

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp510-i-pf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

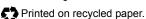
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

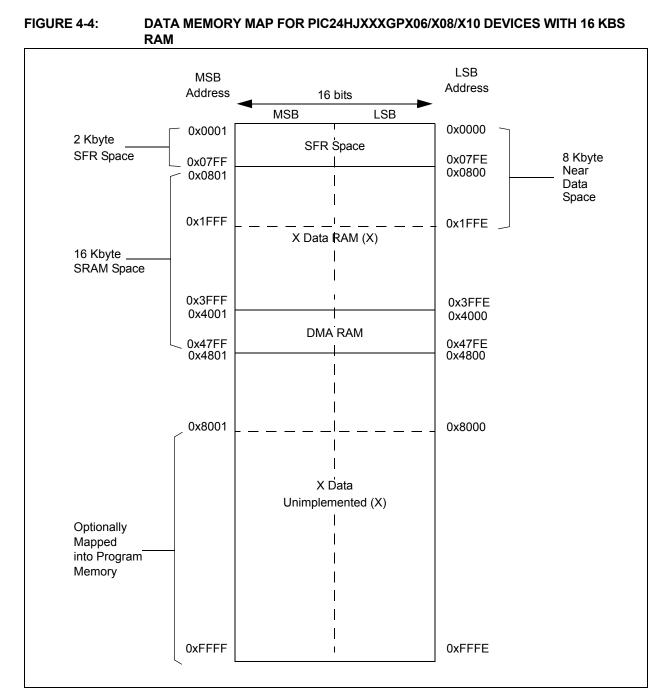
QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC, SmartShunt and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, nanoWatt XLP, PICkit, PICDEM, PICDEM.net, PICtail, PIC³² logo, PowerCal, PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

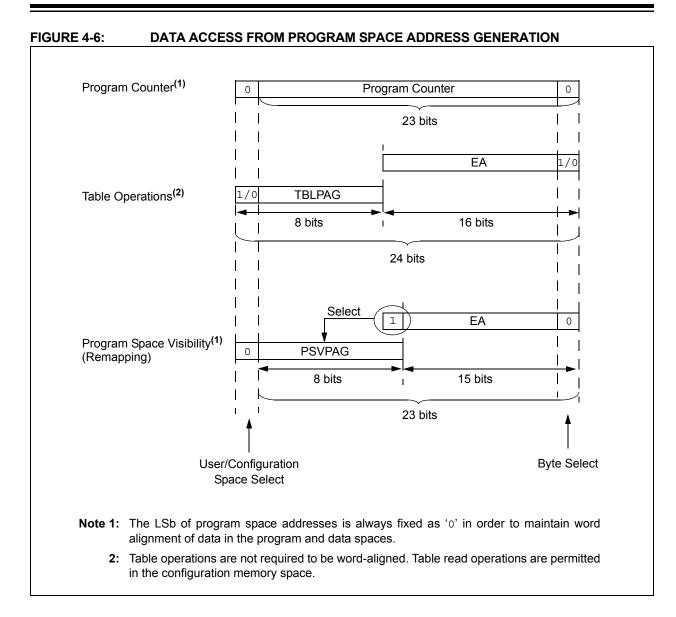
All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

4.2.5 DMA RAM

Every PIC24HJXXXGPX06/X08/X10 device contains 2 Kbytes of dual ported DMA RAM located at the end of data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.


When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

TABLE 4-17: DMA REGISTER MAP

	4-17:		REGIS			i		İ			1	1		1	i			1
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW		—			_	AMOD	E<1:0>	—	_	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	FORCE IRQSEL<6:0>									0000						
DMA0STA	0384								S	TA<15:0>								0000
DMA0STB	0386								S	TB<15:0>								0000
DMA0PAD	0388								P	AD<15:0>								0000
DMA0CNT	038A		_	_	_	_	_					CNT	<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA1STA	0390								S	TA<15:0>								0000
DMA1STB	0392								S	TB<15:0>								0000
DMA1PAD	0394								P	AD<15:0>								0000
DMA1CNT	0396	_	—	_	_	_	_					CNT	<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA2STA	039C	STA<15:0>								0000								
DMA2STB	039E								S	TB<15:0>								0000
DMA2PAD	03A0								P	AD<15:0>								0000
DMA2CNT	03A2	_	—	_	_	_	_					CNT	<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA3REQ	03A6	FORCE	—	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA3STA	03A8								S	TA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								P	AD<15:0>								0000
DMA3CNT	03AE	_	_	—	—	_	—					CNT	<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	_	_	_	_	_	_	_	-			I	RQSEL<6:0	>			0000
DMA4STA	03B4								S	TA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								P	AD<15:0>								0000
DMA4CNT	03BA	—	—	_	—	_	—					CNT	<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	_	AMOD	E<1:0>	_	—	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE	_	—	—	—	_	_	_	_			I	RQSEL<6:0	>			0000
DMA5STA	03C0								S	TA<15:0>	•							0000
DMA5STB	03C2								S	TB<15:0>								0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal for PinHigh devices.

