

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	80C51
Core Size	8-Bit
Speed	40MHz
Connectivity	CANbus, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.6x16.6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51cc03ua-slsum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3. Port 2 Structure

- Notes: 1. Port 2 is precluded from use as general-purpose I/O Ports when as address/data bus drivers.
 - 2. Port 2 internal strong pull-ups FET (P1 in FiGURE) assist the logic-one output for memory bus cycle.

When Port 0 and Port 2 are used for an external memory cycle, an internal control signal switches the output-driver input from the latch output to the internal address/data line.

Read-Modify-Write Instructions

Some instructions read the latch data rather than the pin data. The latch based instructions read the data, modify the data and then rewrite the latch. These are called "Read-Modify-Write" instructions. Below is a complete list of these special instructions (see Table). When the destination operand is a Port or a Port bit, these instructions read the latch rather than the pin:

Instruction	Description	Example
ANL	logical AND	ANL P1, A
ORL	logical OR	ORL P2, A
XRL	logical EX-OR	XRL P3, A
JBC	jump if bit = 1 and clear bit	JBC P1.1, LABEL
CPL	complement bit	CPL P3.0
INC	increment	INC P2
DEC	decrement	DEC P2
DJNZ	decrement and jump if not zero	DJNZ P3, LABEL
MOV Px.y, C	move carry bit to bit y of Port x	MOV P1.5, C
CLR Px.y	clear bit y of Port x	CLR P2.4
SET Px.y	set bit y of Port x	SET P3.3

It is not obvious the last three instructions in this list are Read-Modify-Write instructions. These instructions read the port (all 8 bits), modify the specifically addressed bit and

AT89C51CC03

Figure 6. Mode Switching Waveforms

Note: In order to prevent any incorrect operation while operating in the X2 mode, users must be aware that all peripherals using the clock frequency as a time reference (UART, timers...) will have their time reference divided by two. For example a free running timer generating an interrupt every 20 ms will then generate an interrupt every 10 ms. A UART with a 4800 baud rate will have a 9600 baud rate.

Table 3. CKCON1 Register

CKCON1 (S:9Fh) Clock Control Register 1

7	6	5	4	3	2	1	0			
							SPIX2			
Bit Number	Bit Mnemonic	Description	Description							
7-1	-	Reserved The value rea	Reserved The value read from these bits is indeterminate. Do not set these bits.							
0	SPIX2	SPI clock ⁽¹⁾ Clear to select 6 clock periods per peripheral clock cycle. Set to select 12 clock periods per peripheral clock cycle.								
Noto: 1	This control	hit is validat	ed when the		hit X2 is sat	when X2 is	low this hit			

Note: 1. This control bit is validated when the CPU clock bit X2 is set; when X2 is low, this bit has no effect.

Reset Value = 0000 0000b

Internal Space

Lower 128 Bytes RAM

The lower 128 Bytes of RAM (see Figure 8) are accessible from address 00h to 7Fh using direct or indirect addressing modes. The lowest 32 Bytes are grouped into 4 banks of 8 registers (R0 to R7). Two bits RS0 and RS1 in PSW register (see Figure 6) select which bank is in use according to Table 4. This allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing, and can be used for context switching in interrupt service routines.

Table 4. Register Bank Selection

RS1	RS0	Description			
0	0	Register bank 0 from 00h to 07h			
0	1	Register bank 0 from 08h to 0Fh			
1	0	Register bank 0 from 10h to 17h			
1	1	Register bank 0 from 18h to 1Fh			

The next 16 Bytes above the register banks form a block of bit-addressable memory space. The C51 instruction set includes a wide selection of single-bit instructions, and the 128 bits in this area can be directly addressed by these instructions. The bit addresses in this area are 00h to 7Fh.

Figure 9. Lower 128 Bytes Internal RAM Organization

Upper 128 Bytes RAM The upper 128 Bytes of RAM are accessible from address 80h to FFh using only indirect addressing mode.

Expanded RAM

The on-chip 2048 Bytes of expanded RAM (ERAM) are accessible from address 0000h to 07FFh using indirect addressing mode through MOVX instructions. In this address range, the bit EXTRAM in AUXR register is used to select the ERAM (default) or the XRAM. As shown in Figure 8 when EXTRAM = 0, the ERAM is selected and when EXTRAM = 1, the XRAM is selected.

