

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 32x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24hj64gp510-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Name	Pin Type	Buffer Type	Description			
AN0-AN31	I	Analog	Analog input channels.			
AVDD	Р	Р	Positive supply for analog modules. This pin must be connected at all times.			
AVss	Р	Р	Ground reference for analog modules.			
CLKI CLKO	I O	ST/CMOS	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.			
CN0-CN23	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.			
C1RX	I	ST	ECAN1 bus receive pin.			
C1TX	0	_	ECAN1 bus transmit pin.			
C2RX		ST	ECAN2 bus receive pin.			
C2TX	0	—	ECAN2 bus transmit pin.			
PGED1	I/O	ST	Data I/O pin for programming/debugging communication channel 1.			
PGEC1		SI	Clock input pin for programming/debugging communication channel 1.			
PGED2	1/0	51	Data I/O pin for programming/debugging communication channel 2.			
PGEC2		ST	Data I/O nin for programming/debugging communication channel 3			
PGEC3	"O	ST	Clock input pin for programming/debugging communication channel 3.			
IC1-IC8	1	ST	Capture inputs 1 through 8.			
INTO	1	ST	External interrunt 0			
INT1	i	ST	External interrupt 1.			
INT2	I	ST	External interrupt 2.			
INT3	I	ST	External interrupt 3.			
INT4	I	ST	External interrupt 4.			
MCLR	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.			
OCFA	I	ST	Compare Fault A input (for Compare Channels 1, 2, 3 and 4).			
OCFB	I	ST	Compare Fault B input (for Compare Channels 5, 6, 7 and 8).			
0C1-0C8	0	_	Compare outputs 1 through 8.			
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.			
OSC2	I/O	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.			
RA0-RA7	I/O	ST	PORTA is a bidirectional I/O port.			
RA9-RA10	I/O	ST				
RA12-RA15	I/O	ST				
RB0-RB15	I/O	ST	PORTB is a bidirectional I/O port.			
RC1-RC4 RC12-RC15	1/O 1/O	ST ST	PORTC is a bidirectional I/O port.			
RD0-RD15	I/O	ST	PORTD is a bidirectional I/O port.			
RE0-RE7	I/O	ST	PORTE is a bidirectional I/O port.			
RF0-RF8 RF12-RF13	I/O	ST	PORTF is a bidirectional I/O port.			
RG0-RG3 RG6-RG9 RG12-RG15	I/O I/O I/O	ST ST ST	PORTG is a bidirectional I/O port.			

TABLE 1-1:	PINOUT I/O DESCRIPTIONS
------------	--------------------------------

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels Analog = Analog inputP = PowerO = OutputI = Input

5.4.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the page (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - Perform a dummy table write operation (TBLWTL) to any address within the page that needs to be erased.
 - d) Write 0x55 to NVMKEY.
 - e) Write 0xAA to NVMKEY.
 - f) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block	erase operation	
MOV #0x4042, W	10 ;	
MOV W0, NVMCON	J ;	Initialize NVMCON
; Init pointer to row to	be ERASED	
MOV #tblpage(F	PROG_ADDR), W0 ;	
MOV W0, TBLPAG	;	Initialize PM Page Boundary SFR
MOV #tbloffset	(PROG_ADDR), W0 ;	Initialize in-page EA<15:0> pointer
TBLWTL W0, [W0]	;	Set base address of erase block
DISI #5	;	Block all interrupts with priority <7
	;	for next 5 instructions
MOV #0x55, W0		
MOV W0, NVMKEY	;	Write the 55 key
MOV #0xAA, W1	;	
MOV W1, NVMKEY	;	Write the AA key
BSET NVMCON, #W	IR ;	Start the erase sequence
NOP	;	Insert two NOPs after the erase
NOP	;	command is asserted

Note: A program memory page erase operation is set up by performing a dummy table write (TBLWTL) operation to any address within the page. This methodology is different from the page erase operation on dsPIC30F/33F devices in which the erase page was selected using a dedicated pair of registers (NVMADRU and NVMADR).

