

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51cc03c-rltim

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
CANIE2	C3h	CAN Interrupt Enable Channel byte 2	IECH7	IECH6	IECH5	IECH4	IECH3	IECH2	IECH1	IECH0
CANSIT1	BAh	CAN Status Interrupt Channel byte1	_	SIT14	SIT13	SIT12	SIT11	SIT10	SIT9	SIT8
CANSIT2	BBh	CAN Status Interrupt Channel byte2	SIT7	SIT6	SIT5	SIT4	SIT3	SIT2	SIT1	SIT0
CANTCON	A1h	CAN Timer Control	TPRESC 7	TPRESC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
CANTIMH	ADh	CAN Timer high	CANTIM 15	CANTIM 14	CANTIM 13	CANTIM 12	CANTIM 11	CANTIM 10	CANTIM 9	CANTIM 8
CANTIML	ACh	CAN Timer low	CANTIM 7	CANTIM 6	CANTIM 5	CANTIM 4	CANTIM 3	CANTIM 2	CANTIM 1	CANTIM 0
CANSTMP H	AFh	CAN Timer Stamp high	TIMSTMP 15	TIMSTMP 14	TIMSTMP 13	TIMSTMP 12	TIMSTMP 11	TIMSTMP 10	TIMSTMP 9	TIMSTMP 8
CANSTMP L	AEh	CAN Timer Stamp low	TIMSTMP7	TIMSTMP 6	TIMSTMP 5	TIMSTMP 4	TIMSTMP 3	TIMSTMP 2	TIMSTMP 1	TIMSTMP 0
CANTTCH	A5h	CAN Timer TTC high	TIMTTC 15	TIMTTC 14	TIMTTC 13	TIMTTC 12	TIMTTC 11	TIMTTC 10	TIMTTC 9	TIMTTC 8
CANTTCL	A4h	CAN Timer TTC low	TIMTTC 7	TIMTTC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
CANTEC	9Ch	CAN Transmit Error Counter	TEC7	TEC6	TEC5	TEC4	TEC3	TEC2	TEC1	TEC0
CANREC	9Dh	CAN Receive Error Counter	REC7	REC6	REC5	REC4	REC3	REC2	REC1	REC0
CANPAGE	B1h	CAN Page	CHNB3	CHNB2	CHNB1	CHNB0	AINC	INDX2	INDX1	INDX0
CANSTCH	B2h	CAN Status Channel	DLCW	ТХОК	RXOK	BERR	SERR	CERR	FERR	AERR
CANCONC H	B3h	CAN Control Channel	CONCH1	CONCH0	RPLV	IDE	DLC3	DLC2	DLC1	DLC0
CANMSG	A3h	CAN Message Data	MSG7	MSG6	MSG5	MSG4	MSG3	MSG2	MSG1	MSG0
	DOL	CAN Identifier Tag byte 1(Part A)	IDT10	IDT9	IDT8	IDT7	IDT6	IDT5	IDT4	IDT3
CANIDTT	BCN	CAN Identifier Tag byte 1(PartB)	IDT28	IDT27	IDT26	IDT25	IDT24	IDT23	IDT22	IDT21
		CAN Identifier Tag	IDT2	IDT1	IDT0	_	_	_	_	_
CANIDT2	BDh	CAN Identifier Tag byte 2 (PartB)	IDT20	IDT19	IDT18	IDT17	IDT16	IDT15	IDT14	IDT13
CANIDT3	BEh	CAN Identifier Tag byte 3(PartA)	_	_	_	_	_	_	_	_
5, 110 10		CAN Identifier Tag byte 3(PartB)	IDT12	IDT11	IDT10	IDT9	IDT8	IDT7	IDT6	IDT5

