
Atmel - AT89C51CC03CA-RLTUM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 80C51

Core Size 8-Bit

Speed 40MHz

Connectivity CANbus, UART/USART

Peripherals POR, PWM, WDT

Number of I/O 36

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size 2K x 8

RAM Size 2.25K x 8

Voltage - Supply (Vcc/Vdd) 3V ~ 5.5V

Data Converters A/D 8x10b

Oscillator Type External

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 44-LQFP

Supplier Device Package 44-VQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/atmel/at89c51cc03ca-rltum

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at89c51cc03ca-rltum-4420172
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

5

AT89C51CC03

4182O–CAN–09/08

Pin Name Type Description

VSS GND Circuit ground

TESTI I Must be connected to VSS

VCC Supply Voltage

VAREF Reference Voltage for ADC

VAGND Reference Ground for ADC

P0.0:7 I/O Port 0:
Is an 8-bit open drain bi-directional I/O port. Port 0 pins that have 1’s written to them float, and in this state can be used as
high-impedance inputs. Port 0 is also the multiplexed low-order address and data bus during accesses to external Program
and Data Memory. In this application it uses strong internal pull-ups when emitting 1’s.
Port 0 also outputs the code Bytes during program validation. External pull-ups are required during program verification.

P1.0:7 I/O Port 1:
Is an 8-bit bi-directional I/O port with internal pull-ups. Port 1 pins can be used for digital input/output or as analog inputs for
the Analog Digital Converter (ADC). Port 1 pins that have 1’s written to them are pulled high by the internal pull-up transistors
and can be used as inputs in this state. As inputs, Port 1 pins that are being pulled low externally will be the source of current
(IIL, see section "Electrical Characteristic") because of the internal pull-ups. Port 1 pins are assigned to be used as analog
inputs via the ADCCF register (in this case the internal pull-ups are disconnected).
As a secondary digital function, port 1 contains the Timer 2 external trigger and clock input; the PCA external clock input and
the PCA module I/O.

P1.0/AN0/T2
Analog input channel 0,
External clock input for Timer/counter2.

P1.1/AN1/T2EX
Analog input channel 1,
Trigger input for Timer/counter2.

P1.2/AN2/ECI
Analog input channel 2,
PCA external clock input.

P1.3/AN3/CEX0
Analog input channel 3,
PCA module 0 Entry of input/PWM output.

P1.4/AN4/CEX1
Analog input channel 4,
PCA module 1 Entry of input/PWM output.

P1.5/AN5/CEX2
Analog input channel 5,
PCA module 2 Entry of input/PWM output.

P1.6/AN6/CEX3
Analog input channel 6,
PCA module 3 Entry of input/PWM output.

P1.7/AN7/CEX4
Analog input channel 7,
PCA module 4 Entry ot input/PWM output.
Port 1 receives the low-order address byte during EPROM programming and program verification.
It can drive CMOS inputs without external pull-ups.

P2.0:7 I/O Port 2:
Is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins that have 1’s written to them are pulled high by the internal
pull-ups and can be used as inputs in this state. As inputs, Port 2 pins that are being pulled low externally will be a source of
current (IIL, see section "Electrical Characteristic") because of the internal pull-ups. Port 2 emits the high-order address byte
during accesses to the external Program Memory and during accesses to external Data Memory that uses 16-bit addresses
(MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1’s. During accesses to external Data
Memory that use 8 bit addresses (MOVX @Ri), Port 2 transmits the contents of the P2 special function register.
It also receives high-order addresses and control signals during program validation.
It can drive CMOS inputs without external pull-ups.

6 AT89C51CC03
4182O–CAN–09/08

P3.0:7 I/O Port 3:
Is an 8-bit bi-directional I/O port with internal pull-ups. Port 3 pins that have 1’s written to them are pulled high by the internal
pull-up transistors and can be used as inputs in this state. As inputs, Port 3 pins that are being pulled low externally will be a
source of current (IIL, see section "Electrical Characteristic") because of the internal pull-ups.
The output latch corresponding to a secondary function must be programmed to one for that function to operate (except for
TxD and WR). The secondary functions are assigned to the pins of port 3 as follows:

P3.0/RxD:
Receiver data input (asynchronous) or data input/output (synchronous) of the serial interface

P3.1/TxD:
Transmitter data output (asynchronous) or clock output (synchronous) of the serial interface

P3.2/INT0:
External interrupt 0 input/timer 0 gate control input

P3.3/INT1:
External interrupt 1 input/timer 1 gate control input

P3.4/T0:
Timer 0 counter input

P3.5/T1/SS:
Timer 1 counter input

SPI Slave Select

P3.6/WR:
External Data Memory write strobe; latches the data byte from port 0 into the external data memory

P3.7/RD:
External Data Memory read strobe; Enables the external data memory.
It can drive CMOS inputs without external pull-ups.