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	CNIE: Input Change Notification Interrupt Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled
bit 2	Unimplemented: Read as '0'
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit

- 1 = Interrupt request enabled
 - 0 = Interrupt request on abled

REGISTER 7-25: IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		OC7IP<2:0>		_		OC6IP<2:0>	
bit 15					•		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		OC5IP<2:0>		_		IC6IP<2:0>	
bit 7							bit 0
Lawards							
Legena:	bit	W - Writabla k	sit	II – Unimploi	montod bit rog	ad as '0'	
n – Valuo at E		'1' - Bit is sot	JIL	$0^{\circ} - 0^{\circ}$	nenieu bil, rea	v – Bitic unkn	014/D
		I – Dit is set					OWIT
bit 15	Unimpleme	ented: Read as 'o	,				
bit 14-12	OC7IP<2:0	>: Output Compa	re Channel 7	Interrupt Prior	itv bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				
bit 11	Unimpleme	ented: Read as 'c)'				
bit 10-8	OC6IP<2:0	: Output Compa	re Channel 6	Interrupt Prior	ity bits		
	111 = Interr	rupt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	upt is priority 1 upt source is disa	abled				
bit 7	Unimpleme	ented: Read as 'c)'				
bit 6-4	OC5IP<2:0	>: Output Compa	re Channel 5	Interrupt Prior	ity bits		
	111 = Interr	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr 000 = Interr	upt is priority 1 upt source is disa	abled				
bit 3	Unimpleme	nted: Read as 'c)'				
bit 2-0	IC6IP<2:0>	: Input Capture C	hannel 6 Inte	errupt Priority b	its		
	111 = Interr	upt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interr	upt is priority 1					
	000 = Interr	upt source is disa	abled				

REGISTER 7-29: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—		C2IP<2:0>	
bit 7					bit 0		
Legend:							
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-3 Unimplemented: Read as '0'

C2IP<2:0>: ECAN2 Event Interrupt Priority bits

111 = Interrupt is priority 7 (highest priority interrupt)

•

bit 2-0

001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 8-9: DSADR: MOST RECENT DMA RAM ADDRESS

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
	DSADR<15:8>									
bit 15							bit 8			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
			DSA	DR<7:0>						
bit 7							bit 0			
Legend:										
R = Readable I	= Readable bit W = Writable bit U = Unimplemented bit, read as '0'									
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown				own						

bit 15-0 DSADR<15:0>: Most Recent DMA RAM Address Accessed by DMA Controller bits

13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

Note:	This data sheet summarizes the features of the PIC24HJXXXGPX06/X08/X10 fam- ily of devices. However, it is not intended
	to be a comprehensive reference source.
	sheet, refer to the "PIC24H Family Refer-
	ence Manual", Section 11. "Timers"
	(DS70244), which is available from the
	Microchip website (www.microchip.com).

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter

They also support these features:

- Timer Gate Operation
- Selectable Prescaler Settings
- · Timer Operation during Idle and Sleep modes
- Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)

Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2. For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note:	For 32-bit operation, T3CON, T5CON,
	T7CON and T9CON control bits are
	ignored. Only T2CON, T4CON, T6CON
	and T8CON control bits are used for setup
	and control. Timer2, Timer4, Timer6 and
	Timer8 clock and gate inputs are utilized
	for the 32-bit timer modules, but an inter-
	rupt is generated with the Timer3, Timer5,
	Ttimer7 and Timer9 interrupt flags.

To configure Timer2/3, Timer4/5, Timer6/7 or Timer8/9 for 32-bit operation:

- 1. Set the corresponding T32 control bit.
- 2. Select the prescaler ratio for Timer2, Timer4, Timer6 or Timer8 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3, PR5, PR7 or PR9 contains the most significant word of the value, while PR2, PR4, PR6 or PR8 contains the least significant word.
- If interrupts are required, set the interrupt enable bit, T3IE, T5IE, T7IE or T9IE. Use the priority bits, T3IP<2:0>, T5IP<2:0>, T7IP<2:0> or T9IP<2:0>, to set the interrupt priority. While Timer2, Timer4, Timer6 or Timer8 control the timer, the interrupt appears as a Timer3, Timer5, Timer7 or Timer9 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, TMR5:TMR4, TMR7:TMR6 or TMR9:TMR8. TMR3, TMR5, TMR7 or TMR9 always contains the most significant word of the count, while TMR2, TMR4, TMR6 or TMR8 contains the least significant word.

