

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51cc03c-rdtim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Port 0 and Port 2

Ports 0 and 2 are used for general-purpose I/O or as the external address/data bus. Port 0, shown in Figure 3, differs from the other Ports in not having internal pull-ups. Figure 3 shows the structure of Port 2. An external source can pull a Port 2 pin low.

To use a pin for general-purpose output, set or clear the corresponding bit in the Px register (x = 0 or 2). To use a pin for general-purpose input, set the bit in the Px register to turn off the output driver FET.

- Notes: 1. Port 0 is precluded from use as general-purpose I/O Ports when used as address/data bus drivers.
 - 2. Port 0 internal strong pull-ups assist the logic-one output for memory bus cycles only. Except for these bus cycles, the pull-up FET is off, Port 0 outputs are open-drain.

AT89C51CC03

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANIDT4	BFh	CAN Identifier Tag byte 4(PartA) CAN Identifier Tag byte 4(PartB)	– IDT4	– IDT3	– IDT2	– IDT1	– IDT0	RTRTAG	– RB1TAG	RB0TAF
CANIDM1	C4h	CAN Identifier Mask byte 1(PartA) CAN Identifier Mask byte 1(PartB)	IDMSK10 IDMSK28	IDMSK9 IDMSK27	IDMSK8 IDMSK26	IDMSK7 IDMSK25	IDMSK6 IDMSK24	IDMSK5 IDMSK23	IDMSK4 IDMSK22	IDMSK3 IDMSK21
CANIDM2	C5h	CAN Identifier Mask byte 2(PartA) CAN Identifier Mask byte 2(PartB)	IDMSK2 IDMSK20	IDMSK1 IDMSK19	IDMSK0 IDMSK18	- IDMSK17	– IDMSK16	– IDMSK15	– IDMSK14	– IDMSK13
CANIDM3	C6h	CAN Identifier Mask byte 3(PartA) CAN Identifier Mask byte 3(PartB)	– IDMSK12	- IDMSK11	– IDMSK10	- IDMSK9	– IDMSK8	- IDMSK7	– IDMSK6	– IDMSK5
CANIDM4	C7h	CAN Identifier Mask byte 4(PartA) CAN Identifier Mask byte 4(PartB)	– IDMSK4	- IDMSK3	- IDMSK2	- IDMSK1	– IDMSK0	RTRMSK	-	IDEMSK

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
SPCON	D4h	SPI Control	SPR2	SPEN	SSDIS	MSTR	CPOL	CPHA	SPR1	SPR0
SPSCR	D5h	SPI Status and Control	SPIF	-	OVR	MODF	SPTE	UARTM	SPTEIE	MOFIE
SPDAT	D6h	SPI Data	-	-	-	-	-	-	-	-
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	DPU	VPFDP	MO	XRS2	XRS1	XRS0	EXTRAM	A0
AUXR1	A2h	Auxiliary Register 1	-	_	ENBOOT	-	GF3	0	-	DPS
CKCON0	8Fh	Clock Control 0	CANX2	WDX2	PCAX2	SIX2	T2X2	T1X2	T0X2	X2
CKCON1	9Fh	Clock Control 1	-	-	-	-	-	-	-	SPIX2
FCON	D1h	Flash Control	FPL3	FPL2	FPL1	FPL0	FPS	FMOD1	FMOD0	FBUSY
EECON	D2h	EEPROM Contol	EEPL3	EEPL2	EEPL1	EEPL0	_	_	EEE	EEBUSY
FSTA	D3	Flash Status	-	-	-	-	-	-	SEQERR	FLOAD

Registers

Table 10.PCON RegisterPCON (S87:h)Power configuration Register

7	6	5	4	3	2	1	0				
-	-	-	-	GF1	GF0	PD	IDL				
Bit Number	Bit Mnemonic	Description	Description								
7-4	-	Reserved The value rea	teserved The value read from these bits is indeterminate. Do not set these bits.								
3	GF1	General Pur One use is to during Idle m	Seneral Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.								
2	GF0	General Pur One use is to during Idle m	pose flag 0 indicate whe ode.	ther an interru	upt occurred d	uring normal o	operation or				
1	PD	Power-Down Cleared by h Set to activat If IDL and PE	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.								
0	IDL	Idle Mode bi Cleared by h Set to activat If IDL and PE	t IDL and PD are both set, PD takes precedence. dle Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Idle mode. If IDL and PD are both set, PD takes precedence.								