P4.0:4 I/O Port 4:
Is an 2-bit bi-directional I/O port with internal pull-ups. Port 4 pins that have 1’s written to them are pulled high by the internal
pull-ups and can be used as inputs in this state. As inputs, Port 4 pins that are being pulled low externally will be a source of
current (IIL, on the datasheet) because of the internal pull-up transistor.
The output latch corresponding to a secondary function RxDC must be programmed to one for that function to operate. The
secondary functions are assigned to the two pins of port 4 as follows:

P4.0/TxDC:
Transmitter output of CAN controller

P4.1/RxDC:
Receiver input of CAN controller.

P4.2/MISO:

Master Input Slave Output of SPI controller
P4.3/SCK:

Serial Clock of SPI controller
P4.4/MOSI:
Master Ouput Slave Input of SPI controller

It can drive CMOS inputs without external pull-ups.

Pin Name Type Description

9

AT89C51CC03

4182O–CAN–09/08

Figure 3. Port 2 Structure

Notes: 1. Port 2 is precluded from use as general-purpose I/O Ports when as address/data bus
drivers.

2. Port 2 internal strong pull-ups FET (P1 in FiGURE) assist the logic-one output for
memory bus cycle.

When Port 0 and Port 2 are used for an external memory cycle, an internal control signal
switches the output-driver input from the latch output to the internal address/data line.

Read-Modify-Write
Instructions

Some instructions read the latch data rather than the pin data. The latch based instruc-
tions read the data, modify the data and then rewrite the latch. These are called "Read-
Modify-Write" instructions. Below is a complete list of these special instructions (see
Table). When the destination operand is a Port or a Port bit, these instructions read the
latch rather than the pin:

It is not obvious the last three instructions in this list are Read-Modify-Write instructions.
These instructions read the port (all 8 bits), modify the specifically addressed bit and

D Q
P2.X

LATCH

INTERNAL

WRITE
TO
LATCH

READ
PIN

READ
LATCH

0

1

P2.x (1)

ADDRESS HIGH/ CONTROL

BUS

VDD

INTERNAL
PULL-UP (2)

