

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	41
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al31e88tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	High-density STM8AL3xE8x device block diagram	14
Figure 2.	Clock tree diagram	19
Figure 3.	STM8AL31E8A 80-pin package pinout (without LCD)	27
Figure 4.	STM8AL3LE8A 80-pin package pinout (with LCD).	27
Figure 5.	STM8AL31E89 64-pin pinout (without LCD).	28
Figure 6.	STM8AL3LE89 64-pin pinout (with LCD)	28
Figure 7.	STM8AL31E88 48-pin pinout (without LCD)	29
Figure 8.	STM8AL3LE88 48-pin pinout (with LCD)	29
Figure 9.	Memory map	39
Figure 10.	Pin loading conditions.	66
Figure 11.	Pin input voltage	67
Figure 12.	Power supply thresholds.	71
Figure 13.	Typical I _{DD(RUN)} from RAM vs. V _{DD} (HSI clock source), f _{CPU} =16 MHz ⁽¹⁾	73
Figure 14.	Typical $I_{DD(RUN)}$ from Flash vs. V_{DD} (HSI clock source), $f_{CPU} = 16 \text{ MHz}^{(1)}$	74
Figure 15.	Typical $I_{DD(Wait)}$ from RAM vs. V_{DD} (HSI clock source), $f_{CPU} = 16 \text{ MHz}^{(1)}$	76
Figure 16.	Typical $I_{DD(Wait)}$ from Flash (HSI clock source), $f_{CPU} = 16 \text{ MHz}^{(1)}$	76
Figure 17.	Typical IDD(JPR) vs. VDD (LSI clock source), all peripherals OFF	77
Figure 18.	Typical $I_{DD(I,PW)}$ vs. V_{DD} (LSI clock source), all peripherals OFF ⁽¹⁾	78
Figure 19.	Typical IDD(AH) vs. V הם (LSI clock source)	81
Figure 20.	Typical IDD(Halt) vs. Vpp (internal reference voltage OFF)	82
Figure 21.	HSE oscillator circuit diagram.	87
Figure 22.	LSE oscillator circuit diagram	88
Figure 23.	Typical HSI frequency vs. Voo	89
Figure 24.	Typical LSI clock source frequency vs. VDD	90
Figure 25.	Typical VIL and VIH vs. VDD (standard I/Os)	94
Figure 26.	Typical VIL and VIH vs. VDD (true open drain I/Os).	94
Figure 27.	Typical pull-up resistance Rpl vs. Vpp with VIN=VSS	95
Figure 28.	Typical pull-up current Ipu vs. Vpp with VIN=VSS	95
Figure 29.	Typical VOL @ VDD = 3.0 V (high sink ports)	97
Figure 30.	Typical VOL @ VDD = 1.8 V (high sink ports)	97
Figure 31.	Typical VOL @ VDD = 3.0 V (true open drain ports)	97
Figure 32.	Typical VOL @ VDD = 1.8 V (true open drain ports)	97
Figure 33.	Typical VDD - VOH @ VDD = 3.0 V (high sink ports).	97
Figure 34.	Typical VDD - VOH @ VDD = 1.8 V (high sink ports).	97
Figure 35.	Typical NRST pull-up resistance R_{PU} vs. V_{DD}	98
Figure 36.	Typical NRST pull-up current Inu vs. VDD	99
Figure 37.	Recommended NRST pin configuration	99
Figure 38.	SPI1 timing diagram - slave mode and CPHA=0	. 101
Figure 39.	SPI1 timing diagram - slave mode and CPHA=1 ⁽¹⁾	. 101
Figure 40.	SPI1 timing diagram - master mode ⁽¹⁾	. 102
Figure 41.	Typical application with I2C bus and timing diagram ⁽¹⁾)	. 104
Figure 42.	ADC1 accuracy characteristics	. 115
Figure 43.	Typical connection diagram using the ADC	. 115
Figure 44.	Power supply and reference decoupling ($V_{\text{REF+}}$ not connected to V_{DDA})	. 116
Figure 45.	Power supply and reference decoupling (VREF+ connected to VDDA)	. 116
Figure 46.	LQFP80 - 80-pin, 14 x 14 mm low-profile guad flat package outline	. 120
Figure 47.	LQFP80 - 80-pin, 14 x 14 mm low-profile guad flat package	-
-	recommended footprint	. 122