Vector Number	Interrupt Request (IRQ) Number	IVT Address	AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Compare 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – Analog-to-Digital Converter 1
22	14	0x000030	0x000130	DMA1 – DMA Channel 1
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	Reserved
27	19	0x00003A	0x00013A	CN - Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29	21	0x00003E	0x00013E	ADC2 – Analog-to-Digital Converter 2
30	22	0x000040	0x000140	IC7 – Input Capture 7
31	23	0x000042	0x000142	IC8 – Input Capture 8
32	24	0x000044	0x000144	DMA2 – DMA Channel 2
33	25	0x000046	0x000146	OC3 – Output Compare 3
34	26	0x000048	0x000148	OC4 – Output Compare 4
35	27	0x00004A	0x00014A	T4 – Timer4
36	28	0x00004C	0x00014C	T5 – Timer5
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38	30	0x000050	0x000150	U2RX – UART2 Receiver
39	31	0x000052	0x000152	U2TX – UART2 Transmitter
40	32	0x000054	0x000154	SPI2E – SPI2 Error
41	33	0x000056	0x000156	SPI1 – SPI1 Transfer Done
42	34	0x000058	0x000158	C1RX – ECAN1 Receive Data Ready
43	35	0x00005A	0x00015A	C1 – ECAN1 Event
44	36	0x00005C	0x00015C	DMA3 – DMA Channel 3
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46	38	0x000060	0x000160	IC4 – Input Capture 4
47	39	0x000062	0x000162	IC5 – Input Capture 5
48	40	0x000064	0x000164	IC6 – Input Capture 6
49	41	0x000066	0x000166	OC5 – Output Compare 5
50	42	0x000068	0x000168	OC6 – Output Compare 6
51	43	0x00006A	0x00016A	OC7 – Output Compare 7
52	44	0x00006C	0x00016C	OC8 – Output Compare 8
53	45	0x00006E	0x00016E	Reserved

TABLE 7-1:INTERRUPT VECTORS

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	INTOIF: External Interrupt 0 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

	REGISTER 7-6:	IFS1: INTERRUPT FLAG STATUS REGISTER 1
--	---------------	---

U2TXIF bit 15 R/W-0 IC8IF bit 7	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	
R/W-0 IC8IF		•		141	00416	OCSIF	DMA21IF
IC8IF			·				bit 8
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
bit 7	IC7IF	AD2IF	INT1IF	CNIF	_	MI2C1IF	SI2C1IF
			1	1			bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	U2TXIF: UAF	RT2 Transmitte	r Interrupt Flag	g Status bit			
		request has oc request has no					
bit 14	U2RXIF: UAF	RT2 Receiver li	nterrupt Flag S	Status bit			
		request has oc					
L:1 1 0	•	request has no					
bit 13		rnal Interrupt 2 request has oc	-	t			
		request has no					
bit 12	T5IF: Timer5	Interrupt Flag	Status bit				
		request has oc					
	•	request has no					
bit 11		Interrupt Flag request has oc					
		request has no					
bit 10	OC4IF: Outp	ut Compare Ch	annel 4 Interru	upt Flag Status	s bit		
		request has oc request has no					
bit 9	-	ut Compare Ch		upt Flag Status	s bit		
	1 = Interrupt	request has oc request has no	curred				
bit 8	DMA21IF: DI	MA Channel 2 I	Data Transfer	Complete Inte	rrupt Flag Statu	ıs bit	
		request has oc					
	•	request has no					
bit 7		Capture Chann request has oc	•	-lag Status bit			
		request has no					
bit 6	IC7IF: Input (Capture Chann	el 7 Interrupt F	lag Status bit			
		request has oc request has no					
bit 5	AD2IF: ADC2	2 Conversion C	omplete Interr	upt Flag Statu	s bit		
		request has oc					
	-	request has no					
bit 4		rnal Interrupt 1	-	t			
		request has oc request has no					

REGISTER /-IU. IEGU. INTERROFTENADEL CONTROL REGISTER U	REGISTER 7-10:	IEC0: INTERRUPT ENABLE CONTROL REGISTER 0
---	----------------	---