Instruction Description Example

ANL logical AND ANL P1, A

ORL logical OR ORL P2, A

XRL logical EX-OR XRL P3, A

JBC jump if bit = 1 and clear bit JBC P1.1, LABEL

CPL complement bit CPL P3.0

INC increment INC P2

DEC decrement DEC P2

DJNZ decrement and jump if not zero DJNZ P3, LABEL

MOV Px.y, C move carry bit to bit y of Port x MOV P1.5, C

CLR Px.y clear bit y of Port x CLR P2.4

SET Px.y set bit y of Port x SET P3.3

13

AT89C51CC03

4182O–CAN–09/08

Mnemonic Add Name 7 6 5 4 3 2 1 0

IEN0 A8h
Interrupt Enable
Control 0

EA EC ET2 ES ET1 EX1 ET0 EX0

IEN1 E8h
Interrupt Enable
Control 1

– – – – ESPI ETIM EADC ECAN

IPL0 B8h
Interrupt Priority
Control Low 0

– PPC PT2 PS PT1 PX1 PT0 PX0

IPH0 B7h
Interrupt Priority
Control High 0

– PPCH PT2H PSH PT1H PX1H PT0H PX0H

IPL1 F8h
Interrupt Priority
Control Low 1

– – – – SPIL POVRL PADCL PCANL

IPH1 F7h
Interrupt Priority
Control High1

– – – – SPIH POVRH PADCH PCANH

Mnemonic Add Name 7 6 5 4 3 2 1 0

ADCON F3h ADC Control – PSIDLE ADEN ADEOC ADSST SCH2 SCH1 SCH0

ADCF F6h ADC Configuration CH7 CH6 CH5 CH4 CH3 CH2 CH1 CH0

ADCLK F2h ADC Clock – – – PRS4 PRS3 PRS2 PRS1 PRS0

ADDH F5h ADC Data High byte ADAT9 ADAT8 ADAT7 ADAT6 ADAT5 ADAT4 ADAT3 ADAT2

ADDL F4h ADC Data Low byte – – – – – – ADAT1 ADAT0

Mnemonic Add Name 7 6 5 4 3 2 1 0

CANGCON ABh
CAN General
Control

ABRQ OVRQ TTC SYNCTTC
AUT–
BAUD

TEST ENA GRES

CANGSTA AAh
CAN General
Status

– OVFG – TBSY RBSY ENFG BOFF ERRP

CANGIT 9Bh
CAN General
Interrupt

CANIT – OVRTIM OVRBUF SERG CERG FERG AERG

CANBT1 B4h CAN Bit Timing 1 – BRP5 BRP4 BRP3 BRP2 BRP1 BRP0 –

CANBT2 B5h CAN Bit Timing 2 – SJW1 SJW0 – PRS2 PRS1 PRS0 –

CANBT3 B6h CAN Bit Timing 3 – PHS22 PHS21 PHS20 PHS12 PHS11 PHS10 SMP

CANEN1 CEh
CAN Enable
Channel byte 1

– ENCH14 ENCH13 ENCH12 ENCH11 ENCH10 ENCH9 ENCH8

CANEN2 CFh
CAN Enable
Channel byte 2

ENCH7 ENCH6 ENCH5 ENCH4 ENCH3 ENCH2 ENCH1 ENCH0

CANGIE C1h
CAN General
Interrupt Enable

– – ENRX ENTX ENERCH ENBUF ENERG –

CANIE1 C2h
CAN Interrupt
Enable Channel
byte 1

– IECH14 IECH13 IECH12 IECH11 IECH10 IECH9 IECH8

20 AT89C51CC03
4182O–CAN–09/08

Registers Table 2. CKCON0 Register

CKCON0 (S:8Fh)
Clock Control Register

Note: 1. This control bit is validated when the CPU clock bit X2 is set; when X2 is low, this bit
has no effect.

Reset Value = 0000 0000b

7 6 5 4 3 2 1 0

CANX2 WDX2 PCAX2 SIX2 T2X2 T1X2 T0X2 X2

Bit
Number

Bit
Mnemonic Description

7 CANX2
CAN clock (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

6 WDX2
WatchDog clock (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

5 PCAX2
Programmable Counter Array clock (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

4 SIX2
Enhanced UART clock (MODE 0 and 2) (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

3 T2X2
Timer2 clock (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

2 T1X2
Timer1 clock (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

1 T0X2
Timer0 clock (1)

Clear to select 6 clock periods per peripheral clock cycle.
Set to select 12 clock periods per peripheral clock cycle.

0 X2

CPU clock
Clear to select 12 clock periods per machine cycle (STD mode) for CPU and all
the peripherals.
Set to select 6 clock periods per machine cycle (X2 mode) and to enable the
individual peripherals "X2"bits.

28 AT89C51CC03
4182O–CAN–09/08

Reset Value = X001 0100b
Not bit addressable

Table 8. AUXR1 Register

AUXR1 (S:A2h)
Auxiliary Control Register 1

Reset Value = XXXX 00X0b

4-2 XRS1-0

ERAM size:
Accessible size of the ERAM
XRS 2:0 ERAM size
000 256 Bytes
001 512 Bytes
010 768 Bytes
011 1024 Bytes

100 1792 Bytes

101 2048 Bytes (default configuration after reset)

110 Reserved

111 Reserved

1 EXTRAM

Internal/External RAM (00h - FFh)
access using MOVX @ Ri/@ DPTR
0 - Internal ERAM access using MOVX @ Ri/@ DPTR.
1 - External data memory access.

0 A0

Disable/Enable ALE)
0 - ALE is emitted at a constant rate of 1/6 the oscillator frequency (or 1/3 if X2
mode is used)
1 - ALE is active only during a MOVX or MOVC instruction.

7 6 5 4 3 2 1 0

- - ENBOOT - GF3 0 - DPS

Bit
Number

Bit
Mnemonic Description

7-6 -
Reserved
The value read from these bits is indeterminate. Do not set these bits.

5 ENBOOT
Enable Boot Flash
Set this bit for map the boot Flash between F800h -FFFFh
Clear this bit for disable boot Flash.

4 -
Reserved
The value read from this bit is indeterminate. Do not set this bit.

3 GF3 General-purpose Flag 3

2 0
Always Zero
This bit is stuck to logic 0 to allow INC AUXR1 instruction without affecting GF3
flag.

1 - Reserved for Data Pointer Extension.

0 DPS
Data Pointer Select Bit
Set to select second dual data pointer: DPTR1.
Clear to select first dual data pointer: DPTR0.

Bit
Number

Bit
Mnemonic Description

47

AT89C51CC03

4182O–CAN–09/08

FSTA Register
Table 14. FSTA Register

FSTA Register (S:D3h)
Flash Status Register

Reset Value= 0000 0000b

Mapping of the Memory Space By default, the user space is accessed by MOVC A, @DPTR instruction for read only.
The column latches space is made accessible by setting the FPS bit in FCON register.
Writing is possible from 0000h to FFFFh, address bits 6 to 0 are used to select an
address within a page while bits 15 to 7 are used to select the programming address of
the page.
Setting FPS bit takes precedence on the EXTRAM bit in AUXR register.

The other memory spaces (user, extra row, hardware security) are made accessible in
the code segment by programming bits FMOD0 and FMOD1 in FCON register in accor-
dance with Table 15. A MOVC instruction is then used for reading these spaces.