Clock	 The AT89C51CC03 core needs only 6 clock periods per machine cycle. This feature, called"X2", provides the following advantages: Divides frequency crystals by 2 (cheaper crystals) while keeping the same CPU power. Saves power consumption while keeping the same CPU power (oscillator power saving). Saves power consumption by dividing dynamic operating frequency by 2 in operating and idle modes. Increases CPU power by 2 while keeping the same crystal frequency. In order to keep the original C51 compatibility, a divider-by-2 is inserted between the XTAL1 signal and the main clock input of the core (phase generator). This divider may be disabled by the software. An extra feature is available to start after Reset in the X2 mode. This feature can be enabled by a bit X2B in the Hardware Security Byte. This bit is described in the section
Description	"In-System Programming". The X2 bit in the CKCON register (see Table 2) allows switching from 12 clock cycles per instruction to 6 clock cycles and vice versa. At reset, the standard speed is activated
	(STD mode). Setting this bit activates the X2 feature (X2 mode) for the CPU Clock only (see Figure 5.). The Timers 0, 1 and 2, Uart, PCA, WatchDog or CAN switch in X2 mode only if the cor-
	responding bit is cleared in the CKCON register. The clock for the whole circuit and peripheral is first divided by two before being used by the CPU core and peripherals. This allows any cyclic ratio to be accepted on the XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%. Figure 5. shows the clock generation block diagram. The X2 bit is validated on the XTAL1+2 rising edge to avoid glitches when switching from the X2 to the STD mode. Figure 6 shows the mode switching waveforms.

Registers

Table 10.PCON RegisterPCON (S87:h)Power configuration Register

7	6	5	4	3	2	1	0			
-	-	-	-	GF1	GF0	PD	IDL			
Bit Number	Bit Mnemonic	Description	Description							
7-4	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not set these bits.							
3	GF1	General Pur One use is to during Idle m	General Purpose flag 1 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.							
2	GF0	General Pur One use is to during Idle m	General Purpose flag 0 One use is to indicate whether an interrupt occurred during normal operation or during Idle mode.							
1	PD	Power-Down Cleared by h Set to activat If IDL and PE	Power-Down Mode bit Cleared by hardware when an interrupt or reset occurs. Set to activate the Power-Down mode. If IDL and PD are both set, PD takes precedence.							
0	IDL	Idle Mode bi Cleared by h Set to activat If IDL and PE	t ardware wher ie the Idle mo) are both set	n an interrupt o de. , PD takes pre	or reset occurs	5.				

Reset Value= XXXX 0000b

Operation Cross Memory Access

Space addressable in read and write are:

- RAM
- ERAM (Expanded RAM access by movx)
- XRAM (eXternal RAM)
- EEPROM DATA
- FM0 (user flash)
- Hardware byte
- XROW
- Boot Flash
- Flash Column latch

The table below provide the different kind of memory which can be accessed from different code location.

Table 18. Cross Memory Access

	Action	RAM	XRAM ERAM	Boot FLASH	FM0	E ² Data	Hardware Byte	XROW
boot FLASH	Read			ОК	ОК	ОК	ОК	-
	Write			-	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾
FMO	Read			ОК	ОК	ОК	ОК	-
	Write			-	OK (idle)	OK ⁽¹⁾	-	ОК
External memory EA = 0 or Code Roll Over	Read			-	-	ОК	-	-
	Write			-	-	OK ⁽¹⁾	-	-

Note: 1. RWW: Read While Write

	Boot Loader Jump Bit (BLJB): - This bit indicates if on RESET the user wants to jump to this application at address @0000h on FM0 or execute the boot loader at address @F800h on FM1. - BLJB = 0 on parts delivered with bootloader programmed. - To read or modify this bit, the APIs are used.
	Boot Vector Address (SBV): - This byte contains the MSB of the user boot loader address in FM0. - The default value of SBV is FCh (no user boot loader in FM0). - To read or modify this byte, the APIs are used.
	Extra Byte (EB) and Boot Status Byte (BSB): - These Bytes are reserved for customer use. - To read or modify these Bytes, the APIs are used.
Hardware Boot Process	At the falling edge of RESET, the bit ENBOOT in AUXR1 register is initialized with the value of Boot Loader Jump Bit (BLJB).
	Further at the falling edge of RESET if the following conditions (called Hardware condi- tion) are detected:
	PSEN low,
	EA high,
	ALE high (or not connected).
	 After Hardware Condition the FCON register is initialized with the value 00h and the PC is initialized with F800h (FM1).
	The Hardware condition makes the bootloader to be executed, whatever BLJB value is.
	If no hardware condition is detected, the FCON register is initialized with the value F0h.
	Check of the BLJB value.
	• If bit BLJB = 1:
	User application in FM0 will be started at @0000h (standard reset).
	 If bit BLJB = 0: Boot loader will be started at @F800h in FM1.
	 Note: 1. As PSEN is an output port in normal operating mode (running user applications or bootloader applications) after reset it is recommended to release PSEN after the fall- ing edge of Reset is signaled.