Reset Value= XXXX 0000b

External Code Memory Access

Memory Interface

The external memory interface comprises the external bus (port 0 and port 2) as well as the bus control signals (PSEN#, and ALE).

Figure 21 shows the structure of the external address bus. P0 carries address A7:0 while P2 carries address A15:8. Data D7:0 is multiplexed with A7:0 on P0. Table 21 describes the external memory interface signals.

Figure 21. External Code Memory Interface Structure

Table 12. External Code Memory Interface Signals

Signal Name	Туре	Description	Alternate Function
A15:8	0	Address Lines Upper address lines for the external bus.	P2.7:0
AD7:0	I/O	Address/Data Lines Multiplexed lower address lines and data for the external memory.	P0.7:0
ALE	0	Address Latch Enable ALE signals indicates that valid address information are available on lines AD7:0.	-
PSEN#	0	Program Store Enable Output This signal is active low during external code fetch or external code read (MOVC instruction).	-

External Bus Cycles

This section describes the bus cycles the AT89C51CC03 executes to fetch code (see Figure 22) in the external program/code memory.

External memory cycle takes 6 CPU clock periods. This is equivalent to 12 oscillator clock period in standard mode or 6 oscillator clock periods in X2 mode. For further information on X2 mode see section "Clock ".

For simplicity, the accompanying figure depicts the bus cycle waveforms in idealized form and do not provide precise timing information.

For bus cycling parameters refer to the 'AC-DC parameters' section.

Table 32. TH0 Register

TH0 (S:8Ch) Timer 0 High Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7:0		High Byte o	f Timer 0.				

Reset Value = 0000 0000b

Table 33. TL0 Register

TL0 (S:8Ah) Timer 0 Low Byte Register

7	6	5	4	3	2	1	0			
_	_	-	_	-	-	_	-			
Bit Number	Bit Mnemonic	Description	Description							
7:0		Low Byte of	Timer 0.							

Reset Value = 0000 0000b

Table 34. TH1 Register

TH1 (S:8Dh) Timer 1 High Byte Register

7	6	5	4	3	2	1	0
-	Ι	-	I	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7:0		High Byte o	f Timer 1.				

Reset Value = 0000 0000b

Timer 2	The AT89C51CC03 timer 2 is compatible with timer 2 in the 80C52.				
	It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 that are cascade- connected. It is controlled by T2CON register (See Table) and T2MOD register (See Table 38). Timer 2 operation is similar to Timer 0 and Timer 1. C/T2 selects $F_{T2 clock}$ /6 (timer operation) or external pin T2 (counter operation) as timer clock. Setting TR2 allows TL2 to be incremented by the selected input.				
	Timer 2 includes the following enhancements:				
	Auto-reload mode (up or down counter)				
	Programmable clock-output				
Auto-Reload Mode	The auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto- matic reload. This feature is controlled by the DCEN bit in T2MOD register (See Table 38). Setting the DCEN bit enables timer 2 to count up or down as shown in Figure 40. In this mode the T2EX pin controls the counting direction.				
	When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.				
	When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.				

The EXF2 bit toggles when timer 2 overflow or underflow, depending on the direction of the count. EXF2 does not generate an interrupt. This bit can be used to provide 17-bit resolution.

Watchdog Timer

AT89C51CC03 contains a powerful programmable hardware Watchdog Timer (WDT) that automatically resets the chip if it software fails to reset the WDT before the selected time interval has elapsed. It permits large Time-Out ranking from 16ms to 2s @Fosc = 12MHz in X1 mode.

This WDT consists of a 14-bit counter plus a 7-bit programmable counter, a Watchdog Timer reset register (WDTRST) and a Watchdog Timer programming (WDTPRG) register. When exiting reset, the WDT is -by default- disable.

To enable the WDT, the user has to write the sequence 1EH and E1H into WDTRST register no instruction in between. When the Watchdog Timer is enabled, it will increment every machine cycle while the oscillator is running and there is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is $96xT_{OSC}$, where $T_{OSC}=1/F_{OSC}$. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset

Note: When the Watchdog is enable it is impossible to change its period.

PHS2 = 3 and PHS1 = 3 so CANBT3 = 36h

Time Trigger Communication (TTC) and Message Stamping

The AT89C51CC03 has a programmable 16-bit Timer (CANTIMH and CANTIML) for message stamp and TTC.