Table 15. FM0 Blocks Select Bits

Notes: 1. The column latches reset is a new option introduced in the AT89C51CC03, and is not
available in T89C51CC01/2

Launching Programming FPL3:0 bits in FCON register are used to secure the launch of programming. A specific
sequence must be written in these bits to unlock the write protection and to launch the
programming. This sequence is 5xh followed by Axh. Table 16 summarizes the memory
spaces to program according to FMOD1:0 bits.

7 6 5 4 3 2 1 0

SEQERR FLOAD

Bit
Number

Bit
Mnemonic Description

7-2 unusesd

1 SEQERR

Flash activation sequence error
Set by hardware when the flash activation sequence(MOV FCON 5X and MOV
FCON AX)is not correct (See Error Repport Section)

Clear by software or clear by hardware if the last activation sequence was
correct (previous error are canceled)

0 FLOAD

Flash Colums latch loaded
Set by hardware when the first data is loaded in the column latches.

Clear by hardware when the activation sequence suceed (flash write sucess, or
reset column latch success)

FMOD1 FMOD0 FM0 Adressable space

0 0 User (0000h-FFFFh)

0 1 Extra Row(FF80h-FFFFh)

1 0 Hardware Security Byte (0000h)

1 1 Column latches reset (note1)

58 AT89C51CC03
4182O–CAN–09/08

In-System
Programming (ISP)

With the implementation of the User Space (FM0) and the Boot Space (FM1) in Flash
technology the AT89C51CC03 allows the system engineer the development of applica-
tions with a very high level of flexibility. This flexibility is based on the possibility to alter
the customer program at any stages of a product’s life:

• Before assembly the 1st personalization of the product by programming in the FM0
and if needed also a customized Boot loader in the FM1.
Atmel provide also a standard Boot loader by default UART or CAN.

• After assembling on the PCB in its final embedded position by serial mode via the
CAN bus or UART.

This In-System Programming (ISP) allows code modification over the total lifetime of the
product.

Besides the default Boot loader Atmel provide to the customer also all the needed Appli-
cation-Programming-Interfaces (API) which are needed for the ISP. The API are located
also in the Boot memory.

This allow the customer to have a full use of the 64-Kbyte user memory.

Flash Programming and
Erasure

There are three methods of programming the Flash memory:

• The Atmel bootloader located in FM1 is activated by the application. Low level API
routines (located in FM1)will be used to program FM0. The interface used for serial
downloading to FM0 is the UART or the CAN. API can be called also by the user’s
bootloader located in FM0 at [SBV]00h.

• A further method exists in activating the Atmel boot loader by hardware activation.

• The FM0 can be programmed also by the parallel mode using a programmer.

Figure 29. Flash Memory Mapping

Boot Process

Software Boot Process
Example

Many algorithms can be used for the software boot process. Before describing them,

The description of the different flags and Bytes is given below:

F800h

FFFFh

64K Bytes

Flash memory

2K Bytes IAP
bootloader

FM0

FM1
Custom
Boot Loader

[SBV]00h

FFFFh

FM1 mapped between F800h and FFFFh
when API called

0000h

62 AT89C51CC03
4182O–CAN–09/08

 Serial I/O Port The AT89C51CC03 I/O serial port is compatible with the I/O serial port in the 80C52.
It provides both synchronous and asynchronous communication modes. It operates as a
Universal Asynchronous Receiver and Transmitter (UART) in three full-duplex modes
(Modes 1, 2 and 3). Asynchronous transmission and reception can occur simultaneously
and at different baud rates

Serial I/O port includes the following enhancements:

• Framing error detection

• Automatic address recognition

Figure 31. Serial I/O Port Block Diagram

 Framing Error Detection Framing bit error detection is provided for the three asynchronous modes. To enable the
framing bit error detection feature, set SMOD0 bit in PCON register.

Figure 32. Framing Error Block Diagram

When this feature is enabled, the receiver checks each incoming data frame for a valid
stop bit. An invalid stop bit may result from noise on the serial lines or from simultaneous
transmission by two CPUs. If a valid stop bit is not found, the Framing Error bit (FE) in
SCON register bit is set.