The hardware conditions are sampled at reset signal Falling Edge, thus they can be released at any time when reset input is low.

2. To ensure correct microcontroller startup, the PSEN pin should not be tied to ground during power-on.

valid stop bits cannot clear the FE bit. When the FE feature is enabled, RI rises on the stop bit instead of the last data bit (See Figure 33. and Figure 34.).

Automatic Address Recognition

The automatic address recognition feature is enabled when the multiprocessor communication feature is enabled (SM2 bit in SCON register is set).

Implemented in the hardware, automatic address recognition enhances the multiprocessor communication feature by allowing the serial port to examine the address of each incoming command frame. Only when the serial port recognizes its own address will the receiver set the RI bit in the SCON register to generate an interrupt. This ensures that the CPU is not interrupted by command frames addressed to other devices.

If necessary, you can enable the automatic address recognition feature in mode 1. In this configuration, the stop bit takes the place of the ninth data bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit.

To support automatic address recognition, a device is identified by a given address and a broadcast address.

Note: The multiprocessor communication and automatic address recognition features cannot be enabled in mode 0 (i.e. setting SM2 bit in SCON register in mode 0 has no effect).

Table 26. SADEN Register

SADEN (S:B9h) Slave Address Mask Register

7	6	5	4	3	2	1	0
Ι	-	_	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7-0		Mask Data f	or Slave Indiv	vidual Addres	SS		

Reset Value = 0000 0000b Not bit addressable

Table 27. SADDR Register

SADDR (S:A9h) Slave Address Register

7	6	5	4	3	2	1	0			
-	-	-	-	-	-	-	-			
Bit Number	Bit Mnemonic	Description	Description							
7-0		Slave Indivi	dual Address	5						

Reset Value = 0000 0000b Not bit addressable

Table 28. SBUF Register

SBUF (S:99h) Serial Data Buffer

7	6	5	4	3	2	1	0
-	_	-	-	_	_	-	_
Bit Number	Bit Mnemonic	Description					
7-0		Data sent/re	ceived by Se	rial I/O Port			

Reset Value = 0000 0000b Not bit addressable

R

Timers/Counters	The AT89C51CC03 implements two general-purpose, 16-bit Timers/Counters. Such are identified as Timer 0 and Timer 1, and can be independently configured to operate in a variety of modes as a Timer or an event Counter. When operating as a Timer, the Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, the Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The various operating modes of each Timer/Counter are described in the following sections.
Timer/Counter Operations	A basic operation is Timer registers THx and TLx ($x = 0, 1$) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (see Figure 30) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but TRx bit must be cleared to preset their values, otherwise the behavior of the Timer/Counter is unpredictable.
	The C/Tx# control bit selects Timer operation or Counter operation by selecting the divided-down peripheral clock or external pin Tx as the source for the counted signal. TRx bit must be cleared when changing the mode of operation, otherwise the behavior of the Timer/Counter is unpredictable.
	For Timer operation (C/Tx# = 0), the Timer register counts the divided-down peripheral clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock periods). The Timer clock rate is $F_{PER}/6$, i.e. $F_{OSC}/12$ in standard mode or $F_{OSC}/6$ in X2 mode.
	For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled every peripheral cycles. When the sample is high in one cycle and low in the next one, the Counter is incremented. Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition, the maximum count rate is $F_{PER}/12$, i.e. $F_{OSC}/24$ in standard mode or $F_{OSC}/12$ in X2 mode. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.
Timer 0	Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 35 to Figure 38 show the logical configuration of each mode.
	Timer 0 is controlled by the four lower bits of TMOD register (see Figure 31) and bits 0, 1, 4 and 5 of TCON register (see Figure 30). TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (T/C0#) and mode of operation (M10 and M00). TCON register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0).
	For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation.
	Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an inter- rupt request.
	It is important to stop Timer/Counter before changing mode.