This CAN Timer starts after the CAN controller is enabled by the ENA bit in the CANG-CON register.

Two modes in the timer are implemented:

- Time Trigger Communication:
 - Capture of this timer value in the CANTTCH and CANTTCL registers on Start Of Frame (SOF) or End Of Frame (EOF), depending on the SYNCTTC bit in the CANGCON register, when the network is configured in TTC by the TTC bit in the CANGCON register.

Note: In this mode, CAN only sends the frame once, even if an error occurs.

- Message Stamping
 - Capture of this timer value in the CANSTMPH and CANSTMPL registers of the message object which received or sent the frame.
 - All messages can be stamps.
 - The stamping of a received frame occurs when the RxOk flag is set.
 - The stamping of a sent frame occurs when the TxOk flag is set.

The CAN Timer works in a roll-over from FFFFh to 0000h which serves as a time base.

When the timer roll-over from FFFFh to 0000h, an interrupt is generated if the ETIM bit in the interrupt enable register IEN1 is set.

CAN SFR's

Table 47. CAN SFR's With Reset Values

	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8h	IPL1 xxxx x000	CH 0000 0000	CCAP0H 0000 0000	CCAP1H 0000 0000	CCAP2H 0000 0000	CCAP3H 0000 0000	CCAP4H 0000 0000		FFh
F0h	B 0000 0000		ADCLK xx00 x000	ADCON 0000 0000	ADDL xxxx xx00	ADDH 0000 0000	ADCF 0000 0000	IPH1 xxxx x000	F7h
E8h	IEN1 xxxx x000	CL 0000 0000	CCAP0L 0000 0000	CCAP1L 0000 0000	CCAP2L 0000 0000	CCAP3L 0000 0000	CCAP4L 0000 0000		EFh
E0h	ACC 0000 0000								E7h
D8h	CCON 00xx xx00	CMOD 00xx x000	CCAPM0 x000 0000	CCAPM1 x000 0000	CCAPM2 x000 0000	CCAPM3 x000 0000	CCAPM4 x000 0000		DFh
D0h	PSW 0000 0000	FCON 0000 0000	EECON xxxx xx00	FSTA xxxx xx00	SPCON 0001 0100	SPSCR 0000 0000	SPDAT xxxx xxxx		D7h
C8h	T2CON 0000 0000	T2MOD xxxx xx00	RCAP2L 0000 0000	RCAP2H 0000 0000	TL2 0000 0000	TH2 0000 0000	CANEN1 xx00 0000	CANEN2 0000 0000	CFh
C0h	P4 xxxx xx11	CANGIE 0000 0000	CANIE1 xx00 0000	CANIE2 0000 0000	CANIDM1 xxxx xxxx	CANIDM2 xxxx xxxx	CANIDM3 xxxx xxxx	CANIDM4 xxxx xxxx	C7h
B8h	IPL0 x000 0000	SADEN 0000 0000	CANSIT1 0x00 0000	CANSIT2 0000 0000	CANIDT1 xxxx xxxx	CANIDT2 xxxx xxxx	CANIDT3 xxxx xxxx	CANIDT4 xxxx xxxx	BFh
B0h	P3 1111 1111	CANPAGE 0000 0000	CANSTCH xxxx xxxx	CANCONCH xxxx xxxx	CANBT1 xxxx xxxx	CANBT2 xxxx xxxx	CANBT3 xxxx xxxx	IPH0 x000 0000	B7h
A8h	IEN0 0000 0000	SADDR 0000 0000	CANGSTA 0000 0000	CANGCON 0000 x000	CANTIML 0000 0000	CANTIMH 0000 0000	CANSTMPL 0000 0000	CANSTMPH 0000 0000	AFh
A0h	P2 1111 1111	CANTCON 0000 0000	AUXR1 xxxx 00x0	CANMSG xxxx xxxx	CANTTCL 0000 0000	CANTTCH 0000 0000	WDTRST 1111 1111	WDTPRG xxxx x000	A7h
98h	SCON 0000 0000	SBUF 0000 0000		CANGIT 0x00 0000	CANTEC 0000 0000	CANREC 0000 0000		CKCON1 xxxx xxx0	9Fh
90h	P1 1111 1111								97h
88h	TCON 0000 0000	TMOD 0000 0000	TL0 0000 0000	TL1 0000 0000	TH0 0000 0000	TH1 0000 0000	AUXR X001 0100	CKCON 0000 0000	8Fh
80h	P0 1111 1111	SP 0000 0111	DPL 0000 0000	DPH 0000 0000				PCON 0000 0000	87h
	0/8 ⁽¹⁾	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Table 56. CANSIT1 Register

