E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 28x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8al31e8atcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	High-density STM8AL3xE8x device block diagram	14
Figure 2.	Clock tree diagram	19
Figure 3.	STM8AL31E8A 80-pin package pinout (without LCD)	27
Figure 4.	STM8AL3LE8A 80-pin package pinout (with LCD).	27
Figure 5.	STM8AL31E89 64-pin pinout (without LCD).	28
Figure 6.	STM8AL3LE89 64-pin pinout (with LCD)	28
Figure 7.	STM8AL31E88 48-pin pinout (without LCD)	29
Figure 8.	STM8AL3LE88 48-pin pinout (with LCD)	29
Figure 9.	Memory map	39
Figure 10.	Pin loading conditions.	66
Figure 11.	Pin input voltage	67
Figure 12.	Power supply thresholds.	71
Figure 13.	Typical I _{DD(RUN)} from RAM vs. V _{DD} (HSI clock source), f _{CPU} =16 MHz ⁽¹⁾	73
Figure 14.	Typical $I_{DD(RUN)}$ from Flash vs. V_{DD} (HSI clock source), $f_{CPU} = 16 \text{ MHz}^{(1)}$	74
Figure 15.	Typical $I_{DD(Wait)}$ from RAM vs. V_{DD} (HSI clock source), $f_{CPU} = 16 \text{ MHz}^{(1)}$	76
Figure 16.	Typical $I_{DD(Wait)}$ from Flash (HSI clock source), $f_{CPU} = 16 \text{ MHz}^{(1)}$	76
Figure 17.	Typical IDD(JPR) vs. VDD (LSI clock source), all peripherals OFF	77
Figure 18.	Typical $I_{DD(I,PW)}$ vs. V_{DD} (LSI clock source), all peripherals OFF ⁽¹⁾	78
Figure 19.	Typical IDD(AH) vs. V הם (LSI clock source)	81
Figure 20.	Typical IDD(Halt) vs. Vpp (internal reference voltage OFF)	82
Figure 21.	HSE oscillator circuit diagram.	87
Figure 22.	LSE oscillator circuit diagram	88
Figure 23.	Typical HSI frequency vs. Voo	89
Figure 24.	Typical LSI clock source frequency vs. VDD	90
Figure 25.	Typical VIL and VIH vs. VDD (standard I/Os)	94
Figure 26.	Typical VIL and VIH vs. VDD (true open drain I/Os).	94
Figure 27.	Typical pull-up resistance Rpl vs. Vpp with VIN=VSS	95
Figure 28.	Typical pull-up current Ipu vs. Vpp with VIN=VSS	95
Figure 29.	Typical VOL @ VDD = 3.0 V (high sink ports)	97
Figure 30.	Typical VOL @ VDD = 1.8 V (high sink ports)	97
Figure 31.	Typical VOL @ VDD = 3.0 V (true open drain ports)	97
Figure 32.	Typical VOL @ VDD = 1.8 V (true open drain ports)	97
Figure 33.	Typical VDD - VOH @ VDD = 3.0 V (high sink ports).	97
Figure 34.	Typical VDD - VOH @ VDD = 1.8 V (high sink ports).	97
Figure 35.	Typical NRST pull-up resistance R_{PU} vs. V_{DD}	98
Figure 36.	Typical NRST pull-up current Inu vs. VDD	99
Figure 37.	Recommended NRST pin configuration	99
Figure 38.	SPI1 timing diagram - slave mode and CPHA=0	. 101
Figure 39.	SPI1 timing diagram - slave mode and CPHA=1 ⁽¹⁾	. 101
Figure 40.	SPI1 timing diagram - master mode ⁽¹⁾	. 102
Figure 41.	Typical application with I2C bus and timing diagram ⁽¹⁾)	. 104
Figure 42.	ADC1 accuracy characteristics	. 115
Figure 43.	Typical connection diagram using the ADC	. 115
Figure 44.	Power supply and reference decoupling ($V_{\text{REF+}}$ not connected to V_{DDA})	. 116
Figure 45.	Power supply and reference decoupling (VREF+ connected to VDDA)	. 116
Figure 46.	LQFP80 - 80-pin, 14 x 14 mm low-profile guad flat package outline	. 120
Figure 47.	LQFP80 - 80-pin, 14 x 14 mm low-profile guad flat package	-
-	recommended footprint	. 122