Mode 0 (13-bit Timer)

Mode 0 configures Timer 0 as an 13-bit Timer which is set up as an 8-bit Timer (TH0 register) with a modulo 32 prescaler implemented with the lower five bits of TL0 register (see Figure 35). The upper three bits of TL0 register are indeterminate and should be ignored. Prescaler overflow increments TH0 register.

Figure 35. Timer/Counter x (x = 0 or 1) in Mode 0

- Mode 1 (16-bit Timer)
- Mode 1 configures Timer 0 as a 16-bit Timer with TH0 and TL0 registers connected in cascade (see Figure 36). The selected input increments TL0 register.

Figure 36. Timer/Counter x (x = 0 or 1) in Mode 1 See the "Clock" section

Table 32. TH0 Register

TH0 (S:8Ch) Timer 0 High Byte Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7:0		High Byte o	f Timer 0.				

Reset Value = 0000 0000b

Table 33. TL0 Register

TL0 (S:8Ah) Timer 0 Low Byte Register

7	6	5	4	3	2	1	0
_	_	_	_	-	-	_	-
Bit Number	Bit Mnemonic	Description					
7:0		Low Byte of	Timer 0.				

Reset Value = 0000 0000b

Table 34. TH1 Register

TH1 (S:8Dh) Timer 1 High Byte Register

7	6	5	4	3	2	1	0
-	Ι	-	Ι	-	-	-	-
Bit Number	Bit Mnemonic	Description					
7:0		High Byte of	f Timer 1.				

Reset Value = 0000 0000b

Timer 2	The AT89C51CC03 timer 2 is compatible with timer 2 in the 80C52.				
	It is a 16-bit timer/counter: the count is maintained by two eight-bit timer registers, TH2 and TL2 that are cascade- connected. It is controlled by T2CON register (See Table) and T2MOD register (See Table 38). Timer 2 operation is similar to Timer 0 and Timer 1. $C/T2$ selects $F_{T2 \text{ clock}}/6$ (timer operation) or external pin T2 (counter operation) as timer clock. Setting TR2 allows TL2 to be incremented by the selected input.				
	Timer 2 includes the following enhancements:				
	Auto-reload mode (up or down counter)				
	Programmable clock-output				
Auto-Reload Mode	The auto-reload mode configures timer 2 as a 16-bit timer or event counter with auto- matic reload. This feature is controlled by the DCEN bit in T2MOD register (See Table 38). Setting the DCEN bit enables timer 2 to count up or down as shown in Figure 40. In this mode the T2EX pin controls the counting direction.				
	When T2EX is high, timer 2 counts up. Timer overflow occurs at FFFFh which sets the TF2 flag and generates an interrupt request. The overflow also causes the 16-bit value in RCAP2H and RCAP2L registers to be loaded into the timer registers TH2 and TL2.				
	When T2EX is low, timer 2 counts down. Timer underflow occurs when the count in the timer registers TH2 and TL2 equals the value stored in RCAP2H and RCAP2L registers. The underflow sets TF2 flag and reloads FFFFh into the timer registers.				

The EXF2 bit toggles when timer 2 overflow or underflow, depending on the direction of the count. EXF2 does not generate an interrupt. This bit can be used to provide 17-bit resolution.