Figure 48.	LQFP80 marking example (package top view)	123
Figure 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline	124
Figure 50.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package	
-	recommended footprint	125
Figure 51.	LQFP64 marking example (package top view)	126
Figure 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	127
Figure 53.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package	
-	recommended footprint	129
Figure 54.	LQFP48 marking example (package top view)	130

3.2 Central processing unit STM8

3.2.1 Advanced STM8 Core

The 8-bit STM8 core is designed for code efficiency and performance with an Harvard architecture and a 3-stage pipeline.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing, and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16 Mbyte linear memory space
- 16-bit stack pointer access to a 64 Kbyte level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for lookup tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

3.2.2 Interrupt controller

The high-density STM8AL3xE8x devices feature a nested vectored interrupt controller:

- Nested interrupts with 3 software priority levels
- 32 interrupt vectors with hardware priority
- Up to 40 external interrupt sources on 11 vectors
- Trap and reset interrupts

Bootloader

A bootloader is available to reprogram the Flash memory using the USART1, USART2, USART3 (USARTs in asynchronous mode), SPI1 or SPI2 interfaces.

Pin description 4

Figure 3. STM8AL31E8A 80-pin package pinout (without LCD)

Pin 22 is reserved and must be tied to V_{DD} . 1

2. The above figure shows the package top view.

1. The above figure shows the package top view

n	Pin umb	er				I	npu	t	0	utpi	ut	_	
LQFP80	LQFP64	LQFP48	Pin name	Type	I/O level	floating	ndw	Ext. interrupt	High sink/source	OD	РР	Main function (after reset)	Default alternate function
58	46	-	PD5/TIM1_CH3 /LCD_SEG19 ⁽³⁾ / ADC1_IN9/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D5	Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/Comparator 1 positive input
-	-	34	PD5/TIM1_CH3 /LCD_SEG19 ⁽³⁾ / ADC1_IN9/SPI2_MOSI/ COMP1_INP	I/O	FT ⁽⁵⁾	x	x	х	HS	х	x	Port D5	Timer 1 - channel 3 / LCD segment 19 / ADC1_IN9/ SPI2 master out/slave in/Comparator 1 positive input
59	47		PD6/TIM1_BKIN /LCD_SEG20 ^{(3)/} ADC1_IN8/RTC_CALIB/ COMP1_INP/VREFINT	I/O	FT ⁽⁵⁾	x	x	x	HS	x	x	Port D6	Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration/Comparator 1 positive input/Internal reference voltage output
-	-	35	PD6/TIM1_BKIN /LCD_SEG20 ^{(3)/} ADC1_IN8/RTC_CALIB/ SPI2_SCK/COMP1_INP/ VREFINT	I/O	FT ⁽⁵⁾	x	x	x	HS	x	x	Port D6	Timer 1 - break input / LCD segment 20 / ADC1_IN8 / RTC calibration/SPI2 clock/Comparator 1 positive input/Internal reference voltage output
60	48	-	PD7/TIM1_CH1N /LCD_SEG21 ⁽³⁾ / ADC1_IN7/RTC_ALARM/ COMP1_INP/VREFINT	I/O	FT ⁽⁵⁾	x	x	x	HS	x	x	Port D7	Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm/Comparator 1 positive input/Internal reference voltage output
-	-	36	PD7/TIM1_CH1N /LCD_SEG21 ⁽³⁾ / ADC1_IN7/RTC_ALARM/ SPI2_NSS/COMP1_INP/V REFINT	I/O	FT ⁽⁵⁾	x	x	x	HS	x	x	Port D7	Timer 1 - inverted channel 1/ LCD segment 21 / ADC1_IN7 / RTC alarm /SPI2 master/slave select/Comparator 1 positive input/Internal reference voltage output
61	49	-	PG4/LCD_SEG32/ SPI2_NSS	I/O	FT ⁽⁵⁾	x	х	х	HS	х	х	Port G4	LCD segment 32 / SPI2 master/slave select
62	50	-	PG5/LCD_SEG33/ SPI2_SCK	I/O	FT ⁽⁵⁾	X	х	х	HS	х	х	Port G5	LCD segment 33 / SPI2 clock
63	51	-	PG6/LCD_SEG34/ SPI2_MOSI	I/O	FT ⁽⁵⁾	x	х	х	HS	х	х	Port G6	LCD segment 34 / SPI2 master out- slave in