STM8AL ultra-low-power microcontrollers operates either from 1.8 to 3.6 V (down to 1.65 V at power-down) or from 1.65 to 3.6 V. They are available in the -40 to +85 $^{\circ}$ C and -40 to +125 $^{\circ}$ C temperature ranges.

These features make the STM8AL ultra-low-power microcontroller families suitable for a wide range of applications.

The devices are offered in one 48-pin package. Different sets of peripherals are included depending on the device. Refer to *Section 3* for an overview of the complete range of peripherals proposed in this family.

All STM8AL ultra-low-power products are based on the same architecture with the same memory mapping and a coherent pinout.

Figure 1 shows the block diagram of the high-density STM8AL3xE8x families.

2.2 Device overview

Table 2. High-density STM8AL3xE8x low-power device features and peripheral counts

Features		STM8AL3xx8	STM8AL3xx9	STM8AL3xxA				
Flash (Kbyte)			64					
Data EEPROM (KI	byte)		2					
AES			1					
LCD		8x28 or 4x32 ⁽¹⁾	8x36 or 4x40 ⁽¹⁾	8x40 or 4x44 ⁽¹⁾				
	Basic	1 (8-bit)	1 (8-bit)	1 (8-bit)				
Timers	General purpose	3 (16-bit)	3 (16-bit)	3 (16-bit)				
	Advanced control	1 (16-bit)	1 (16-bit)	1 (16-bit)				
	SPI	2	2	2				
Communication	12C	1	1	1				
	USART	3	3	3				
GPIOs		41 ⁽²⁾	41 ⁽²⁾ 54 ⁽²⁾					
12-bit synchronize (number of channe	d ADC els)	1 (25)	1 (28)	1 (28)				
12-Bit DAC		2	2	2				
Number of channe	ls	2	2	2				
Comparators (CO	MP1/COMP2)	2	2 2					
Others		RTC, window watchdog, independent watchdog, 16-MHz and 38-kHz internal RC, 1- to 16-MHz and 32-kHz external oscillator						
CPU frequency			16 MHz					
Operating voltage		1.8 to 3.6 V (down to 1.65 V at power-down) with BOR						
Operating tempera	ature	-4	-40 to +85 °C / -40 to +125 °C					
Packages		LQFP48	LQFP64	LQFP80				

1. STM8AL3LE8x versions only.

2. The number of GPIOs given in this table includes the NRST/PA1 pin but the application can use the NRST/PA1 pin as general purpose output only (PA1).

3.3 Reset and supply management

3.3.1 Power supply scheme

The device requires a 1.65 V to 3.6 V operating supply voltage (V_{DD}). The external power supply pins must be connected as follows:

- V_{SS1}, V_{DD1}, V_{SS2}, V_{DD2}, V_{SS3}, V_{DD3}, V_{SS4}, V_{DD4}= 1.65 to 3.6 V: external power supply for I/Os and for the internal regulator. Provided externally through V_{DD} pins, the corresponding ground pin is V_{SS}. V_{SS1}/V_{SS2}/V_{SS3}/V_{SS4} and V_{DD1}/V_{DD2}/V_{DD3}/V_{DD4} must not be left unconnected.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external power supplies for analog peripherals (minimum voltage to be applied to V_{DDA} is 1.8 V when the ADC1 is used). V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{REF+}, V_{REF-} (for ADC1): external reference voltage for ADC1. Must be provided externally through V_{REF+} and V_{REF-} pin.
- V_{REF+} (for DAC1/2): external voltage reference for DAC1 and DAC2 must be provided externally through V_{REF+}.