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14				Complete Interr	rupt Enable bit		
		request enable request not ena					
bit 13		•		rupt Enable bit			
		request enable	-				
		request not en					
bit 12	U1TXIE: UAF	RT1 Transmitte	r Interrupt Ena	able bit			
		request enable					
bit 11	-	request not ena		la hit			
		RT1 Receiver I request enable	•				
		request not en					
bit 10	SPI1IE: SPI1	Event Interrup	t Enable bit				
		request enable					
L:1 0		request not en					
bit 9		1 Error Interru request enable					
		request not enable					
bit 8	T3IE: Timer3	Interrupt Enab	le bit				
		equest enable					
	-	request not en					
bit 7		Interrupt Enab					
		request enable request not ena					
bit 6	•	•		upt Enable bit			
	-	request enable					
	•	request not en					
bit 5		Capture Chann	-	Enable bit			
		request enable request not ena					
bit 4	-	-		Complete Interr	rupt Enable bit		
•		request enable					
		request not en					
bit 3	T1IE: Timer1	Interrupt Enab	ole bit				

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled

REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		OC7IP<2:0>		—		OC6IP<2:0>	
bit 15							bit 8
	—						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		OC5IP<2:0>		—		IC6IP<2:0>	L :4
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 15	Unimpleme	ented: Read as '	o'				
bit 14-12	-	>: Output Compa		Interrupt Prior	ritv bits		
		rupt is priority 7 (-	,		
	•		•				
	•						
	001 = Interr	rupt is priority 1					
		rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	0'				
bit 10-8	OC6IP<2:0	>: Output Compa	are Channel 6	Interrupt Prior	rity bits		
	111 = Interr	rupt is priority 7 (highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1	. 1. 1 1				
bit 7		rupt source is dis ented: Read as '					
bit 6-4	-	>: Output Compa		Intorrupt Prior	rity bite		
DIL 0-4		rupt is priority 7 (ity bits		
	•		nightest phon	ly interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 3		ented: Read as '					
bit 2-0	-	: Input Capture C		errupt Priority b	oits		
		rupt is priority 7 (
	•						
	•						
	• 001 = Interr	rupt is priority 1					

9.1 CPU Clocking System

There are seven system clock options provided by the PIC24HJXXXGPX06/X08/X10:

- FRC Oscillator
- FRC Oscillator with PLL
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- LPRC Oscillator
- · FRC Oscillator with postscaler

9.1.1 SYSTEM CLOCK SOURCES

The FRC (Fast RC) internal oscillator runs at a nominal frequency of 7.37 MHz. The user software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The primary oscillator can use one of the following as its clock source:

- 1. XT (Crystal): Crystals and ceramic resonators in the range of 3 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 2. HS (High-Speed Crystal): Crystals in the range of 10 MHz to 40 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- 3. EC (External Clock): External clock signal is directly applied to the OSC1 pin.

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

The LPRC (Low-Power RC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip Phase Locked Loop (PLL) to provide a wide range of output frequencies for device operation. PLL configuration is described in **Section 9.1.3 "PLL Configuration"**.

The FRC frequency depends on the FRC accuracy (see Table 24-19) and the value of the FRC Oscillator Tuning register (see Register 9-4).

9.1.2 SYSTEM CLOCK SELECTION

The oscillator source that is used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to **Section 21.1 "Configuration Bits"** for further details.) The Initial Oscillator Selection Configuration bits, FNOSC<2:0> (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration bits, POSCMD<1:0> (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose between twelve different clock modes, shown in Table 9-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the PIC24HJXXXGPX06/X08/ X10 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 9-1: DEVICE OPERATING FREQUENCY

 $FCY = \frac{FOSC}{2}$

9.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip PLL to obtain higher speeds of operation. The PLL provides a significant amount of flexibility in selecting the device operating speed. A block diagram of the PLL is shown in Figure 9-2.

The output of the primary oscillator or FRC, denoted as 'FIN', is divided down by a prescale factor (N1) of 2, 3, ... or 33 before being provided to the PLL's Voltage Controlled Oscillator (VCO). The input to the VCO must be selected to be in the range of 0.8 MHz to 8 MHz. Since the minimum prescale factor is 2, this implies that FIN must be chosen to be in the range of 1.6 MHz to 16 MHz. The prescale factor 'N1' is selected using the PLLPRE<4:0> bits (CLKDIV<4:0>).

The PLL Feedback Divisor, selected using the PLLDIV<8:0> bits (PLLFBD<8:0>), provides a factor 'M', by which the input to the VCO is multiplied. This factor must be selected such that the resulting VCO output frequency is in the range of 100 MHz to 200 MHz.