Table 5. High-density STM8AL3xE8x pin description (continued)

Memory area	Size	Start address	End address	
RAM	4 Kbyte	0x00 0000	0x00 0FFF	
Flash program memory	64 Kbyte	0x00 8000	0x01 7FFF	

Table 6. Flash and RAM boundary addresses

5.2 Register map

Table	7.	Factory	conversion	registers
IUNIO	•••	i aotory	00111010101011	regiotore

Address	Block	Register label	Register name	Reset status
0x00 4910	-	VREFINT_Factory_CONV ⁽¹⁾	Internal reference voltage factory conversion	0xXX
0x00 4911	-	TS_Factory_CONV_V125 ⁽²⁾	Temperature sensor output voltage	0xXX

1. The VREFINT Factory_CONV byte represents the 8 LSB of the result of the VREFINT 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x6.

2. The TS_Factory_CONV_V125 byte represents the 8 LSB of the result of the V125 12-bit ADC conversion performed in factory. The 2 MSB have a fixed value: 0x3.

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003	-	PA_CR1	Port A control register 1	0x01
0x00 5004	-	PA_CR2	PA_CR2 Port A control register 2	
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006	-	PB_IDR	Port B input pin value register	0xXX
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008	-	PB_CR1	Port B control register 1	0x00
0x00 5009	-	PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B	-	PB_IDR	Port C input pin value register	0xXX
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D]	PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00

Table 8. I/O port hardware register map

			regiotor map (continued)	
Address	Block	Register label	Register name	Reset status
0x00 5400		LCD_CR1	LCD control register 1	0x00
0x00 5401		LCD_CR2	LCD control register 2	0x00
0x00 5402		LCD_CR3	LCD control register 3	0x00
0x00 5403		LCD_FRQ	LCD frequency selection register	0x00
0x00 5404		LCD_PM0	LCD Port mask register 0	0x00
0x00 5405		LCD_PM1	LCD Port mask register 1	0x00
0x00 5406		LCD_PM2	LCD Port mask register 2	0x00
0x00 5407	-	LCD_PM3	LCD Port mask register 3	0x00
0x00 5408		LCD_PM4	LCD Port mask register 4	0x00
0x00 5409		LCD_PM5	LCD Port mask register 5	0x00
0x00 540A to 0x00 540B			Reserved area (2 byte)	•
0x00 540C		LCD_RAM0	LCD display memory 0	0x00
0x00 540D		LCD_RAM1	LCD display memory 1	0x00
0x00 540E		LCD_RAM2	LCD display memory 2	0x00
0x00 540F		LCD_RAM3	LCD display memory 3	0x00
0x00 5410		LCD_RAM4	LCD display memory 4	0x00
0x00 5411		LCD_RAM5	LCD display memory 5	0x00
0x00 5412		LCD_RAM6	LCD display memory 6	0x00
0x00 5413		LCD_RAM7	LCD display memory 7	0x00
0x00 5414		LCD_RAM8	LCD display memory 8	0x00
0x00 5415		LCD_RAM9	LCD display memory 9	0x00
0x00 5416		LCD_RAM10	LCD display memory 10	0x00
0x00 5417		LCD_RAM11	LCD display memory 11	0x00
0x00 5418		LCD_RAM12	LCD display memory 12	0x00
0x00 5419		LCD_RAM13	LCD display memory 13	0x00
0x00 541A		LCD_RAM14	LCD display memory 14	0x00
0x00 541B		LCD_RAM15	LCD display memory 15	0x00
0x00 541C		LCD_RAM16	LCD display memory 16	0x00
0x00 541D		LCD_RAM17	LCD display memory 17	0x00
0x00 541E]	LCD_RAM18	LCD display memory 18	0x00
0x00 541F	1	LCD_RAM19	LCD display memory 19	0x00
0x00 5420]	LCD_RAM20	LCD display memory 20	0x00
0x00 5421		LCD_RAM21	LCD display memory 21	0x00