CANSIT1 (S:BAh Read Only) CAN Status Interrupt Message Object Registers 1

7	6	5	4	3	2	1	0				
-	SIT14	SIT13	SIT12	SIT11	SIT10	SIT9	SIT8				
Bit Number	Bit Mnemonic	Descriptio	Description								
7	-	Reserved The value	Reserved The values read from this bit is indeterminate. Do not set this bit.								
6-0	SIT14:8	Status of 0 - no inte 1 - IT turn SIT14:8 = see Figure	Status of Interrupt by Message Object0 - no interrupt.1 - IT turned on. Reset when interrupt condition is cleared by user.SIT14:8 = 0b 0000 1001 -> IT's on message objects 11 and 8.see Figure 50.								

Reset Value = x000 0000b

Table 57. CANSIT2 Register

CANSIT2 (S:BBh Read Only)

CAN Status Interrupt Message Object Registers 2

7	6	5	4	3	2	1	0				
SIT7	SIT6	SIT5	SIT4	SIT3	SIT2	SIT1	SIT0				
Bit Number	Bit Mnemonic	Description	Description								
7-0	SIT7:0	Status of 0 - no inte 1 - IT turn SIT7:0 = 0 see Figure	Status of Interrupt by Message Object) - no interrupt. I - IT turned on. Reset when interrupt condition is cleared by user. SIT7:0 = 0b 0000 1001 -> IT's on message objects 3 and 0 see Figure 50.								

Reset Value = 0000 0000b

Table 65. CANSTCH Register

CANSTCH (S:B2h) CAN Message Object Status Register

7	6	5	4	3	2	1	0	
DLCW	ТХОК	RXOK	BERR	SERR	CERR	FERR	AERR	
Bit Number	Bit Mnemonic	Descripti	on					
7	DLCW	Data Length Code Warning The incoming message does not have the DLC expected. Whatever the frame type, the DLC field of the CANCONCH register is updated by the received DLC.						
6	тхок	Transmit The comm When the are enable supplied f This flag o	Transmit OK The communication enabled by transmission is completed. When the controller is ready to send a frame, if two or more message objects are enabled as producers, the lower index message object (0 to 13) is supplied first. This flag can generate an interrupt.					
5	RXOK	Receive (The comm In the cas message This flag c	Receive OK The communication enabled by reception is completed. In the case of two or more message object reception hits, the lower index message object (0 to 13) is updated first. This flag can generate an interrupt.					
4	BERR	Bit Error (Only in Transmission) The bit value monitored is different from the bit value sent. Exceptions: the monitored recessive bit sent as a dominant bit during the arbitration field and the acknowledge slot detecting a dominant bit during the sending of an error frame. This flag can generate an interrupt						
3	SERR	Stuff Erro Detection This flag o	or of more than can generate a	five consecuti an interrupt.	ve bits with th	e same polari	ty.	
2	CERR	CRC Error The receiver performs a CRC check on each destuffed received message from the start of frame up to the data field. If this checking does not match with the destuffed CRC field, a CRC error is set. This flag can generate an interrupt.						
1	FERR	Form Error The form error results from one or more violations of the fixed form in the following bit fields: CRC delimiter acknowledgment delimiter end_of_frame This flag can generate an interrupt.						
0	AERR	Acknowle No detect This flag o	edgment Erro	or ninant bit in the an interrupt.	e acknowledg	e slot.		

Note: See Figure 50.

No default value after reset.

Table 66. CANIDT1 Register for V2.0 part A

CANIDT1 for V2.0 part A (S:BCh) CAN Identifier Tag Registers 1

7	6	5	4	3	2	1	0		
IDT 10	IDT 9	IDT 8	IDT 7	IDT 6	IDT 5	IDT 4	IDT 3		
Bit									
Number	Bit Mnemonic	Descripti	on						
7-0	IDT10:3	IDentifier See Figur	tag value e 54.						

No default value after reset.

Table 67. CANIDT2 Register for V2.0 part A

CANIDT2 for V2.0 part A (S:BDh) CAN Identifier Tag Registers 2

7	6	5	4	3	2	1	0
IDT 2	IDT 1	IDT 0	-	-	-	-	-

Bit Number	Bit Mnemonic	Description
7-5	IDT2:0	IDentifier tag value See Figure 54.
4-0	-	Reserved The values read from these bits are indeterminate. Do not set these bits.