The VCO output is further divided by a postscale factor 'N2'. This factor is selected using the PLLPOST<1:0> bits (CLKDIV<7:6>). 'N2' can be either 2, 4 or 8, and must be selected such that the PLL output frequency (Fosc) is in the range of 12.5 MHz to 80 MHz, which generates device operating speeds of 6.25-40 MIPS.

For a primary oscillator or FRC oscillator, output 'FIN', the PLL output 'FOSC' is given by:

EQUATION 9-2: Fosc CALCULATION

$$FOSC = FIN \cdot \left(\frac{M}{N1 \cdot N2}\right)$$

REGISTER 9-4:

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ _ ____ ____ ____ _ _____ ____ bit 15 bit 8 U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 TUN<5:0>(1) ____ bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-6 Unimplemented: Read as '0' bit 5-0 TUN<5:0>: FRC Oscillator Tuning bits⁽¹⁾ 011111 = Center frequency + 11.625% (8.23 MHz) 011110 = Center frequency + 11.25% (8.20 MHz) 000001 = Center frequency + 0.375% (7.40 MHz) 000000 = Center frequency (7.37 MHz nominal) 111111 = Center frequency - 0.375% (7.345 MHz) 100001 = Center frequency - 11.625% (6.52 MHz) 100000 = Center frequency - 12% (6.49 MHz)

OSCTUN: FRC OSCILLATOR TUNING REGISTER

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC
ACKSTAT	TRSTAT	—	_	—	BCL	GCSTAT	ADD10
bit 15							bit 8

R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7							bit 0

Legend:	U = Unimplemented b	oit, read as '0'	C = Clear only bit	
R = Readable bit	W = Writable bit	HS = Set in hardware	HSC = Hardware set/cleared	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

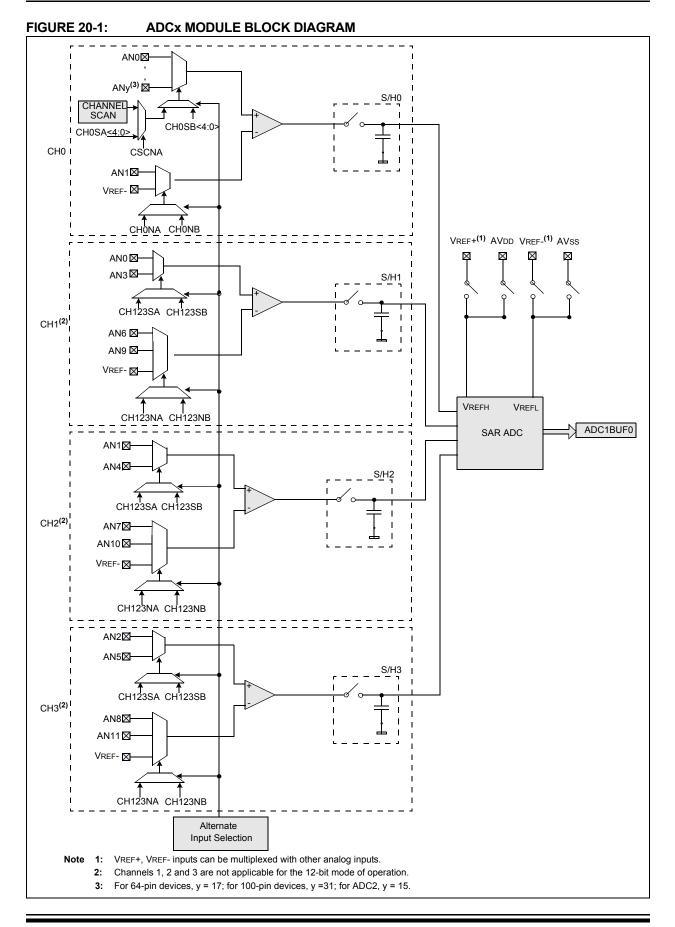
ACKSTAT: Acknowledge Status bit (when operation) (when operating as I ² C master, applicable to master transmit operation)
 1 = NACK received from slave 0 = ACK received from slave
Hardware set or clear at end of slave Acknowledge.
TRSTAT: Transmit Status bit (when operating as I ² C master, applicable to master transmit operation)
 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge.
Unimplemented: Read as '0'
BCL: Master Bus Collision Detect bit
 1 = A bus collision has been detected during a master operation 0 = No collision
Hardware set at detection of bus collision.
GCSTAT: General Call Status bit
1 = General call address was received 0 = General call address was not received Hardware get when address matches general call address. Hardware clear at Step detection
Hardware set when address matches general call address. Hardware clear at Stop detection.
ADD10: 10-Bit Address Status bit
1 = 10-bit address was matched 0 = 10-bit address was not matched
Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection.
IWCOL: Write Collision Detect bit
 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy 0 = No collision
Hardware set at occurrence of write to I2CxTRN while busy (cleared by software).
I2COV: Receive Overflow Flag bit
 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow
Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software).
D_A: Data/Address bit (when operating as I ² C slave)
1 = Indicates that the last byte received was data
 Indicates that the last byte received was device address Hardware clear at device address match. Hardware set by reception of slave byte.
P: Stop bit
1 = Indicates that a Stop bit has been detected last
0 = Stop bit was not detected last
Hardware set or clear when Start, Repeated Start or Stop detected.