The size of ERAM can be configured by XRS2-0 bit in AUXR register (default size is 2048 Bytes).

Note: Lower 128 Bytes RAM, Upper 128 Bytes RAM, and expanded RAM are made of volatile memory cells. This means that the RAM content is indeterminate after power-up and must then be initialized properly.

Figure 26. Flash and Extra Row Programming Procedure

Hardware Security Byte

The following procedure is used to program the Hardware Security Byte space and is summarized in Figure 27:

- Set FPS and map Hardware byte (FCON = 0x0C)
- Save and disable the interrupts.
- Load DPTR at address 0000h.
- Load Accumulator register with the data to load.
- Execute the MOVX @DPTR, A instruction.
- Launch the programming by writing the data sequence 54h followed by A4h in FCON register (only from FM1).
 The end of the programming indicated by the FBusy flag cleared.
- Restore the interrupts.

Figure 27. Hardware Programming Procedure

Reset the Column Latches

An automatic reset of the column latches is performed after a successful Flash write sequence. User can also reset the column latches manually, for instance to reload the column latches before writing the Flash. The following procedure is summarized below.

- Save and disable the interrupts.
- Launch the reset by writing the data sequence 56h followed by A6h in FCON register (only from FM1).
- Restore the interrupts.

Error Reports

Flash Programming Sequence Errors

uence When a wrong sequence is detected, the SEQERR bit in FSTA register is set. Possible wrong sequence are :

- MOV FCON, 5xh instruction not immediately followed by a MOV FCON, Ax instruction.
- A write Flash sequence is launched while no data were loaded in the column latches

The SEQERR bit can be cleared

- By software
- By hardware when a correct programming sequence is completed

When multiple pages are written into the Flash, the user should check FSTA for errors after each write page sequences, not only at the end of the multiple write pages.

52 AT89C51CC03

Operation Cross Memory Access

Space addressable in read and write are:

- RAM
- ERAM (Expanded RAM access by movx)
- XRAM (eXternal RAM)
- EEPROM DATA
- FM0 (user flash)
- Hardware byte
- XROW
- Boot Flash
- Flash Column latch

The table below provide the different kind of memory which can be accessed from different code location.

Table 18. Cross Memory Access

	Action	RAM	XRAM ERAM	Boot FLASH	FM0	E ² Data	Hardware Byte	XROW
boot FLASH	Read			ОК	ОК	ОК	ОК	-
	Write			-	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾	OK ⁽¹⁾
FM0	Read			ОК	ОК	ОК	ОК	-
	Write			-	OK (idle)	OK ⁽¹⁾	-	ОК
External memory EA = 0 or Code Roll Over	Read			-	-	ОК	-	-
	Write			-	-	OK ⁽¹⁾	-	-