No default value after reset.

Table 68. CANIDT3 Register for V2.0 part A

CANIDT3 for V2.0 part A (S:BEh) CAN Identifier Tag Registers 3

7	6	5	4	3	2	1	0		
-	-	-	-	-	-	-	-		
Bit Number	Bit Mnemonic	Description	Description						
7-0	-	Reserved The value	s read from th	ese bits are ir	ndeterminate.	Do not set the	ese bits.		

No default value after reset.

Table 86. CANSTMPH Register

CANSTMPH (S:AFh Read Only) CAN Stamp Timer High

7	6	5	4	3	2	1	0
TIMSTMP 15	TIMSTMP 14	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
Bit Number	Bit Mnemonic	Description	on				
7-0	TIMSTMP15: 8	High byte See Figur	e of Time Star e 55.	np			

No default value after reset

Table 87. CANSTMPL Register

CANSTMPL (S:AEh Read Only) CAN Stamp Timer Low

7	6	5	4	3	2	1	0
TIMSTMP 7	TIMSTMP 6	TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
D''							
Bit Number	Bit Mnemoni	c Descripti	on				
7-0	TIMSTMP7:	Low byte See Figur	of Time Stan e 55.	np			

No default value after reset

Table 88. CANTTCH Register

CANTTCH (S:A5h Read Only) CAN TTC Timer High

7	6	5	4	3	2	1	0	
TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8	
Bit Number	Bit Mnemonie	Descripti	Description					
7-0	TIMTTC15:8	High byte See Figur	e of TTC Time e 55.	r				

Reset Value = 0000 0000b

AT89C51CC03

As shown in Figure 60, the first SCK edge is the MSB capture strobe. Therefore, the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each Byte transmitted (Figure 62).

Figure 61 shows an SPI transmission in which CPHA is '1'. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 62). This format may be preferred in systems having only one Master and only one Slave driving the MISO data line.

Queuing transmissionFor an SPI configured in master or slave mode, a queued data byte must be transmit-
ted/received immediately after the previous transmission has completed.

Table 111. IEN1 Register

IEN1 (S:E8h) Interrupt Enable Register

7	6	5	4	3	2	1	0	
-	-	-	-	ESPI	ETIM	EADC	ECAN	
Bit Number	Bit Mnemonic	Description						
7	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
6	-	Reserved The value rea	ad from this b	it is indetermir	nate. Do not s	et this bit.		
5	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
4	-	Reserved The value read from this bit is indeterminate. Do not set this bit.						
3	ESPI	SPI Interrup Clear to disa Set to enable	t Enable bit ble the SPI in e the SPI inter	terrupt. rrupt.				
2	ETIM	Timer Overrun Interrupt Enable bit Clear to disable the timer overrun interrupt. Set to enable the timer overrun interrupt.						
1	EADC	ADC Interrupt Enable bit Clear to disable the ADC interrupt. Set to enable the ADC interrupt.						
0	ECAN	CAN Interru Clear to disa Set to enable	CAN Interrupt Enable bit Clear to disable the CAN interrupt. Set to enable the CAN interrupt.					

Reset Value = xxxx 0000b bit addressable

Table 116.	DC Parameters in Standard Voltage	(Continued)
------------	-----------------------------------	-------------

Symbol	Parameter	Min	Typ ⁽⁵⁾	Max	Unit	Test Conditions
V _{OH}	Output High Voltage, ports 1, 2, 3, and 4	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$\begin{split} I_{OH} &= -10 \; \mu A \\ I_{OH} &= -30 \; \mu A \\ I_{OH} &= -60 \; \mu A \\ V_{CC} &= 3V \; to \; 5.5V \end{split}$
V _{OH1}	Output High Voltage, port 0, ALE, PSEN	V _{CC} - 0.3 V _{CC} - 0.7 V _{CC} - 1.5			V V V	$I_{OH} = -200 \ \mu A$ $I_{OH} = -3.2 \ m A$ $I_{OH} = -7.0 \ m A$ $V_{CC} = 5V \pm 10\%$
R _{RST}	RST Pulldown Resistor	20	100	200	kΩ	
I _{IL}	Logical 0 Input Current ports 1, 2, 3 and 4			-50	μΑ	Vin = 0.45V
ILI	Input Leakage Current			±10	μΑ	0.45V < Vin < V _{CC}
ITL	Logical 1 to 0 Transition Current, ports 1, 2, 3 and 4			-650	μA	Vin = 2.0V
C _{IO}	Capacitance of I/O Buffer			10	pF	Fc = 1 MHz TA = 25°C
	Power-down Current Industrial		75	150	μΑ	$3V < V_{CC} < 5.5V^{(3)}$
'PD	Power-down Current Automotive		100	350	μΑ	$3V < V_{CC} < 5.5V^{(3)}$
I _{cc}	Power Supply Current	I _{CCOP} = 0.4 Freq I _{CCIDLE} = 0.2 Free	uency (MHz) + 8 quency (MHz) +	8	mA	$Vcc = 5.5V^{(1)(2)}$
I _{CCWRITE}	Power Supply Current on flash or EEdata write			0.8 x Frequency (MHz) + 15	mA	V _{CC} = 5.5V