'1' = Bit is set

REGISTER 19-31: CITRBnSTAT: ECAN™ MODULE RECEIVE BUFFER n STATUS

	(n = 0,	1,, 31)					
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	—	FILHIT4	FILHIT3	FILHIT2	FILHIT1	FILHIT0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimpler	mented bit, read	as '0'		

bit 15-13 **Unimplemented:** Read as '0'


-n = Value at POR

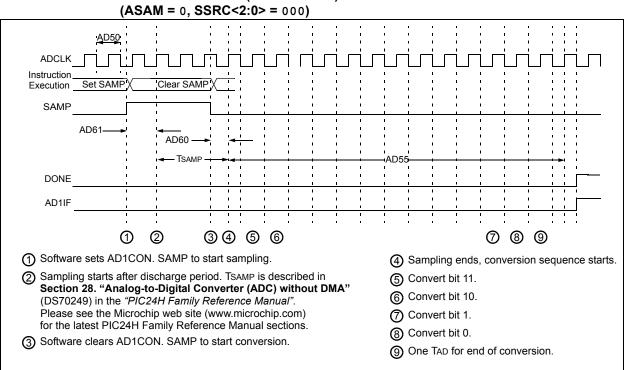
bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits (only written by module for receive buffers, unused for transmit buffers) Encodes number of filter that resulted in writing this buffer.

'0' = Bit is cleared

bit 7-0 Unimplemented: Read as '0'

x = Bit is unknown

Bit Field	Register	Description		
SSS<2:0>	FSS	Secure Segment Program Flash Code Protection Size (FOR 128K and 256K DEVICES) X11 = No Secure program Flash segment		
		Secure space is 8K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE		
		Secure space is 16K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE		
		Secure space is 32K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x00FFFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x00FFFE		
		(FOR 64K DEVICES) X11 = No Secure program Flash segment		
		Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE		
		Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE 001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE		
		Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 0x007FFE 000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE		
RSS<1:0>	FSS	Secure Segment RAM Code Protection 11 = No Secure RAM defined 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM		
GSS<1:0>	FGS	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard Security; general program Flash segment starts at End of SS, ends at EOM 0x = High Security; general program Flash segment starts at End of ESS, ends at EOM		
GWRP	FGS	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected		


TABLE 21-2: PIC24HJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

Bit Field	Register	Description	
FPWRT<2:0>	FPOR	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled	
JTAGEN	FICD	JTAG Enable bits 1 = JTAG enabled 0 = JTAG disabled	
ICS<1:0>	FICD	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved	

TABLE 21-2: PIC24HJXXXGPX06/X08/X10 CONFIGURATION BITS DESCRIPTION (CONTINUED)

	ABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)						
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
35	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
36	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
37	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
38	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
39	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
40	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	N,Z
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	N,Z
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
41	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
42	NEG	NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
43	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
44	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
45	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
46	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 24-18: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Product Group Pin Count Tape and Reel Fla		 Examples: a) PIC24HJ256GP210I/PT: General-purpose PIC24H, 256 KB program memory, 100-pin, Industrial temp., TQFP package. b) PIC24HJ64GP506I/PT-ES: General-purpose PIC24H, 64 KB program memory, 64-pin, Industrial temp., TQFP package, Engineering Sample. 		
Architecture:	24 = 16-bit Microcontroller			
Flash Memory Family:	HJ = Flash program memory, 3.3V, High-speed			
Product Group:	GP2=General purpose familyGP3=General purpose familyGP5=General purpose familyGP6=General purpose family			
Pin Count:	06 = 64-pin 10 = 100-pin			
Temperature Range:	I = -40° C to $+85^{\circ}$ C (Industrial)			
Package:	PT = 10x10 or 12x12 mm TQFP (Thin Quad Flat- pack) PF = 14x14 mm TQFP (Thin Quad Flatpack)	pack)		
Pattern:	Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample			