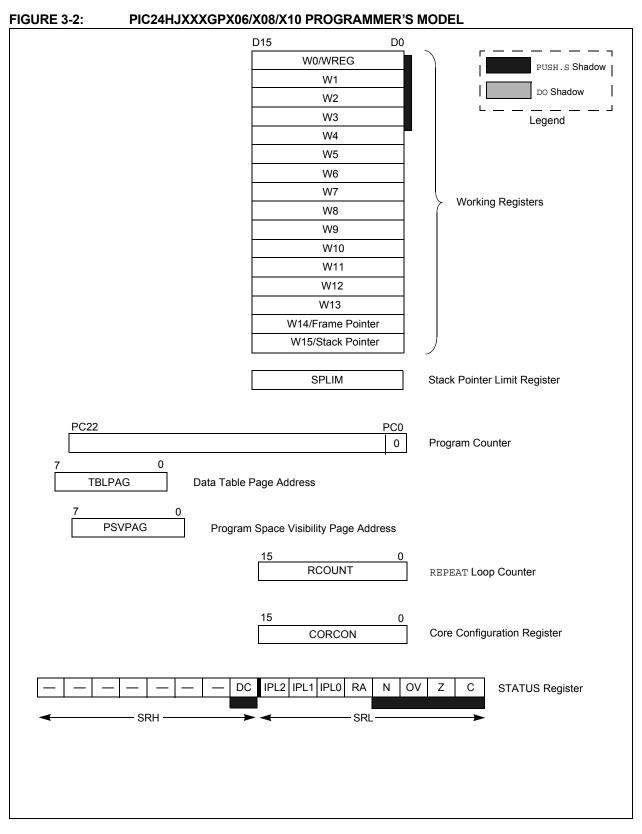


Welcome to E-XFL.COM

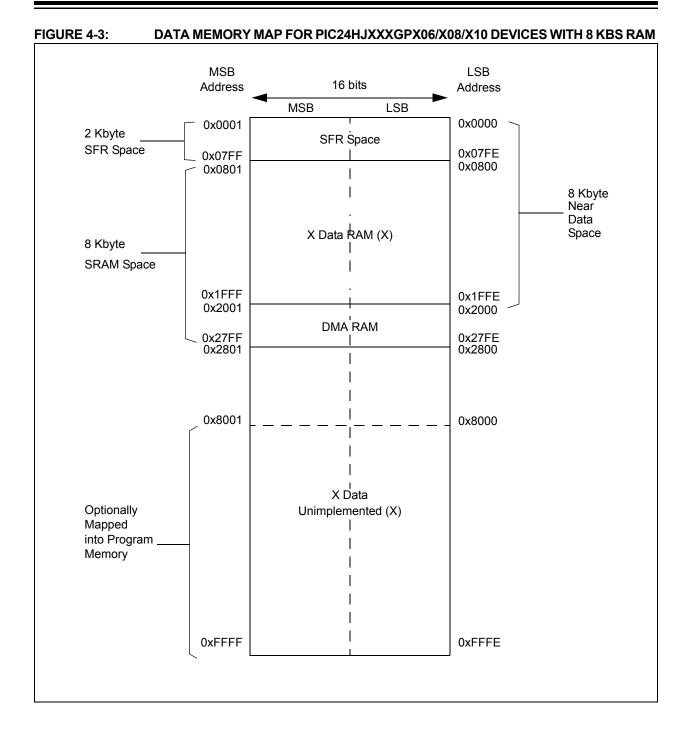
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	53
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 18x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp506t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 CPU Control Registers

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000			•			•	•	Working Re	egister 0							•	0000
WREG1	0002								Working Re	egister 1								0000
WREG2	0004								Working Re	egister 2								0000
WREG3	0006								Working Re	egister 3								0000
WREG4	0008								Working Re	egister 4								0000
WREG5	000A								Working Re	egister 5								0000
WREG6	000C								Working Re	egister 6								0000
WREG7	000E								Working Re	egister 7								0000
WREG8	0010								Working Re	egister 8								0000
WREG9	0012								Working Re	egister 9								0000
WREG10	0014								Working Re	gister 10								0000
WREG11	0016								Working Re	gister 11								0000
WREG12	0018								Working Re	gister 12								0000
WREG13	001A								Working Re	gister 13								0000
WREG14	001C								Working Re	gister 14								0000
WREG15	001E								Working Re	•								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register	-							xxxx
PCL	002E			•			•	Program	Counter Lo	w Word Reg	gister							0000
PCH	0030	_	_	—	_	_	—	_	_				m Counter		-			0000
TBLPAG	0032	_	_	—	_	_	—	_	_				Page Addre		•			0000
PSVPAG	0034	—	—	—	—	—	—	—	—			am Memory	Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	unter Regist			1		1	1	1	XXXX
SR	0042	_	_	_	_	_	_		DC		IPL<2:0>		RA	N	OV	Z	С	0000
CORCON	0044	_	_	-	—	—	-	—	—	—	—	—	—	IPL3	PSV	—	—	0000
DISICNT	0052	_	_						Disable	e Interrupts	Counter R	egister				1		xxxx
BSRAM	0750		—	—	—	—	-	—	—	—	—	—	—	—	IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752		-	-	—	-	—	-	—	—	—	—	—	—	IW_SSR	IR_SSR	RL_SSR	0000