The software may examine the FE bit after each reception to check for data errors.
Once set, only software or a reset clears the FE bit. Subsequently received frames with

Write SBUF

RI TI

SBUF
Transmitter

SBUF
Receiver

IB Bus

Mode 0 Transmit

Receive

Shift register

Load SBUF

Read SBUF

SCON reg

Interrupt Request
Serial Port

TXD

RXD

RITIRB8TB8RENSM2SM1SM0/FE

IDLPDGF0GF1POF-SMOD0SMOD

To UART framing error control

SM0 to UART mode control

Set FE bit if stop bit is 0 (framing error)

77

AT89C51CC03

4182O–CAN–09/08

Programmable Clock-
Output

In clock-out mode, timer 2 operates as a 50%-duty-cycle, programmable clock genera-
tor (See Figure 41). The input clock increments TL2 at frequency FOSC/2. The timer
repeatedly counts to overflow from a loaded value. At overflow, the contents of RCAP2H
and RCAP2L registers are loaded into TH2 and TL2. In this mode, timer 2 overflows do
not generate interrupts. The formula gives the clock-out frequency depending on the
system oscillator frequency and the value in the RCAP2H and RCAP2L registers:

For a 16 MHz system clock in x1 mode, timer 2 has a programmable frequency range of
61 Hz (FOSC/216) to 4 MHz (FOSC/4). The generated clock signal is brought out to T2 pin
(P1.0).

Timer 2 is programmed for the clock-out mode as follows:

• Set T2OE bit in T2MOD register.

• Clear C/T2 bit in T2CON register.

• Determine the 16-bit reload value from the formula and enter it in RCAP2H/RCAP2L
registers.

• Enter a 16-bit initial value in timer registers TH2/TL2. It can be the same as the
reload value or different depending on the application.

• To start the timer, set TR2 run control bit in T2CON register.

It is possible to use timer 2 as a baud rate generator and a clock generator simulta-
neously. For this configuration, the baud rates and clock frequencies are not
independent since both functions use the values in the RCAP2H and RCAP2L registers.

Figure 41. Clock-Out Mode

Clock OutFrequency–
FT2clock

4 65536 RCAP2H– RCAP2L⁄()×
---=

EXEN2

EXF2

OVERFLOW

T2EX

TH2
(8-bit)

TL2
(8-bit)

TIMER 2

RCAP2H
(8-bit)

RCAP2L
(8-bit)

T2OE

T2CON reg

T2CON reg

T2MOD reg

INTERRUPT

TR2
T2CON.2

FT2
CLOCK

T2

Q D

Toggle

Q

85

AT89C51CC03

4182O–CAN–09/08

CAN Controller The CAN Controller provides all the features required to implement the serial communi-
cation protocol CAN as defined by BOSCH GmbH. The CAN specification as referred to
by ISO/11898 (2.0A and 2.0B) for high speed and ISO/11519-2 for low speed. The CAN
Controller is able to handle all types of frames (Data, Remote, Error and Overload) and
achieves a bitrate of 1-Mbit/sec at 8 MHz1 Crystal frequency in X2 mode.
Note: 1. At BRP = 1 sampling point will be fixed.

CAN Protocol The CAN protocol is an international standard defined in the ISO 11898 for high speed
and ISO 11519-2 for low speed.

Principles CAN is based on a broadcast communication mechanism. This broadcast communica-
tion is achieved by using a message oriented transmission protocol. These messages
are identified by using a message identifier. Such a message identifier has to be unique
within the whole network and it defines not only the content but also the priority of the
message.

The priority at which a message is transmitted compared to another less urgent mes-
sage is specified by the identifier of each message. The priorities are laid down during
system design in the form of corresponding binary values and cannot be changed
dynamically. The identifier with the lowest binary number has the highest priority.

Bus access conflicts are resolved by bit-wise arbitration on the identifiers involved by
each node observing the bus level bit for bit. This happens in accordance with the "wired
and" mechanism, by which the dominant state overwrites the recessive state. The com-
petition for bus allocation is lost by all nodes with recessive transmission and dominant
observation. All the "losers" automatically become receivers of the message with the
highest priority and do not re-attempt transmission until the bus is available again.

Message Formats The CAN protocol supports two message frame formats, the only essential difference
being in the length of the identifier. The CAN standard frame, also known as CAN 2.0 A,
supports a length of 11 bits for the identifier, and the CAN extended frame, also known
as CAN 2.0 B, supports a length of 29 bits for the identifier.

Can Standard Frame

Figure 43. CAN Standard Frames

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)",
this is followed by the "Arbitration field" which consist of the identifier and the "Remote
Transmission Request (RTR)" bit used to distinguish between the data frame and the
data request frame called remote frame. The following "Control field" contains the "IDen-
tifier Extension (IDE)" bit and the "Data Length Code (DLC)" used to indicate the

11-bit identifier
ID10..0

Interframe
Space

4-bit DLC
DLC4..0

CRC
del.

ACK
del.15-bit CRC0 - 8 bytesSOFSOF RTR IDE r0 ACK 7 bits Intermission

3 bits
Bus Idle Bus Idle

(Indefinite)

Arbitration
Field

Data
Field

Data Frame

Control
Field

End of
Frame

CRC
Field

ACK
Field

Interframe
Space

11-bit identifier
ID10..0

Interframe
Space

4-bit DLC
DLC4..0

CRC
del.