 Table 9. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5422 to 0x00 542E			Reserved area	•
0x00 542F	LCD	LCD_CR4	LCD control register 4	0x00
0x00 5430			Reserved area (1 byte)	0x00
0x00 5431		RI_ICR1	Timer input capture routing register 1	0x00
0x00 5432		RI_ICR2	Timer input capture routing register 2	0x00
0x00 5433		RI_IOIR1	I/O input register 1	0xXX
0x00 5434		RI_IOIR2	I/O input register 2	0xXX
0x00 5435		RI_IOIR3	I/O input register 3	0xXX
0x00 5436		RI_IOCMR1 I/O control mode register 1		0x00
0x00 5437		RI_IOCMR2	I/O control mode register 2	0x00
0x00 5438		RI_IOCMR3	I/O control mode register 3	0x00
0x00 5439		RI_IOSR1	I/O switch register 1	0x00
0x00 543A		RI_IOSR2	I/O switch register 2	0x00
0x00 543B		RI_IOSR3	I/O switch register 3	0x00
0x00 543C		RI_IOGCR	I/O group control register	0x3F
0x00 543D		RI_ASCR1	Analog switch register 1	0x00
0x00 543E		RI_ASCR2	Analog switch register 2	0x00
0x00 543F		RI_RCR	Resistor control register 1	0x00
0x00 5440		COMP_CSR1	Comparator control and status register 1	0x00
0x00 5441]	COMP_CSR2	Comparator control and status register 2	0x00
0x00 5442	COMP1/ COMP2	COMP_CSR3	Comparator control and status register 3	0x00
0x00 5443		COMP_CSR4	Comparator control and status register 4	0x00
0x00 5444	1	COMP_CSR5	Comparator control and status register 5	0x00

 Table 9. General hardware register map (continued)

1. These registers are not impacted by a system reset. They are reset at power-on.

6 Interrupt vector mapping

Note: Slope control of all GPIO pins can be programmed except true open drain pins and by default is limited to 2 MHz.

IRQ No.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Wakeup from Wait (WFI mode)	Wakeup from Wait (WFE mode) ⁽¹⁾	Vector address
	RESET	Reset	Yes	Yes	Yes	Yes	0x00 8000
	TRAP	Software interrupt	-	-	-	-	0x00 8004
0	TLI ⁽²⁾	External Top level Interrupt	-	-	-	-	0x00 8008
1	FLASH	EOP/WR_PG_DIS	-	-	Yes	Yes ⁽³⁾	0x00 800C
2	DMA1 0/1	DMA1 channels 0/1	-	-	Yes	Yes ⁽³⁾	0x00 8010
3	DMA1 2/3	DMA1 channels 2/3	-	-	Yes	Yes ⁽³⁾	0x00 8014
4	RTC/LSE_ CSS	RTC alarm interrupt/LSE CSS interrupt	Yes	Yes	Yes	Yes	0x00 8018
5	EXTI E/F/PVD ⁽⁴⁾	PortE/F interrupt/PVD interrupt	Yes	Yes	Yes	Yes ⁽³⁾	0x00 801C
6	EXTIB/G	External interrupt port B/G	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8020
7	EXTID/H	External interrupt port D/H	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8024
8	EXTI0	External interrupt 0	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8028
9	EXTI1	External interrupt 1	Yes	Yes	Yes	Yes ⁽³⁾	0x00 802C
10	EXTI2	External interrupt 2	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8030
11	EXTI3	External interrupt 3	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8034
12	EXTI4	External interrupt 4	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8038
13	EXTI5	External interrupt 5	Yes	Yes	Yes	Yes ⁽³⁾	0x00 803C
14	EXTI6	External interrupt 6	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8040
15	EXTI7	External interrupt 7	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8044
16	LCD/AES	LCD interrupt/AES interrupt	-	-	Yes	Yes	0x00 8048
17	CLK/ TIM1/ DAC	System clock switch/CSS interrupt/TIM1 break/DAC	-	-	Yes	Yes	0x00 804C
18	COMP1/ COMP2 ADC1	Comparator 1 and 2 interrupt/ADC1	Yes	Yes	Yes	Yes ⁽³⁾	0x00 8050

Table 11. Interrupt mapping

8 Unique ID

STM8 devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier are never altered by the user.