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

NOTES:

FIGURE 17-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1 OR 2)

REGISTER 17-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	AMSK9	AMSK8
bit 15					·	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7					·	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address Bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

19.3 Modes of Operation

The CAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization Mode
- Disable Mode
- Normal Operation Mode
- Listen Only Mode
- Listen All Messages Mode
- Loopback Mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module will not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

19.3.1 INITIALIZATION MODE

In the Initialization mode, the module will not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The programmer will have access to Configuration registers that are access restricted in other modes. The module will protect the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The CAN module will not be allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers.

- All Module Control Registers
- Baud Rate and Interrupt Configuration Registers
- Bus Timing Registers
- Identifier Acceptance Filter Registers
- Identifier Acceptance Mask Registers

19.3.2 DISABLE MODE

In Disable mode, the module will not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts will remain and the error counters will retain their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module will enter the Module Disable mode. If the module is active, the module will wait for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins will revert to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the CAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the CAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

19.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins will assume the CAN bus functions. The module will transmit and receive CAN bus messages via the CiTX and CiRX pins.

19.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

19.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting REQOP<2:0> = '111'. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

19.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module will connect the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function. REGISTER 19-1: CICTRL1: ECAN™ MODULE CONTROL REGISTER 1

	11.0		DAM 0	r O		D/M/ O	D/M/ O	
0-0	0-0			1-0	FV/VV-1		R/W-U	
	_	CSIDE	ADAT	_		REQUPS2.02	hit 0	
DIL 15							DILO	
P_1	P_0	P_0	11-0	P/\\/_0	11_0	11-0	P/M_0	
N-1		K-0	0-0		0-0	0-0	10/00-0	
bit 7			_	CANCAI	_		bit 0	
bit 7							bit 0	
Legend:	r = Bit is Reserved							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	x = Bit is unknown	
				0 2.1.10 0.10			•••••	
bit 15-14	Unimplement	ted: Read as '	0'					
bit 13	CSIDL: Stop	in Idle Mode b	it					
	1 = Discontinu	le module ope	ration when d	levice enters lo	lle mode			
	0 = Continue	module operat	ion in Idle mo	de				
bit 12	ABAT: Abort A	All Pending Tra	ansmissions b	pit				
	Signal all tran	smit buffers to	abort transmi	ission. Module	will clear this b	oit when all transm	nissions	
	are aborted.							
bit 11	Reserved: Do	o not use						
bit 10-8	REQOP<2:0>	: Request Op	eration Mode	bits				
	000 = Set No	able mode	Innoue					
	010 = Set Loc	opback mode						
	011 = Set List	ten Only Mode	-1 -					
	100 = Set Col101 = Reserv	ntiguration mo ed – do not us	ae e					
	110 = Reserv	ed – do not us	e					
	111 = Set List	ten All Messag	es mode					
bit 7-5	OPMODE<2:0	0>: Operation	Mode bits					
	000 = Module	is in Normal (Operation mod	de				
	001 = Module 010 = Module	is in Disable r	noae k mode					
	011 = Module	is in Listen O	nly mode					
	100 = Module	is in Configura	ation mode					
	101 = Reserv	ed						
	111 = Module	is in Listen Al	l Messages m	node				
bit 4	Unimplement	ted: Read as '	0'					
bit 3	CANCAP: CAN Message Receive Timer Capture Event Enable bit							
	1 = Enable inp	out capture bas	sed on CAN n	nessage receiv	/e			
	0 = Disable CAN capture							
bit 2-1	Unimplement	ted: Read as '	0'					
bit 0 WIN: SFR Map Window Select bit								
	1 = Use filter	window						
		WINGOW						

REGISTER 20-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	—	—	_	—	CH123NB<1:0>		CH123SB				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	—	—	—	—	CH123	NA<1:0>	CH123SA				
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable t	pit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known				
bit 15-11	Unimplemen	ted: Read as 'c)'								
bit 10-9	CH123NB<1:	0>: Channel 1,	2, 3 Negative	e Input Select fo	or Sample B bi	ts					
	When AD12E	When AD12B = 1, CHxNB is: U-0, Unimplemented, Read as '0'									
	11 = CH1 neg	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 hego0x = CH1. CH	12. CH3 negativ	/e input is VR	jative input is Al FF-	N7, CH3 nega	live input is AN	18				
bit 8	CH123SB: CI	hannel 1, 2, 3 P	ositive Input	Select for Sam	ole B bit						
2.1.0	When AD12E	When AD12B = 1. CHxSB is: U-0. Unimplemented. Read as '0'									
	1 = CH1 posit	1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5									
	0 = CH1 posit	0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2									
bit 7-3	Unimplemen	ted: Read as 'c)'								
bit 2-1	CH123NA<1:	0>: Channel 1,	2, 3 Negative	e Input Select fo	or Sample A bi	ts					
	When AD12E	When AD12B = 1, CHxNA is: U-0, Unimplemented, Read as '0'									
	11 = CH1 neg	11 = CH1 negative input is AN9, CH2 negative input is AN10, CH3 negative input is AN11									
	10 = CH1 neg	gative input is A	N6, CH2 neg	ative input is Al	N7, CH3 nega	tive input is AN	18				
hit 0				EF- Soloot for Some	olo A hit						
DILU				Select for Samp							
	1 = CH1 posit	when AD12D = 1, CHX5A IS: U-U, Unimplemented, Kead as 0° 1 = CH1 positive input is AN3 CH2 positive input is AN4 CH3 positive input is AN5									
	0 = CH1 positi	0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2									

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾									
DC40d	3	25	mA	-40°C		10 MIPS			
DC40a	3	25	mA	+25°C	3 3\/				
DC40b	3	25	mA	+85°C	0.07				
DC41d	4	25	mA	-40°C		16 MIPS			
DC41a	5	25	mA	+25°C	3.3V				
DC41b	6	25	mA	+85°C					
DC42d	8	25	mA	-40°C		20 MIPS			
DC42a	9	25	mA	+25°C	3.3V				
DC42b	10	25	mA	+85°C					
DC43a	15	25	mA	+25°C		30 MIPS			
DC43d	15	25	mA	-40°C	3.3V				
DC43b	15	25	mA	+85°C					
DC44d	16	25	mA	-40°C					
DC44a	16	25	mA	+25°C	3.3V	40 MIPS			
DC44b	16	25	mA	+85°C					

TABLE 24-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base IIDLE current is measured with core off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

TABLE 24-28: SPIX MASTER MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions
SP10	TscL	SCKx Output Low Time	Tcy/2	—	_	ns	See Note 3
SP11	TscH	SCKx Output High Time	Tcy/2	_		ns	See Note 3
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter D032 and Note 4
SP21	TscR	SCKx Output Rise Time	—	-		ns	See parameter D031 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter D032 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	-		ns	See parameter D031 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	23			ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

АС СНА	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions
SP70	TscL	SCKx Input Low Time	30	_		ns	_
SP71	TscH	SCKx Input High Time	30	_	_	ns	—
SP72	TscF	SCKx Input Fall Time ⁽³⁾	_	10	25	ns	—
SP73	TscR	SCKx Input Rise Time ⁽³⁾	—	10	25	ns	—
SP30	TdoF	SDOx Data Output Fall Time ⁽³⁾	_	_	_	ns	See parameter D032
SP31	TdoR	SDOx Data Output Rise Time ⁽³⁾	—	_	_	ns	See parameter D031
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—		30	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20			ns	_
SP50	TssL2scH, TssL2scL	SSx ↓ to SCKx ↓ or SCKx ↑ Input	120	_	_	ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_	_	ns	—
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	_