ACK
del.15-bit CRCSOFSOF RTR IDE r0 ACK 7 bits Intermission

3 bits
Bus Idle Bus Idle

(Indefinite)

Arbitration
Field

Remote Frame

Control
Field

End of
Frame

CRC
Field

ACK
Field

Interframe
Space

92 AT89C51CC03
4182O–CAN–09/08

Working on Message Objects The Page message object register (CANPAGE) is used to select one of the 15 message
objects. Then, message object Control (CANCONCH) and message object Status
(CANSTCH) are available for this selected message object number in the corresponding
SFRs. A single register (CANMSG) is used for the message. The mailbox pointer is
managed by the Page message object register with an auto-incrementation at the end of
each access. The range of this counter is 8.
Note that the maibox is a pure RAM, dedicated to one message object, without overlap.
In most cases, it is not necessary to transfer the received message into the standard
memory. The message to be transmitted can be built directly in the maibox. Most calcu-
lations or tests can be executed in the mailbox area which provide quicker access.

CAN Controller
Management

In order to enable the CAN Controller correctly the following registers have to be
initialized:

• General Control (CANGCON),

• Bit Timing (CANBT 1, 2 and 3),

• And for each page of 15 message objects

– message object Control (CANCONCH),

– message object Status (CANSTCH).

During operation, the CAN Enable message object registers 1 and 2 (CANEN 1 and 2)
gives a fast overview of the message objects availability.

The CAN messages can be handled by interrupt or polling modes.

A message object can be configured as follows:

• Transmit message object,

• Receive message object,

• Receive buffer message object.

• Disable

This configuration is made in the CONCH1:2 field of the CANCONCH register (see
Table 46).

When a message object is configured, the corresponding ENCH bit of CANEN 1 and 2
register is set.

Table 46. Configuration for CONCH1:2

When a Transmitter or Receiver action of a message object is completed, the corre-
sponding ENCH bit of the CANEN 1 and 2 register is cleared. In order to re-enable the
message object, it is necessary to re-write the configuration in CANCONCH register.

Non-consecutive message objects can be used for all three types of message objects
(Transmitter, Receiver and Receiver buffer),

CONCH 1 CONCH 2 Type of Message Object

0 0 Disable

0 1 Transmitter

1 0 Receiver

1 1 Receiver buffer

95

AT89C51CC03

4182O–CAN–09/08

• Enable General CAN IT in the interrupt system register,

• Enable interrupt by message object, EICHi,

• Enable interrupt on error, ENERCH.

To enable an interrupt on general error:

• Enable General CAN IT in the interrupt system register,

• Enable interrupt on error, ENERG.

To enable an interrupt on Buffer-full condition:

• Enable General CAN IT in the interrupt system register,

• Enable interrupt on Buffer full, ENBUF.

To enable an interrupt when Timer overruns:

• Enable Overrun IT in the interrupt system register.

When an interrupt occurs, the corresponding message object bit is set in the SIT
register.

To acknowledge an interrupt, the corresponding CANSTCH bits (RXOK, TXOK,...) or
CANGIT bits (OVRTIM, OVRBUF,...), must be cleared by the software application.

When the CAN node is in transmission and detects a Form Error in its frame, a bit Error
will also be raised. Consequently, two consecutive interrupts can occur, both due to the
same error.

When a message object error occurs and is set in CANSTCH register, no general error
are set in CANGIE register.

103

AT89C51CC03

4182O–CAN–09/08

// Enable the CAN macro

 CANGCON = 02h

2. Configure message object 3 in reception to receive only standard (11-bit identi-
fier) message 100h
// Select the message object 3

 CANPAGE = 30h

// Enable the interrupt on this message object

 CANIE2 = 08h

// Clear the status and control register

 CANSTCH = 00h

 CANCONCH = 00h

// Init the acceptance filter to accept only message 100h in standard mode

 CANIDT1 = 20h

 CANIDT2 = 00h

 CANIDT3 = 00h

 CANIDT4 = 00h

 CANIDM1 = FFh

 CANIDM2 = FFh

 CANIDM3 = FFh

 CANIDM4 = FFh

// Enable channel in reception

 CANCONCH = 88h // enable reception

Note: To enable the CAN interrupt in reception:

EA = 1

ECAN = 1

CANGIE = 20h

3. Send a message on the message object 12
// Select the message object 12

 CANPAGE = C0h

// Enable the interrupt on this message object

 CANIE1 = 01h

// Clear the Status register

 CANSTCH = 00h;

// load the identifier to send (ex: 555h)

 CANIDT1 = AAh;

 CANIDT2 = A0h;

// load data to send

 CANMSG = 00h

 CANMSG = 01h

 CANMSG = 02h

 CANMSG = 03h

 CANMSG = 04h

 CANMSG = 05h

 CANMSG = 06h

 CANMSG = 07h

// configure the control register

 CANCONCH = 18h

107

AT89C51CC03

4182O–CAN–09/08

Table 49. CANGSTA Register

CANGSTA (S:AAh Read Only)
CAN General Status Register

Reset Value = x0x0 0000b

7 6 5 4 3 2 1 0

- OVFG - TBSY RBSY ENFG BOFF ERRP

Bit
Number Bit Mnemonic Description

7 -
Reserved
The values read from this bit is indeterminate. Do not set this bit.