TABLE 4-1: CPU CORE REGISTERS MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

TABLE 4-28: PORTE REGISTER MAP⁽¹⁾

									-		-	-	-					
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	02D8	—	-	—	_	_	-	—	—	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
PORTE	02DA	_	_	_	_	_	_	_	_	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	XXXX
LATE	02DC	_	_	_	_	_	_	_	_	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-29: PORTF REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	02DE	_	_	TRISF13	TRISF12	_	_	_	TRISF8	TRISF7	TRISF6	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	31FF
PORTF	02E0	-	_	RF13	RF12	-	_	_	RF8	RF7	RF6	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	02E2	-	_	LATF13	LATF12	-	_	_	LATF8	LATF7	LATF6	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF ⁽²⁾	06DE	_	_	ODCF13	ODCF12	_	—	—	ODCF8	ODCF7	ODCF6	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

TABLE 4-30: PORTG REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	02E4	TRISG15	TRISG14	TRISG13	TRISG12	_	_	TRISG9	TRISG8	TRISG7	TRISG6	_	_	TRISG3	TRISG2	TRISG1	TRISG0	F3CF
PORTG	02E6	RG15	RG14	RG13	RG12	_	_	RG9	RG8	RG7	RG6	_	_	RG3	RG2	RG1	RG0	XXXX
LATG	02E8	LATG15	LATG14	LATG13	LATG12	_	_	LATG9	LATG8	LATG7	LATG6	_	_	LATG3	LATG2	LATG1	LATG0	XXXX
ODCG ⁽²⁾	06E4	ODCG15	ODCG14	ODCG13	ODCG12	_	_	ODCG9	ODCG8	ODCG7	ODCG6	_	—	ODCG3	ODCG2	ODCG1	ODCG0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Note 1: The actual set of I/O port pins varies from one device to another. Please refer to the corresponding pinout diagrams.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0
TRAPR	IOPUWR		_		_		VREGS
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	TRAPR: Tran	Reset Flag bit					
bit 10		onflict Reset ha	s occurred				
	•	onflict Reset ha		d			
bit 14	IOPUWR: Ille	gal Opcode or	Uninitialized \	N Access Rese	et Flag bit		
				al address mo	ode or uninitiali	zed W registe	er used as a
		Pointer caused opcode or unir		eset has not o	courred		
bit 13-9		ted: Read as '			conco		
bit 8	-	age Regulator S		a Sleen hit			
		egulator is activ	•	• .			
	•	egulator goes i	•	•	еер		
bit 7		nal Reset (MCL					
		Clear (pin) Res Clear (pin) Res					
bit 6							
		re Reset (Instruinstruction has					
		instruction has					
bit 5	SWDTEN: So	oftware Enable/	Disable of WI	DT bit ⁽²⁾			
	1 = WDT is e						
	0 = WDT is di						
bit 4		hdog Timer Tim -out has occur	-	t			
		e-out has occur					
bit 3		e-up from Sleep					
		as been in Slee	-				
	0 = Device ha	as not been in S	leep mode				
bit 2		up from Idle Fla	g bit				
		as in Idle mode as not in Idle m	odo				
bit 1		out Reset Flag					
		out Reset has c					
		out Reset has r					
bit 0	POR: Power-	on Reset Flag I	oit				
		on Reset has o					
	0 = A Power-0	on Reset has n	ot occurred				
	All of the Reset sta		e set or cleare	ed in software.	Setting one of th	nese bits in sof	tware does n
0	cause a device R	eset.					