3.3.2 Power supply supervisor

The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR), coupled with a brownout reset (BOR) circuitry. At power-on, BOR is always active, and ensures proper operation starting from 1.8 V. As soon as the 1.8 V BOR threshold is reached, the option byte loading process starts, either to confirm or modify the default thresholds, or to disable BOR permanently. In this latter case, the V_{DD} min value at power down is 1.65 V.

Five BOR thresholds are available through option byte, starting from 1.8 V to 3 V. To reduce the power consumption in Halt mode, it is possible to automatically switch off the internal reference voltage (and consequently the BOR) in Halt mode. The device remains in reset state when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt is generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine generates then a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.9 Analog-to-digital converter

- 12-bit analog-to-digital converter (ADC1) with 28 channels (including 4 fast channel), temperature sensor and internal reference voltage
- Conversion time down to 1 µs with f_{SYSCLK}= 16 MHz
- Programmable resolution
- Programmable sampling time
- Single and continuous mode of conversion
- Scan capability: automatic conversion performed on a selected group of analog inputs
- Analog watchdog: interrupt generation when the converted voltage is outside the programmed threshold
- Triggered by timer

Note: ADC1 can be served by DMA1.

3.10 Digital-to-analog converter

- 12-bit DAC with 2 buffered outputs (two digital signals are converted into two analog voltage signal outputs)
- Synchronized update capability using timers
- DMA capability for each channel
- External triggers for conversion
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels with independent or simultaneous conversions
- Input reference voltage V_{REF+} for better resolution

Note: DAC can be served by DMA1.

3.11 Ultra-low-power comparators

The high-density STM8AL3xE8x devices embed two comparators (COMP1 and COMP2) sharing the same current bias and voltage reference. The voltage reference is an internal or external (coming from an I/O).

- One comparator with fixed threshold (COMP1).
- One comparator rail to rail with fast or slow mode (COMP2). The threshold is one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage or internal reference voltage submultiple (1/4, 1/2, 3/4)

The two comparators are usable together to offer a window function. They wake up from Halt mode.

It is clocked by the internal LSI RC clock source, and thus stays active even in case of a CPU clock failure.

3.16 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

3.17 Communication interfaces

3.17.1 SPI

The serial peripheral interfaces (SPI1 and SPI2) provide half/ full duplex synchronous serial communication with external devices.

- Maximum speed: 8 Mbit/s (f_{SYSCLK}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on 2 lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- Hardware CRC calculation
- Slave/master selection input pin

Note: SPI1 and SPI2 can be served by the DMA1 Controller.

3.17.2 I²C

The I²C bus interface (I2C1) provides multi-master capability, and controls all I²C busspecific sequencing, protocol, arbitration and timing.

- Master, slave and multi-master capability
- Standard mode up to 100 kHz and fast speed modes up to 400 kHz.
- 7-bit and 10-bit addressing modes.
- SMBus 2.0 and PMBus support
- Hardware CRC calculation

Note: l^2C1 can be served by the DMA1 Controller.

5 Memory and register map

5.1 Memory mapping

The memory map is shown in *Figure 9*.

1. Refer to *Table 9* for an overview of hardware register mapping, to *Table 8* for details on I/O port hardware registers, and to *Table 10* for information on CPU/SWIM/debug module controller registers.

DocID027180 Rev 5

7 Option byte

Option byte contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated memory block.

All option byte can be modified in ICP mode (with SWIM) by accessing the EEPROM address. See *Table 12* for details on option byte addresses.

The option byte can also be modified 'on the fly' by the application in IAP mode, except for the ROP, UBC and PCODESIZE values which are only taken into account when they are modified in ICP mode (with the SWIM).

Refer to the STM8AL31E8x/STM8AL3LE8x Flash programming manual (PM0054) and STM8 SWIM and Debug Manual (UM0470) for information on SWIM programming procedures.