Note: 1. RWW: Read While Write

R

Timers/Counters	The AT89C51CC03 implements two general-purpose, 16-bit Timers/Counters. Such are identified as Timer 0 and Timer 1, and can be independently configured to operate in a variety of modes as a Timer or an event Counter. When operating as a Timer, the Timer/Counter runs for a programmed length of time, then issues an interrupt request. When operating as a Counter, the Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt request. The various operating modes of each Timer/Counter are described in the following sections.
Timer/Counter Operations	A basic operation is Timer registers THx and TLx ($x = 0, 1$) connected in cascade to form a 16-bit Timer. Setting the run control bit (TRx) in TCON register (see Figure 30) turns the Timer on by allowing the selected input to increment TLx. When TLx overflows it increments THx; when THx overflows it sets the Timer overflow flag (TFx) in TCON register. Setting the TRx does not clear the THx and TLx Timer registers. Timer registers can be accessed to obtain the current count or to enter preset values. They can be read at any time but TRx bit must be cleared to preset their values, otherwise the behavior of the Timer/Counter is unpredictable.
	The C/Tx# control bit selects Timer operation or Counter operation by selecting the divided-down peripheral clock or external pin Tx as the source for the counted signal. TRx bit must be cleared when changing the mode of operation, otherwise the behavior of the Timer/Counter is unpredictable.
	For Timer operation (C/Tx# = 0), the Timer register counts the divided-down peripheral clock. The Timer register is incremented once every peripheral cycle (6 peripheral clock periods). The Timer clock rate is $F_{PER}/6$, i.e. $F_{OSC}/12$ in standard mode or $F_{OSC}/6$ in X2 mode.
	For Counter operation (C/Tx# = 1), the Timer register counts the negative transitions on the Tx external input pin. The external input is sampled every peripheral cycles. When the sample is high in one cycle and low in the next one, the Counter is incremented. Since it takes 2 cycles (12 peripheral clock periods) to recognize a negative transition, the maximum count rate is $F_{PER}/12$, i.e. $F_{OSC}/24$ in standard mode or $F_{OSC}/12$ in X2 mode. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it should be held for at least one full peripheral cycle.
Timer 0	Timer 0 functions as either a Timer or event Counter in four modes of operation. Figure 35 to Figure 38 show the logical configuration of each mode.
	Timer 0 is controlled by the four lower bits of TMOD register (see Figure 31) and bits 0, 1, 4 and 5 of TCON register (see Figure 30). TMOD register selects the method of Timer gating (GATE0), Timer or Counter operation (T/C0#) and mode of operation (M10 and M00). TCON register provides Timer 0 control functions: overflow flag (TF0), run control bit (TR0), interrupt flag (IE0) and interrupt type control bit (IT0).
	For normal Timer operation (GATE0 = 0), setting TR0 allows TL0 to be incremented by the selected input. Setting GATE0 and TR0 allows external pin INT0# to control Timer operation.
	Timer 0 overflow (count rolls over from all 1s to all 0s) sets TF0 flag generating an inter- rupt request.
	It is important to stop Timer/Counter before changing mode.

Table 31. TMOD Register

TMOD (S:89h) Timer/Counter Mode Control Register

7	6	5	4	3	2	1	0		
GATE1	C/T1#	M11	M01	GATE0	C/T0#	M10	M00		
Bit Number	Bit Mnemonic	Description							
7	GATE1	Timer 1 Gati Clear to enal Set to enable	Fimer 1 Gating Control Bit Clear to enable Timer 1 whenever TR1 bit is set. Set to enable Timer 1 only while INT1# pin is high and TR1 bit is set.						
6	C/T1#	Timer 1 Cou Clear for Tim Set for Coun	Timer 1 Counter/Timer Select Bit Clear for Timer operation: Timer 1 counts the divided-down system clock. Set for Counter operation: Timer 1 counts negative transitions on external pin T1.						
5	M11	Timer 1 Mod	le Select Bits	5					
4	M01	<u>M11 M01</u> 0 0 0 1 1 0 1 1	M11 M01 Operating mode 0 0 Mode 0: 8-bit Timer/Counter (TH1) with 5-bit prescaler (TL1). 0 1 Mode 1: 16-bit Timer/Counter. 1 0 Mode 2: 8-bit auto-reload Timer/Counter (TL1) ⁽¹⁾ 1 1 Mode 3: Timer 1 halted. Retains count						
3	GATE0	Timer 0 Gati Clear to enal Set to enable	ing Control E ble Timer 0 w e Timer/Count	Bit henever TR0 b ter 0 only while	oit is set. e INT0# pin is	high and TRC) bit is set.		
2	C/T0#	Timer 0 Cou Clear for Tim Set for Coun	Timer 0 Counter/Timer Select Bit Clear for Timer operation: Timer 0 counts the divided-down system clock. Set for Counter operation: Timer 0 counts negative transitions on external pin T0.						
1	M10	Timer 0 Moc M10 M00 0 0	le Select Bit Operating Mode 0: 8-	mode bit Timer/Cour	nter (TH0) wit	h 5-bit prescal	er (TL0).		
0	M00	1 0 1 1 TH0 is an 8-1	Mode 1: 16 Mode 2: 8- Mode 3: TI bit Timer using	bit auto-reload ∟0 is an 8-bit T g Timer 1's TR	Timer/Count Timer/Counter 0 and TF0 bi	er (TL0) ⁽²⁾ ts.			