Registers

Table 36. T2CON Register

T2CON (S:C8h) Timer 2 Control Register

7	6	5	4	3	2	1	0				
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#				
Bit Number	Bit Mnemonic	Description									
7	TF2	Timer 2 Ove TF2 is not se Must be clea Set by hardw	Fimer 2 Overflow Flag TF2 is not set if RCLK=1 or TCLK = 1. Must be cleared by software. Set by hardware on timer 2 overflow.								
6	EXF2	Timer 2 Extension 2 Extensio 2	Timer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. Set to cause the CPU to vector to timer 2 interrupt routine when timer 2 interrupt s enabled. Must be cleared by software.								
5	RCLK	Receive Clo Clear to use Set to use tir	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.								
4	TCLK	Transmit Clear to use Set to use tir	Transmit Clock bit Clear to use timer 1 overflow as transmit clock for serial port in mode 1 or 3. Set to use timer 2 overflow as transmit clock for serial port in mode 1 or 3.								
3	EXEN2	Timer 2 Exte Clear to igno Set to cause detected, if ti	Fimer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.								
2	TR2	Timer 2 Rur Clear to turn Set to turn of	off timer 2.								
1	C/T2#	Timer/Coun Clear for time Set for count	ter 2 Select b er operation (i er operation (it nput from inte input from T2	rnal clock sys input pin).	tem: F _{OSC}).					
0	CP/RL2#	Timer 2 Cap If RCLK=1 o timer 2 overf Clear to auto EXEN2=1. Set to captur	t ure/Reload r TCLK=1, CF low. p-reload on tim re on negative	bit //RL2# is ignor ner 2 overflows transitions or	red and timer s or negative f n T2EX pin if E	is forced to au ransitions on EXEN2=1.	uto-reload on T2EX pin if				

Reset Value = 0000 0000b Bit addressable

AT89C51CC03

Figure 48. CAN Controller Memory Organization

message object Window SFRs

Time Trigger Communication (TTC) and Message Stamping

The AT89C51CC03 has a programmable 16-bit Timer (CANTIMH and CANTIML) for message stamp and TTC.

This CAN Timer starts after the CAN controller is enabled by the ENA bit in the CANG-CON register.

Two modes in the timer are implemented:

- Time Trigger Communication:
 - Capture of this timer value in the CANTTCH and CANTTCL registers on Start Of Frame (SOF) or End Of Frame (EOF), depending on the SYNCTTC bit in the CANGCON register, when the network is configured in TTC by the TTC bit in the CANGCON register.

Note: In this mode, CAN only sends the frame once, even if an error occurs.

- Message Stamping
 - Capture of this timer value in the CANSTMPH and CANSTMPL registers of the message object which received or sent the frame.
 - All messages can be stamps.
 - The stamping of a received frame occurs when the RxOk flag is set.
 - The stamping of a sent frame occurs when the TxOk flag is set.

The CAN Timer works in a roll-over from FFFFh to 0000h which serves as a time base.

When the timer roll-over from FFFFh to 0000h, an interrupt is generated if the ETIM bit in the interrupt enable register IEN1 is set.

Table 53. CANGIE Register

CANGIE (S:C1h) CAN General Interrupt Enable

7	6	5	4	3	2	1	0
-	-	ENRX	ENTX	ENERCH	ENBUF	ENERG	-
Bit Number	Bit Mnemonic	Description	on				
7-6	-	Reserved The value	s read from th	nese bits are ir	determinate.	Do not set the	ese bits.
5	ENRX	Enable R 0 - Disable 1 - Enable	eceive Interro e	upt			
4	ENTX	Enable Tr 0 - Disable 1 - Enable	e ansmit Inter i	rupt			
3	ENERCH	Enable M 0 - Disable 1 - Enable	essage Obje	ct Error Interr	rupt		
2	ENBUF	Enable B 0 - Disable 1 - Enable	UF Interrupt				
1	ENERG	Enable G 0 - Disable 1 - Enable	eneral Error	Interrupt			
0	-	Reserved The value	read from thi	s bit is indeter	minate. Do no	t set this bit.	