The unique device identifier is read in single byte and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits							
Auuress	description	7	6	5	4	3	2	1	0
0x4926	X co-ordinate on		U_ID[7:0]						
0x4927	the wafer	U_ID[15:8]							
0x4928	Y co-ordinate on		U_ID[23:16]						
0x4929	the wafer		U_ID[31:24]						
0x492A	Wafer number		U_ID[39:32]						
0x492B			U_ID[47:40]						
0x492C					U_II	D[55:48]			
0x492D			U_ID[63:56]						
0x492E	Lot number				U_II	D[71:64]			
0x492F					U_II	D[79:72]			
0x4930					U_I	D[87:80]			
0x4931					U_I[D[95:88]			

Table 14. Unique ID registers (96 bits)

LSE external clock (LSEBYP=1 in CLK_ECKCR)

The LSE is available on STM8AL31E8x devices only.

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Min.	Тур.	Max.	Unit
f _{LSE_ext}	External clock source frequency	-	32.768	-	kHz
V _{LSEH}	OSC32_IN input pin high-level voltage	0.7xV _{DD} ⁽¹⁾	-	$V_{DD}^{(1)}$	V
V _{LSEL}	OSC32_IN input pin low-level voltage	V _{SS} ⁽¹⁾		$0.3 \mathrm{xV_{DD}}^{(1)}$	v
C _{in(LSE)}	OSC32_IN input capacitance	-	0.6	-	pF
I _{LEAK_LSE}	OSC32_IN input leakage current	-	-	±500	nA

Table 31. LSE external clock characteristics

1. Guaranteed by characterization results.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
f _{HSE}	High speed external oscillator frequency	-	1	-	16	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
C ⁽¹⁾⁽²⁾	Recommended load capacitance	-	-	20	-	pF	
		C = 20 pF, f _{OSC} = 16 MHz	-	-	2.5 (startup) 0.7 (stabilized) ⁽³⁾	m۸	
I _{DD(HSE)}	HSE oscillator power consumption	C = 10 pF, f _{OSC} =16 MHz	-	-	2.5 (startup) 0.46 (stabilized) ⁽³⁾	mА	
9 _m	Oscillator transconductance	-	3.5 ⁽³⁾	-	-	mA/V	
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized		1	-	ms	

Table 32. HSE oscillator characteristics

1. $C=C_{L1}=C_{L2}$ is approximately equivalent to 2 x crystal C_{LOAD} .

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Guaranteed by design.

t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 16 MHz oscillation. This value is measured for a standard crystal resonator and it varies significantly with the crystal manufacturer.

NRST pin

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IL(NRST)}	NRST input low-level voltage	-	$V_{SS}^{(1)}$	-	0.8 ⁽¹⁾	
V _{IH(NRST)}	NRST input high-level voltage ⁽¹⁾	-	1.4 ⁽¹⁾	-	$V_{DD}^{(1)}$	
	NPST output low lovel voltage (1)	I_{OL} = 2 mA for 2.7 V \leq V _{DD} \leq 3.6 V	-	-	0.4(1)	V
V _{OL(NRST)}	INRST output low-level voltage 🖓	I _{OL} = 1.5 mA for V _{DD} < 2.7 V	-	-	0.4	
V _{HYST}	NRST input hysteresis	-	10%V _{DD} (2)(3)	-	-	mV
R _{PU(NRST)}	NRST pull-up equivalent resistor	-	30 ⁽¹⁾	45	60 ⁽¹⁾	kΩ
V _{F(NRST)}	NRST input filtered pulse	_	-	-	50 ⁽³⁾	ne
V _{NF(NRST)}	NRST input not filtered pulse	_	300 ⁽³⁾	-	-	115

Table 45. NRST pin characteristics

1. Guaranteed by characterization results.

2. 200 mV min.