Address	Ontion nome	Option	Option bits F				Option bits				Factory
Address	Option name	No.	7	6	5	4	3	2	1	0	setting
00 4800	Read-out protection (ROP)	OPT0		ROP[7:0]					0xAA		
00 4802	UBC (User Boot code size)	OPT1		UBC[7:0]				0x00			
00 4807	PCODESIZE	OPT2		PCODE[7:0]					0x00		
00 4808	Independent watchdog option	OPT3 [3:0]		Reserved WWDG \			WWDG _HW	IWDG _HALT	IWDG _HW	0x00	
00 4809	Number of stabilization clock cycles for HSE and LSE oscillators	OPT4		Reserved LSECNT[1:0] HSECNT[1:0]				NT[1:0]	0x00		
00 480A	Brownout reset (BOR)	OPT5 [3:0]		Reserved BOR_TH BOR_ON				BOR_ ON	0x01		
00 480B	Bootloader	OPTBL							0x00		
00 480C	(OPTBL)	[15:0]				O	PIBL[15:0	J			0x00

Table 12. Option byte addresses

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		BOR0 threshold	-	40 ⁽¹⁾	-	
Vhyst	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100 ⁽¹⁾	-	mV

Table 20. Embedded reset and power control block characteristics (continued)

1. Guaranteed by design.

2. Guaranteed by characterization results.

Figure 12. Power supply thresholds

DocID027180 Rev 5

Figure 15. Typical I_{DD(Wait)} from RAM vs. V_{DD} (HSI clock source), f_{CPU} = 16 MHz⁽¹⁾

1. Typical current consumption measured with code executed from RAM.

1. Typical current consumption measured with code executed from Flash.

In the following table, data are based on characterization results, unless otherwise specified.

Symbol	Parameter		Condition	s ⁽¹⁾	Тур.	Max. ⁽²⁾	Unit	
				T_A = -40 °C to 25 °C	0.90	2.10		
			LCD OFF ⁽³⁾	T _A = 85 °C	1.50	3.40		
				T _A = 125 °C	5.10	12.00		
			LCD ON	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.40	3.10		
			(static duty/ external	T _A = 85 °C	1.90	4.30		
	Supply current in	LSI RC	V _{LCD}) ⁽⁴⁾	T _A = 125 °C	5.50	13.00	٩	
^I DD(AH)	Active-halt mode	(at 38 kHz)	LCD ON	T_A = -40 °C to 25 °C	1.90	4.30	μA	
			(1/4 duty/ external	T _A = 85 °C	2.40	5.40		
			V _{LCD}) ⁽⁵⁾	T _A = 125 °C	6.00	15.00		
			LCD ON	T_A = -40 °C to 25 °C	3.90	8.75	-	
			(1/4 duty/ internal V _{LCD}) ⁽⁶⁾	T _A = 85 °C	4.50	10.20		
				T _A = 125 °C	6.80	16.30		
	Supply current in		LCD OFF ⁽⁸⁾ LCD ON (static duty/ external V _{LCD}) ⁽⁴⁾	T_A = -40 °C to 25 °C	0.50	1.20		
				T _A = 85 °C	0.90	2.10		
				T _A = 125 °C	4.80	11.00		
				T_A = -40 °C to 25 °C	0.85	1.90		
				T _A = 85 °C	1.30	3.20		
		LSE external clock		T _A = 125 °C	5.00	12.00		
^I DD(AH)	Active-halt mode	(32.768 kHz)	LCD ON	T_A = -40 °C to 25 °C	1.50	2.50	μA	
		(')	(1/4 duty/ external	T _A = 85 °C	1.80	4.20	-	
			V _{LCD}) ⁽⁵⁾	T _A = 125 °C	5.70	14.00		
			LCD ON	T_A = -40 °C to 25 °C	3.40	7.60		
			(1/4 duty/ internal	T _A = 85 °C	3.90	9.20		
			V _{LCD}) ⁽⁶⁾	T _A = 125 °C	6.30	15.20		
I _{DD} (WUFAH)	Supply current during wakeup time from Active- halt mode (using HSI)	-	-	-	2.40	-	mA	