Notes: 1. Operating I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH} , $T_{CHCL} = 5$ hs (see Figure 81.), $V_{IL} = V_{SS} + 0.5V$,

 $V_{IH} = V_{CC} - 0.5V$; XTAL2 N.C.; $\overline{EA} = RST = Port 0 = V_{CC}$. I_{CC} would be slightly higher if a crystal oscillator used (see Figure 78.).

- 2. Idle I_{CC} is measured with all output pins disconnected; XTAL1 driven with T_{CLCH}, T_{CHCL} = 5 ns, V_{IL} = V_{SS} + 0.5V, V_{IH} = V_{CC} 0.5V; XTAL2 N.C; Port 0 = V_{CC}; \overline{EA} = RST = V_{SS} (see Figure 79.).
- 3. Power-down I_{CC} is measured with all output pins disconnected; $\overline{EA} = V_{CC}$, PORT 0 = V_{CC}; XTAL2 NC.; RST = V_{SS} (see Figure 80.). In addition, the WDT must be inactive and the POF flag must be set.
- 4. Capacitance loading on Ports 0 and 2 may cause spurious noise pulses to be superimposed on the V_{OL}s of ALE and Ports 1 and 3. The noise is due to external bus capacitance discharging into the Port 0 and Port 2 pins when these pins make 1 to 0 transitions during bus operation. In the worst cases (capacitive loading 100pF), the noise pulse on the ALE line may exceed 0.45V with maxi V_{OL} peak 0.6V. A Schmitt Trigger use is not necessary.
- 5. Typicals are based on a limited number of samples and are not guaranteed. The values listed are at room temperature.
- 6. Under steady state (non-transient) conditions, I_{OL} must be externally limited as follows:
 - Maximum I_{OL} per port pin: 10 mA Maximum I_{OL} per 8-bit port:
 - Port 0: 26 mA
 - Ports 1, 2, 3 and 4: 15 mA
 - Maximum total I_{OL} for all output pins: 71 mA

If I_{OL} exceeds the test condition, V_{OL} may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions.

Symbol	Min	Мах	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns

Table 125. AC Parameters for a Fix Clock (F = 40 MHz)

Table 126. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	Units
T _{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	ns
T _{XHDX}	Min	х	х	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	ns

Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

Table 127. AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

This diagram indicates when signals are clocked internally. The time it takes the signals to propagate to the pins, however, ranges from 25 to 125 ns. This propagation delay is dependent on variables such as temperature and pin loading. Propagation also varies from output to output and component. Typically though ($T_A=25^{\circ}C$ fully loaded) RD and WR propagation delays are approximately 50ns. The other signals are typically 85 ns. Propagation delays are incorporated in the AC specifications.

AT89C51CC03

Package Drawings

VQFP44

	М	М	INCH		
	Min	Max	Min	Ma×	
А	_	1.60	_	, 063	
A 1	Ο,	64 REF	. 025 REF		
A2	Ο,	64 REF	, 025 REF		
A3	1, 35	1, 45	, 053	, 057	
D	11,90	12.10	, 468	, 476	
D 1	9, 90	10.10	, 390	, 398	
E	11,90	12,10	, 468	, 476	
E 1	9, 90	10, 10	, 390	, 398	
J	0, 05	_	, 002	_	
L	0.45	0, 75	. 018	, 030	
е	0, 8	O BSC	.0315 BSC		
f	0, 3	5 BSC	.014 BSC		