3. Guaranteed by design.

Figure 35. Typical NRST pull-up resistance $R_{PU} \mbox{ vs. } V_{DD}$

Figure 40. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

9.3.10 Embedded reference voltage

In the following table, data are based on characterization results, not tested in production, unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{REFINT}	Internal reference voltage consumption	-	-	1.4	-	μΑ
T _{S_VREFINT} ⁽¹⁾⁽²⁾	ADC sampling time when reading the internal reference voltage	-	-	5	10	μs
I _{BUF} ⁽¹⁾	Internal reference voltage buffer consumption (used for ADC)	-	-	13.5	25	μΑ
V _{REFINT out}	Reference voltage output	-	1.202 (3)	1.224	1.242 (3)	V
I _{LPBUF} ⁽¹⁾	Internal reference voltage low-power buffer consumption (used for comparators or output)	-	-	730	1200	nA
I _{REFOUT} ⁽¹⁾⁽⁴⁾	Buffer output current	-	-	-	1	μA
C _{REFOUT}	Reference voltage output load	-	-	-	50	pF
t _{VREFINT} ⁽¹⁾	Internal reference voltage startup time	-	-	2	3	ms
t _{BUFEN} ⁽¹⁾⁽²⁾	Internal reference voltage buffer startup time once enabled	-	-	-	10	μs
ACC _{VREFINT} ⁽⁵⁾	Accuracy of V _{REFINT} stored in the VREFINT_Factory_CONV byte	-	-	-	± 5	mV
STAR	Stability of V _{REFINT} over temperature	-40 °C \leq T _A \leq 125 °C	-	20	50	ppm/°C
5 TABVREFINT	Stability of V _{REFINT} over temperature	$0 \degree C \leq T_A \leq 50 \degree C$	-	-	20	ppm/°C
STAB _{VREFINT}	Stability of V _{REFINT} after 1000 hours	-	-	-	TBD	ppm

Table 43. Reference vollage characteristics	Table 49.	Reference	voltage	characteristics
---	-----------	-----------	---------	-----------------

1. Guaranteed by design.

2. Defined when ADC output reaches its final value $\pm 1/2LSB$

3. Tested in production at V_{DD} = 3 V ±10 mV.

4. To guarantee less than 1% $V_{\mbox{\scriptsize REFOUT}}$ deviation

5. Measured at V_{DD} = 3 V ±10 mV. This value takes into account V_{DD} accuracy and ADC conversion accuracy.

In the following three tables, data are guaranteed by characterization result, not tested in production.

Symbol	Parameter	Conditions	Тур.	Max. ⁽¹⁾	Unit
DNL		f _{ADC} = 16 MHz	1	1.6	
	Differential non linearity	f _{ADC} = 8 MHz	1	1.6	
		f _{ADC} = 4 MHz	1	1.5	
		f _{ADC} = 16 MHz	1.2	2	
INL	Integral non linearity	f _{ADC} = 8 MHz	1.2	1.8	LSB
		f _{ADC} = 4 MHz	1.2	1.7	
TUE	Total unadjusted error	f _{ADC} = 16 MHz	2.2	3.0	
		f _{ADC} = 8 MHz	1.8	2.5	
		f _{ADC} = 4 MHz	1.8	2.3	
		f _{ADC} = 16 MHz	1.5	2	
Offset	Offset error	f _{ADC} = 8 MHz	1	1.5	
		f _{ADC} = 4 MHz	0.7	1.2	
		f _{ADC} = 16 MHz			LOD
Gain	Gain error	f _{ADC} = 8 MHz	1	1.5	
		f _{ADC} = 4 MHz			

Table 57	ADC1 accurat	w with V	$= 33Vt_{0}$	25V
	ADGIACCUIA		Δ – 3.3 V IC	J Z.J V

1. Guaranteed by characterization results.

Table 58. ADC1 accuracy with $V_{DDA} = 2.4$ V to 3.6 V	.6 V	DDA = 2.4 V to 3	accuracy with	Table 58, ADC1
---	------	------------------	---------------	----------------

Symbol	Parameter	Тур.	Max. ⁽¹⁾	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	1.7	3	LSB
TUE	Total unadjusted error	2	4	LSB
Offset	Offset error	1	2	LSB
Gain	Gain error	1.5	3	LSB

1. Guaranteed by characterization results.

Table 59. ADC	I accuracy with	$V_{DDA} = V_{REF}$	⁺ = 1.8 V to 2.4 V
---------------	-----------------	---------------------	-------------------------------

Symbol	Parameter	Тур.	Max. ⁽¹⁾	Unit
DNL	Differential non linearity	1	2	LSB
INL	Integral non linearity	2	3	LSB
TUE	Total unadjusted error	3	5	LSB

10 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10.1 LQFP80 package information

Figure 46. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

10.2 LQFP64 package information

Figure 49. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 66. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat					
package mechanical data					

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 51. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

Figure 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