Table 25. Total current consumption and timing in Active-halt mode at V_{DD} = 1.65 V to 3.6 V

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
f _{LSE}	Low speed external oscillator frequency	-	-	32.768	-	kHz
R _F	Feedback resistor	∆V = 200 mV	-	1.2	-	MΩ
C ⁽¹⁾⁽²⁾	Recommended load capacitance	-	-	8	-	pF
		V _{DD} = 1.8 V	-	450	-	
I _{DD(LSE)}	LSE oscillator power consumption	V _{DD} = 3 V	-	600	-	nA
		V _{DD} = 3.6 V	-	750	-	
9 _m	Oscillator transconductance	-	3 ⁽³⁾	-	-	μA/V
t _{SU(LSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	1	-	S

Table 33. LSE oscillator c	haracteristics
----------------------------	----------------

1. $C=C_{L1}=C_{L2}$ is approximately equivalent to 2 x crystal C_{LOAD} .

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with a small R_m value. Refer to crystal manufacturer for more details.

3. Guaranteed by design.

4. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation. This value is measured for a standard crystal resonator and it varies significantly with the crystal manufacturer.

Figure 22. LSE oscillator circuit diagram

Internal clock sources

Subject to general operating conditions for V_{DD} , and T_A .

High speed internal RC oscillator (HSI)

In the following table, data are based on characterization results, not tested in production, unless otherwise specified.

Figure 38. SPI1 timing diagram - slave mode and CPHA=0

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

Figure 40. SPI1 timing diagram - master mode⁽¹⁾

1. Measurement points are done at CMOS levels: $0.3V_{\text{DD}}$ and $0.7V_{\text{DD}}.$

Figure 41. Typical application with I²C bus and timing diagram⁽¹⁾⁾

1. Measurement points are done at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

9.3.9 LCD controller (STM8AL3LE8x only)

In the following table, data are guaranteed by design, not tested in production.

Symbol	Parameter	Min.	Тур.	Max.	Unit
V_{LCD}	LCD external voltage	-	-	3.6	
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	
V _{LCD1}	LCD internal reference voltage 1	-	2.7	-	
V _{LCD2}	LCD internal reference voltage 2	-	2.8	-	
V _{LCD3}	LCD internal reference voltage 3	-	3.0	-	V
V _{LCD4}	LCD internal reference voltage 4	-	3.1	-	
V _{LCD5}	LCD internal reference voltage 5	-	3.2	-	
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-	
V _{LCD7}	LCD internal reference voltage 7	-	3.5	-	
C _{EXT}	V _{LCD} external capacitance	0.1	1	2	μF
I	Supply current ⁽¹⁾ at V_{DD} = 1.8 V	-	3	-	
DD	Supply current ⁽¹⁾ at V_{DD} = 3 V -		3	-	μΑ
R _{HN} ⁽²⁾	High value resistive network (low drive)	-	6.6	-	MΩ
$R_{LN}^{(3)}$	Low value resistive network (high drive)	-	240	-	kΩ
V ₃₃	Segment/Common higher level voltage	-	-	V _{LCDx}	
V ₃₄	Segment/Common 3/4 level voltage	-	3/4V _{LCDx}	-	
V ₂₃	Segment/Common 2/3 level voltage	-	2/3V _{LCDx}	-	
V ₁₂	Segment/Common 1/2 level voltage	-	1/2V _{LCDx}	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3V _{LCDx}	-	
V ₁₄	Segment/Common 1/4 level voltage	-	1/4V _{LCDx}	-	
V ₀	Segment/Common lowest level voltage	0	-	-	

Table	48.	LCD	characteristics

1. LCD enabled with 3 V internal booster (LCD_CR1 = 0x08), 1/4 duty, 1/3 bias, division ratio= 64, all pixels active, no LCD connected.

2. $\ R_{HN}$ is the total high value resistive network.

3. $\ R_{LN}$ is the total low value resistive network.