6 OVFG

Overload Frame Flag

This status bit is set by the hardware as long as the produced overload frame
is sent.
This flag does not generate an interrupt

5 -
Reserved
The values read from this bit is indeterminate. Do not set this bit.

4 TBSY

Transmitter Busy

This status bit is set by the hardware as long as the CAN transmitter
generates a frame (remote, data, overload or error frame) or an ack field. This
bit is also active during an InterFrame Spacing if a frame must be sent.
This flag does not generate an interrupt.

3 RBSY

Receiver Busy

This status bit is set by the hardware as long as the CAN receiver acquires or
monitors a frame.
This flag does not generate an interrupt.

2 ENFG

Enable On-chip CAN Controller Flag

Because an enable/disable command is not effective immediately, this status
bit gives the true state of a chosen mode.
This flag does not generate an interrupt.

1 BOFF
Bus Off Mode

see Figure 53

0 ERRP
Error Passive Mode

see Figure 53

108 AT89C51CC03
4182O–CAN–09/08

Table 50. CANGIT Register

CANGIT (S:9Bh)
CAN General Interrupt

Note: 1. This field is Read Only.

Reset Value = 0x00 0000b

7 6 5 4 3 2 1 0

CANIT - OVRTIM OVRBUF SERG CERG FERG AERG

Bit
Number Bit Mnemonic Description

7 CANIT

General Interrupt Flag(1)

This status bit is the image of all the CAN controller interrupts sent to the
interrupt controller.
It can be used in the case of the polling method.

6 -
Reserved
The values read from this bit is indeterminate. Do not set this bit.

5 OVRTIM

Overrun CAN Timer
This status bit is set when the CAN timer switches 0xFFFF to 0x0000.
If the bit ETIM in the IE1 register is set, an interrupt is generated.
Clear this bit in order to reset the interrupt.

4 OVRBUF

Overrun BUFFER
0 - no interrupt.
1 - IT turned on
This bit is set when the buffer is full.
Bit resetable by user.
see Figure 50.

3 SERG
Stuff Error General
Detection of more than five consecutive bits with the same polarity.
This flag can generate an interrupt. resetable by user.

2 CERG

CRC Error General
The receiver performs a CRC check on each destuffed received message
from the start of frame up to the data field.
If this checking does not match with the destuffed CRC field, a CRC error is
set.
This flag can generate an interrupt. resetable by user.

1 FERG

Form Error General
The form error results from one or more violations of the fixed form in the
following bit fields:
CRC delimiter
acknowledgment delimiter
end_of_frame
This flag can generate an interrupt. resetable by user.

0 AERG
Acknowledgment Error General
No detection of the dominant bit in the acknowledge slot.
This flag can generate an interrupt. resetable by user.

116 AT89C51CC03
4182O–CAN–09/08

Table 62. CANBT3 Register

CANBT3 (S:B6h)
CAN Bit Timing Registers 3

Note: The CAN controller bit timing registers must be accessed only if the CAN controller is dis-
abled with the ENA bit of the CANGCON register set to 0.
See Figure 52.

No default value after reset.

7 6 5 4 3 2 1 0

- PHS2 2 PHS2 1 PHS2 0 PHS1 2 PHS1 1 PHS1 0 SMP

Bit
Number Bit Mnemonic Description

7 -
Reserved
The value read from this bit is indeterminate. Do not set this bit.

6-4 PHS2 2:0

Phase Segment 2
This phase is used to compensate for phase edge errors. This segment can
be shortened by the re-synchronization jump width.

Phase segment 2 is the maximum of Phase segment 1 and the Information
Processing Time (= 2TQ).

3-1 PHS1 2:0

Phase Segment 1
This phase is used to compensate for phase edge errors. This segment can
be lengthened by the re-synchronization jump width.

0 SMP

Sample Type
0 - once, at the sample point.
1 - three times, the threefold sampling of the bus is the sample point and twice
over a distance of a 1/2 period of the Tscl. The result corresponds to the
majority decision of the three values.