Note: See Figure 50

Reset Value = xx00 000xb

AT89C51CC03

As shown in Figure 60, the first SCK edge is the MSB capture strobe. Therefore, the Slave must begin driving its data before the first SCK edge, and a falling edge on the \overline{SS} pin is used to start the transmission. The \overline{SS} pin must be toggled high and then low between each Byte transmitted (Figure 62).

Figure 61 shows an SPI transmission in which CPHA is '1'. In this case, the Master begins driving its MOSI pin on the first SCK edge. Therefore, the Slave uses the first SCK edge as a start transmission signal. The SS pin can remain low between transmissions (Figure 62). This format may be preferred in systems having only one Master and only one Slave driving the MISO data line.

Queuing transmissionFor an SPI configured in master or slave mode, a queued data byte must be transmit-
ted/received immediately after the previous transmission has completed.

When a transmission is in progress a new data can be queued and sent as soon as transmission has been completed. So it is possible to transmit bytes without latency, useful in some applications.

The SPTE bit in SPSCR is set as long as the transmission buffer is free. It means that the user application can write SPDAT with the data to be transmitted until the SPTE becomes cleared.

Figure 63 shows a queuing transmission in master mode. Once the Byte 1 is ready, it is immediately sent on the bus. Meanwhile an other byte is prepared (and the SPTE is cleared), it will be sent at the end of the current transmission. The next data must be ready before the end of the current transmission.

In slave mode it is almost the same except it is the external master that start the transmission.

Also, in slave mode, if no new data is ready, the last value received will be the next data byte transmitted.

Symbol	Min	Мах	Units
T _{XLXL}	300		ns
T _{QVHX}	200		ns
T _{XHQX}	30		ns
T _{XHDX}	0		ns
T _{XHDV}		117	ns

Table 125. AC Parameters for a Fix Clock (F = 40 MHz)

Table 126. AC Parameters for a Variable Clock

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M range	Units
T _{XLXL}	Min	12 T	6 T		ns
T _{QVHX}	Min	10 T - x	5 T - x	50	ns
T _{XHQX}	Min	2 T - x	T - x	20	ns
T _{XHDX}	Min	х	х	0	ns
T _{XHDV}	Max	10 T - x	5 T- x	133	ns

Shift Register Timing Waveforms

External Clock Drive Characteristics (XTAL1)

Table 127. AC Parameters

Symbol	Parameter	Min	Мах	Units
T _{CLCL}	Oscillator Period	25		ns
T _{CHCX}	High Time	5		ns
T _{CLCX}	Low Time	5		ns
T _{CLCH}	Rise Time		5	ns
T _{CHCL}	Fall Time		5	ns
T _{CHCX} /T _{CLCX}	Cyclic ratio in X2 mode	40	60	%

Changes from 4182N 03/08 to 4182O 09/08

1. Correction to SPDT register address Table 94 on page 139.

AT89C51CC03

Registers	39
	40
Program/Code Memory	40
External Code Memory Access	41
Flash Memory Architecture	42
Overview of FM0 Operations	46
Operation Cross Memory Access	55
Sharing Instructions	56
In-System Programming (ISP)	58
Flash Programming and Erasure	58
Boot Process	58
Application Programming Interface	60
XROW Bytes	60
Hardware Security Byte	61
Serial I/O Port	62
Framing Error Detection	62
Automatic Address Recognition	63
Given Address	64
Broadcast Address	64
Registers	65
Timers/Counters	68
Timer/Counter Operations	68
Timer 0	68
Timer 1	71
Interrupt	72
Registers	72
	. –
Timer 2	76
Auto-Reload Mode	76
Programmable Clock-Output	77
Registers	78
Watchdog Timer	81
Watchdog Programming	82
Watchdog Timer During Power-down Mode and Idle	83
	00
CAN Controller	85
CAN Protocol	85
CAN Controller Description	89
CAN Controller Mailbox and Registers Organization	90
CAN Controller Management	92