VLCD external capacitor (STM8AL3LE8x only)

The application achieves a stabilized LCD reference voltage when connecting an external capacitor C_{EXT} to the V_{LCD} pin. C_{EXT} is specified in *Table 48*.

9.3.13 12-bit DAC characteristics

In the following table, data are guaranteed by design, not tested in production.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDA}	Analog supply voltage	-	1.8	-	3.6	Ň
V _{REF+}	Reference supply voltage	-	1.8	-	V _{DDA}	V
	Current consumption on V _{REF+}	V _{REF+} = 3.3 V, no load, middle code (0x800)	-	130	220	
^I VREF	supply	V _{REF+} = 3.3 V, no load, worst code (0x000)	-	220	350	
	Current consumption on V _{DDA}	V _{DDA} = 3.3 V, no load, middle code (0x800)	-	210	320	μΑ
IVDDA	supply	V _{DDA} = 3.3 V, no load, worst code (0x000)	-	320	520	
T _A	Temperature range	-	-40	-	125	°C
R _L ^{(1) (2)}	Resistive load	DACOUT buffer ON	5	-		kΩ
R _O	Output impedance	DACOUT buffer OFF	-	8	10	kΩ
C _L ⁽³⁾	Capacitive load	-	-	-	50	pF
DAC_OUT		DACOUT buffer ON	0.2	-	V _{DDA} - 0.2	V
(4)		DACOUT buffer OFF	0	-	V _{REF+} -1 LSB	V
t _{settling}	Settling time (full scale: for a 12- bit input code transition between the lowest and the highest input codes when DAC_OUT reaches the final value ±1LSB)	R _L ≥5 kΩ, C _L ≤ 50 pF	-	7	12	μs
Update rate	Max frequency for a correct DAC_OUT (@95%) change when small variation of the input code (from code i to i+1LSB).	R _L ≥ 5 kΩ, C _L ≤50 pF	-	-	1	Msps
twakeup	Wakeup time from OFF state. Input code between lowest and highest possible codes.	R _L ≥5 kΩ C _L ≤50 pF	-	9	15	μs
PSRR+	Power supply rejection ratio (to VDDA) (static DC measurement)	$R_L \ge 5 \text{ k}\Omega, C_L \le 50 \text{ pF}$	-	-60	-35	dB

Table 53. DAC characteristics

1. Resistive load between DACOUT and GNDA

2. Output on PF0 or PF1

3. Capacitive load at DACOUT pin

4. It gives the output excursion of the DAC

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 48. LQFP80 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

12 Revision history

Date	Revision	Changes
22-Apr-2015	1	Initial release.
27-Jul-2015	2	Updated the document confidentiality level to "Public". No other changes in the content.
19-Aug-2015	3	Changed datasheet status to "production data". Added LQFP64 and LQFP80 packages together with the corresponding part numbers.
18-Oct-2016	4	 Updated Table 5: High-density STM8AL3xE8x pin description: pin name changed from PC3/USART1_TX/LCD_SEG23(3)/ADC1_IN5/COMP _IN3M/COMP2_INM/COMP1_INP to PC3/USART1_TX/LCD_SEG23(3)/ADC1_IN5/COMP 2_INM/COMP1_INP. Added footnote to Table 68: STM8AL31E8x STM8AL3LE8x ordering information scheme. Updated Section : Device marking on page 122, Section : Device marking on page 126, Section : Device marking on page 130 Updated Section 9.2: Absolute maximum ratings Updated Figure 12: Power supply thresholds.
5-Dec-2016	5	 Updated Table 5: High-density STM8AL3xE8x pin description: two pin names changed from PI0/RTC_TAMP1/[SPI2_NSS]/[TIM3_CH3 to PI0/RTC_TAMP1/[SPI2_NSS]/[TIM3_CH1 and from PF2/ADC1_IN26/[SPI2_SCK]/[USART3_SCK] to PF2/ADC1_IN26/[SPI1_SCK]/[USART3_SCK]

Table 69	Document	revision	history
Table 03.	Document	164131011	matory