Tphs2 = Tscl x (PHS2[2..0] + 1)

Tphs1 = Tscl x (PHS1[2..0] + 1)

120 AT89C51CC03
4182O–CAN–09/08

Table 69. CANIDT4 Register for V2.0 part A

CANIDT4 for V2.0 part A (S:BFh)
CAN Identifier Tag Registers 4

No default value after reset.

Table 70. CANIDT4 Register for V2.0 part A

CANIDT1 for V2.0 part B (S:BCh)
CAN Identifier Tag Registers 1

No default value after reset.

Table 71. CANIDT2 Register for V2.0 part B

CANIDT2 for V2.0 part B (S:BDh)
CAN Identifier Tag Registers 2

No default value after reset.

7 6 5 4 3 2 1 0

- - - - - RTRTAG - RB0TAG

Bit
Number Bit Mnemonic Description

7-3 -
Reserved
The values read from these bits are indeterminate. Do not set these bits.

2 RTRTAG Remote Transmission Request Tag Value.

1 -
Reserved
The values read from this bit are indeterminate. Do not set these bit.

0 RB0TAG Reserved Bit 0 Tag Value.

7 6 5 4 3 2 1 0

IDT 28 IDT 27 IDT 26 IDT 25 IDT 24 IDT 23 IDT 22 IDT 21

Bit
Number Bit Mnemonic Description

7-0 IDT28:21
IDentifier Tag Value
See Figure 54.

7 6 5 4 3 2 1 0

IDT 20 IDT 19 IDT 18 IDT 17 IDT 16 IDT 15 IDT 14 IDT 13

Bit
Number Bit Mnemonic Description

7-0 IDT20:13
IDentifier Tag Value
See Figure 54.

130 AT89C51CC03
4182O–CAN–09/08

In a Master configuration, the SS line can be used in conjunction with the MODF flag in
the SPI Status register (SPSCR) to prevent multiple masters from driving MOSI and
SCK (see Error conditions).

A high level on the SS pin puts the MISO line of a Slave SPI in a high-impedance state.

The SS pin could be used as a general-purpose if the following conditions are met:

• The device is configured as a Master and the SSDIS control bit in SPCON is set.
This kind of configuration can be found when only one Master is driving the network
and there is no way that the SS pin could be pulled low. Therefore, the MODF flag in
the SPSCR will never be set(1).

• The Device is configured as a Slave with CPHA and SSDIS control bits set(2). This
kind of configuration can happen when the system includes one Master and one
Slave only. Therefore, the device should always be selected and there is no reason
that the Master uses the SS pin to select the communicating Slave device.

Note: 1. Clearing SSDIS control bit does not clear MODF.

2. Special care should be taken not to set SSDIS control bit when CPHA =’0’ because in
this mode, the SS is used to start the transmission.

Baud Rate In Master mode, the baud rate can be selected from a baud rate generator which is con-
trolled by three bits in the SPCON register: SPR2, SPR1 and SPR0.The Master clock is
selected from one of seven clock rates resulting from the division of the internal clock by
4, 8, 16, 32, 64 or 128.

Table 90 gives the different clock rates selected by SPR2:SPR1:SPR0.

In Slave mode, the maximum baud rate allowed on the SCK input is limited to Fsys/4

Table 90. SPI Master Baud Rate Selection

SPR2 SPR1 SPR0 Clock Rate Baud Rate Divisor (BD)

0 0 0 Don’t Use No BRG

0 0 1 FCLK PERIPH /4 4

0 1 0 FCLK PERIPH/8 8

0 1 1 FCLK PERIPH /16 16

1 0 0 FCLK PERIPH /32 32

1 0 1 FCLK PERIPH /64 64

1 1 0 FCLK PERIPH /128 128

1 1 1 Don’t Use No BRG

174 AT89C51CC03
4182O–CAN–09/08

External Data Memory
Characteristics

Table 121. Symbol Description

Table 122. AC Parameters for a Fix Clock (F=40MHz)

Symbol Parameter

TRLRH RD Pulse Width

TWLWH WR Pulse Width

TRLDV RD to Valid Data In

TRHDX Data Hold After RD

TRHDZ Data Float After RD

TLLDV ALE to Valid Data In

TAVDV Address to Valid Data In

TLLWL ALE to WR or RD

TAVWL Address to WR or RD

TQVWX Data Valid to WR Transition

TQVWH Data set-up to WR High

TWHQX Data Hold After WR

TRLAZ RD Low to Address Float

TWHLH RD or WR High to ALE high

Symbol Min Max Units

TRLRH 130 ns

TWLWH 130 ns

TRLDV 100 ns

TRHDX 0 ns

TRHDZ 30 ns

TLLDV 160 ns

TAVDV 165 ns

TLLWL 50 100 ns

TAVWL 75 ns

TQVWX 10 ns

TQVWH 160 ns

TWHQX 15 ns

TRLAZ 0 ns

TWHLH 10 40 ns