TABLE 24-31: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

Standard Operating Conditions: 3.0V to 3.6V **AC CHARACTERISTICS** (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial Param Symbol Min Conditions Characteristic Max Units IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 Device must operate at a μs minimum of 1.5 MHz 400 kHz mode 1.3 Device must operate at a μs minimum of 10 MHz 1 MHz mode⁽¹⁾ 0.5 μs IS11 100 kHz mode THI:SCL **Clock High Time** 4.0 Device must operate at a μs minimum of 1.5 MHz 400 kHz mode 0.6 Device must operate at a ____ μs minimum of 10 MHz 1 MHz mode⁽¹⁾ 0.5 μs IS20 SDAx and SCLx 100 kHz mode 300 CB is specified to be from TF:SCL ns Fall Time 10 to 400 pF 400 kHz mode 300 20 + 0.1 CB ns 1 MHz mode⁽¹⁾ 100 ns ____ 100 kHz mode IS21 TR:SCL SDAx and SCLx 1000 CB is specified to be from ns **Rise Time** 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode⁽¹⁾ 300 ns IS25 Data Input 100 kHz mode 250 TSU:DAT ns Setup Time 400 kHz mode 100 ns 1 MHz mode⁽¹⁾ 100 ns IS26 THD:DAT Data Input 100 kHz mode 0 μs Hold Time 400 kHz mode 0 0.9 μs 1 MHz mode⁽¹⁾ 0 0.3 μs IS30 TSU:STA Start Condition 100 kHz mode 4.7 Only relevant for Repeated μs Setup Time Start condition 400 kHz mode 0.6 μs 1 MHz mode⁽¹⁾ 0.25 μs IS31 THD:STA Start Condition 100 kHz mode 4.0 After this period, the first μs Hold Time clock pulse is generated 400 kHz mode 0.6 μs ____ 1 MHz mode⁽¹⁾ 0.25 μs IS33 Stop Condition 100 kHz mode 4.7 Tsu:sto ____ μs Setup Time 400 kHz mode 0.6 μs 1 MHz mode⁽¹⁾ 0.6 μs 100 kHz mode 4000 IS34 Stop Condition THD:STO ns Hold Time 400 kHz mode 600 ns 1 MHz mode⁽¹⁾ 250 ns IS40 TAA:SCL Output Valid 100 kHz mode 0 3500 ns From Clock 400 kHz mode 0 1000 ns 1 MHz mode⁽¹⁾ 0 350 ns IS45 **Bus Free Time** 100 kHz mode 4.7 TBF:SDA Time the bus must be free μs _ before a new transmission 400 kHz mode 1.3 μs can start 1 MHz mode⁽¹⁾ 0.5 μs **Bus Capacitive Loading** 400 IS50 Св pF

TABLE 24-33: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHARACTERISTICS			Standar (unless Operatir	d Opera otherwing tempe	ating Cor se state erature	nditions d) -40°C ≤	: 3.0V to 3.6V TA \leq +85°C for Industrial
Param No.	Symbol	Characteristic	Min. Typ Max.		Units	Conditions	
		ADC Accuracy (12-bit Mode) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20a	Nr	Resolution	1:	2 data b	its	bits	
AD21a	INL	Integral Nonlinearity	-2 — +2 LSb VINL = AVSS = VF AVDD = VREFH =		VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1	—	- <1 LSb VINL = AVSS = VREFL AVDD = VREFH = 3.6\		VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25a	_	Monotonicity	_	_	_	_	Guaranteed
		ADC Accuracy (12-bit Mode	e) – Meas	uremen	ts with i	nternal	VREF+/VREF-
AD20a	Nr	Resolution	12 data bits bits				
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22a	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25a	—	Monotonicity	—	—	—	—	Guaranteed
	-	Dynamic	Performa	ince (12	-bit Mod	e)	
AD30a	THD	Total Harmonic Distortion	-77	-69	-61	dB	_
AD31a	SINAD	Signal to Noise and Distortion	59	63	64	dB	—
AD32a	SFDR	Spurious Free Dynamic Range	63	72	74	dB	_
AD33a	Fnyq	Input Signal Bandwidth	_	_	250	kHz	—
AD34a	ENOB	Effective Number of Bits	10.95	11.1	_	bits	

TABLE 24-36: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Revision H (March 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSC0 to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

TABLE A-2: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-Bit Microcontrollers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-Bit Microcontrollers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Microcontrollers.
Section 4.0 "Memory Organization"	Add Accumulator A and B SFRs (ACCAL, ACCAH, ACCAU, ACCBL, ACCBH and ACCBU) and updated the Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Updated Reset values for IPC3, IPC4, IPC11 and IPC13-IPC15 in the Interrupt Controller Register Map (see Table 4-5).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-31).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator Configuration"	Added Note 2 to the Oscillator System Diagram (see Figure 9-1).
	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 "System Clock sources" .
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).
Section 10.0 "Power-Saving	Added the following registers:
reatures"	• PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)
	PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)
	PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)
Section 11.0 "I/O Ports"	Added reference to pin diagrams for I/O pin availability and functionality (see Section 11.2 "Open-Drain Configuration").
Section 16.0 "Serial Peripheral Interface (SPI)"	Added Note 2 to the SPIxCON1 register (see Register 16-2).
Section 18.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register (see Register 18-2).