2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—		DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	С
bit 7							bit 0

Legend:			
C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1, SR: CPU STATUS Register.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
_	—		—	IPL3 ⁽²⁾	PSV	—	—
bit 7							bit 0
Legend:		C = Clear only	/ bit				
R = Readable I	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
0' = Bit is clear	ed	ʻx = Bit is unki	nown	U = Unimpler	mented bit, read	as '0'	
				(0)			
bit 3	IPL3: CPU Int	errupt Priority	Level Status b	bit $3^{(2)}$			
	1 = CPU inter	rupt priority lev	el is greater tl	han 7			

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2, CORCON: CORE Control Register.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit

- 1 = Interrupt request enabled
 - 0 = Interrupt request on abled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		T2IP<2:0>				OC2IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC2IP<2:0>				DMA0IP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as 'o)'				
bit 14-12	-	Timer2 Interrupt					
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					
bit 11	-	ented: Read as 'o					
bit 10-8		>: Output Compa		-	rity bits		
	111 = Interr	upt is priority 7 (I	lignest priori	ty interrupt)			
	•						
	•						
		upt is priority 1 upt source is disa	ahlad				
bit 7		ented: Read as '					
bit 6-4	-	Input Capture C		errupt Priority h	oits		
		upt is priority 7 (I			110		
	•		0	, i,			
	•						
	• 001 = Interr	upt is priority 1					
		upt source is disa	abled				
bit 3	Unimpleme	ented: Read as 'o)'				
bit 2-0	DMA0IP<2:	0>: DMA Channe	el 0 Data Tra	nsfer Complete	e Interrupt Pric	ority bits	
	111 = Interr	upt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
		upt is priority 1					
		upt source is disa					

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		IC8IP<2:0>		—		IC7IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		AD2IP<2:0>	-	_		INT1IP<2:0>	-				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable I	bit	U = Unimplemented bit, read as '0'							
-n = Value a	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	Unimpleme	nted: Read as 'o)'								
bit 14-12	IC8IP<2:0>:	Input Capture C	hannel 8 Inte	errupt Priority b	its						
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 11		nted: Read as 'o									
bit 10-8	IC7IP<2:0>: Input Capture Channel 7 Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 7		nted: Read as 'o									
bit 6-4	AD2IP<2:0>: ADC2 Conversion Complete Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	•										
	001 = Interrupt is priority 1										
		upt source is dis									
bit 3	-	nted: Read as 'o		1.10							
bit 2-0		External Interr upt is priority 7 (I)									
	•		lighest phon	ty interrupt)							
	•										
	• 001 = Interr	unt is priority 1									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled										

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T4IP<2:0>				OC4IP<2:0>				
bit 15							bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
		OC3IP<2:0>				DMA2IP<2:0>				
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown			
bit 15	Unimpleme	ented: Read as 'o)'							
bit 14-12	T4IP<2:0>:	Timer4 Interrupt	Priority bits							
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interr	001 = Interrupt is priority 1								
	000 = Interr	upt source is disa	abled							
bit 11	Unimpleme	ented: Read as 'o)'							
bit 10-8		OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits								
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
hit 7										
bit 7	-	ented: Read as 'o		Internut Driev	ity hite					
bit 6-4	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)									
	•		lighest phone	y interrupt)						
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 3	Unimpleme	ented: Read as 'o)'							
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tran	sfer Complete	e Interrupt Pric	ority bits				
	111 = Interr	upt is priority 7 (h	nighest priority	y interrupt)						
	•									
	•									
	001 = Interr	upt is priority 1								

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

Note:	This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 fam-
	ily of devices. However, it is not intended
	to be a comprehensive reference source.
	To complement the information in this data
	sheet, refer to the "PIC24H Family Refer-
	ence Manual", Section 11. "Timers"
	(DS70244), which is available from the
	Microchip website (www.microchip.com).

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- · Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2. For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- - **Note 1:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

NOTES:

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

'1' = Bit is set

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

	(n = 0,	1,, 31)					
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = W		W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

bit 15-13 **Unimplemented:** Read as '0'

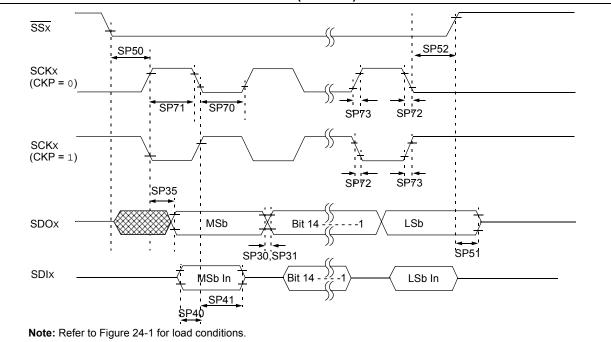
-n = Value at POR

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

'0' = Bit is cleared

bit 7-0 Unimplemented: Read as '0'

x = Bit is unknown


REGISTER 20-1: ADxCON1: ADCx CONTROL REGISTER 1 (where x = 1 or 2) (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software may write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software may write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress Automatically set by hardware when analog-to-digital conversion is complete. Software may write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation

in progress. Automatically cleared by hardware at start of a new conversion.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ADRC		_			SAMC<4:0>(1	1)			
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
1.1.7			ADCS	<7:0> ⁽²⁾					
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable b	it	U = Unimple	mented bit, rea	ad as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 15	ADRC: ADC	Conversion Cloc	k Source bit	t					
	1 = ADC internal RC clock								
	0 = Clock derived from system clock								
bit 14-13	Unimpleme	nted: Read as '0'							
bit 12-8	-	: Auto Sample Ti							
	11111 = 31								
	•	in to							
	•								
	•								
	00001 = 1 TAD								
	$00000 = 0 T_{0}$	AD							
bit 7-0	ADCS<7:0>:	: Analog-to-Digita	I Conversio	n Clock Select I	bits ⁽²⁾				
	11111111 =	Reserved							
	•								
	•								
	•								
	01000000 =	Reserved							
		TCY · (ADCS<7	:0> + 1) = 64	• Tcy = Tad					
	•								
	•								
	•								
	00000010 =	TCY · (ADCS<7)	(0> + 1) = 3	\cdot Tcy = Tad					
	00000010 = Tcy · (ADCS<7:0> + 1) = 3 · Tcy = TAD 00000001 = Tcy · (ADCS<7:0> + 1) = 2 · Tcy = TAD								
	00000000 =	TCY · (ADCS<7	:0> + 1) = 1	· TCY = TAD					
Note 1: Thi	is bit only used	d if ADxCON1 <s< td=""><td>SRC> = 1.</td><td></td><td></td><td></td><td></td></s<>	SRC> = 1.						
		ed if ADxCON3<							

 $\ensuremath{\textcircled{}^{\odot}}$ 2009 Microchip Technology Inc.

FIGURE 24-11: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS

TABLE 24-30: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СН	ARACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30		_	ns	—
SP71	TscH	SCKx Input High Time	30	_		ns	—
SP72	TscF	SCKx Input Fall Time ⁽³⁾	—	10	25	ns	—
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	—
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	—	_		ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	_	30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120		—	ns	_
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽³⁾	10	—	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_		ns	—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: Assumes 50 pF load on all SPIx pins.

NOTES:

L

VO Darta	100
I/O Ports	
Parallel I/O (PIO)	
Write/Read Timing	140
I ² C	
Operating Modes	161
Registers	
I ² C Module	
I2C1 Register Map	36
I2C2 Register Map	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	213, 220
Input Capture	
Registers	
Input Change Notification Module	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	
Instruction Set	004
Overview	
Summary	
Instruction-Based Power-Saving Modes	
Idle	132
Sleep	131
Internal RC Oscillator	
Use with WDT	
Internet Address	
Interrupt Control and Status Registers	
IECx	
IFSx	
INTTREG	
IPCx	
Interrupt Setup Procedures	
Initialization	110
Interrupt Disable	110
Interrupt Service Routine	
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions.	
interrupto confident with Fower dave instructions.	192
J	
JTAG Boundary Scan Interface	010
JIAG Boundary Scall Interface	
14	

Μ

Memory Organization	25
Microchip Internet Web Site	
Modes of Operation	
Disable	177
Initialization	177
Listen All Messages	177
Listen Only	177
Loopback	177
Normal Operation	177
MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal In-C	ircuit Em-
ulator	
MPLAB Integrated Development Environment Softw	are 229
MPLAB PM3 Device Programmer	
MPLAB REAL ICE In-Circuit Emulator System	

MPLINK Object Linker/MPLIB Object Librarian
Multi-Bit Data Shifter24
N
NVM Module
Register Map 49
0
Open-Drain Configuration 140
Output Compare
Р
Packaging
Details
Marking
Peripheral Module Disable (PMD) 132
PICSTART Plus Development Programmer
Pinout I/O Descriptions (table)13 PMD Module
Register Map
POR and Long Oscillator Start-up Times
PORTA
Register Map 47
PORTB Register Map 47
PORTC
Register Map
PORTD
Register Map 47
PORTE Register Map 48
PORTF
Register Map
PORTG
Register Map
Power-Saving Features
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility
tions
Data Access from. Address Generation
Memory Map25
Table Read Instructions
TBLRDH
TBLRDL
Program Memory
Interrupt Vector
Organization
Reset Vector26
R
Reader Response
Registers
ADxCHS0 (ADCx Input Channel 0 Select
ADxCHS123 (ADCx Input Channel 1, 2, 3 Select) 209 ADxCON1 (ADCx Control 1) 204
ADxCON1 (ADCx Control 1)
ADXCON2 (ADCX Control 2)
ADxCON4 (ADCx Control 4) 208
ADxCSSH (ADCx Input Scan Select High) 211
ADxCSSL (ADCx Input Scan Select Low)
ADxPCFGH (ADCx Port Configuration High) 212