1. Reloaded from TH1 at overflow.

2. Reloaded from TH0 at overflow.

Reset Value = 0000 0000b

Registers

Table 36. T2CON Register

T2CON (S:C8h) Timer 2 Control Register

7	6	5	4	3	2	1	0			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#			
Bit Number	Bit Mnemonic	Description	Description							
7	TF2	Timer 2 Ove TF2 is not se Must be clea Set by hardw	Timer 2 Overflow Flag TF2 is not set if RCLK=1 or TCLK = 1. Must be cleared by software. Set by hardware on timer 2 overflow.							
6	EXF2	Timer 2 Extension 2 Extensio 2	Fimer 2 External Flag Set when a capture or a reload is caused by a negative transition on T2EX pin if EXEN2=1. Set to cause the CPU to vector to timer 2 interrupt routine when timer 2 interrupt s enabled. Must be cleared by software.							
5	RCLK	Receive Clo Clear to use Set to use tir	Receive Clock bit Clear to use timer 1 overflow as receive clock for serial port in mode 1 or 3. Set to use timer 2 overflow as receive clock for serial port in mode 1 or 3.							
4	TCLK	Transmit Clear to use Set to use tir	ock bit timer 1 overfl ner 2 overflov	ow as transmit v as transmit c	t clock for seri lock for serial	al port in mod port in mode	le 1 or 3. 1 or 3.			
3	EXEN2	Timer 2 Exte Clear to igno Set to cause detected, if ti	Timer 2 External Enable bit Clear to ignore events on T2EX pin for timer 2 operation. Set to cause a capture or reload when a negative transition on T2EX pin is detected, if timer 2 is not used to clock the serial port.							
2	TR2	Timer 2 Rur Clear to turn Set to turn of	off timer 2.							
1	C/T2#	Timer/Coun Clear for time Set for count	ter 2 Select b er operation (i er operation (it nput from inte input from T2	rnal clock sys input pin).	tem: F _{OSC}).				
0	CP/RL2#	Timer 2 Cap If RCLK=1 o timer 2 overf Clear to auto EXEN2=1. Set to captur	Timer 2 Capture/Reload bit If RCLK=1 or TCLK=1, CP/RL2# is ignored and timer is forced to auto-reload on timer 2 overflow. Clear to auto-reload on timer 2 overflows or negative transitions on T2EX pin if EXEN2=1. Set to capture on negative transitions on T2EX pin if EXEN2=1.							

Reset Value = 0000 0000b Bit addressable

Watchdog Timer During Power-down Mode and Idle

In Power-down mode the oscillator stops, which means the WDT also stops. While in Power-down mode, the user does not need to service the WDT. There are 2 methods of exiting Power-down mode: by a hardware reset or via a level activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, the Watchdog is disabled. Exiting Power-down with an interrupt is significantly different. The interrupt shall be held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is serviced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset during the interrupt service for the interrupt used to exit Power-down.

To ensure that the WDT does not overflow within a few states of exiting powerdown, it is best to reset the WDT just before entering powerdown.

In the Idle mode, the oscillator continues to run. To prevent the WDT from resetting AT89C51CC03 while in Idle mode, the user should always set up a timer that will periodically exit Idle, service the WDT, and re-enter Idle mode.

Register

Table 44. WDTPRG Register

WDTPRG (S:A7h)

Watchdog Timer Duration Programming Register

7	6	5	4	3	2	1	0			
_	-	-	-	-	S2	S1	S0			
Bit Number	Bit Mnemonic	Description								
7	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
6	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
5	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
4	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
3	-	Reserved The value rea	Reserved The value read from this bit is indeterminate. Do not set this bit.							
2	S2	Watchdog T Work in conju	Watchdog Timer Duration selection bit 2 Work in conjunction with bit 1 and bit 0.							
1	S1	Watchdog T Work in conju	Watchdog Timer Duration selection bit 1 Work in conjunction with bit 2 and bit 0.							
0	S0	Watchdog T Work in conju	imer Duratio	n selection b it 1 and bit 2.	it O					

Reset Value = XXXX X000b

Bit Shortening	If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling edge used for resynchronization may be too early. So Phase Segment 2 in bit N is shortened in order to adjust the sample point for bit N+1 and the end of the bit time			
Synchronization Jump Width	The limit to the amount of lengthening or shortening of the Phase Segments is set by the Resynchronization Jump Width.			
	This segment may not be longer than Phase Segment 2.			
Programming the Sample Point	Programming of the sample point allows "tuning" of the characteristics to suit the bus.			
	Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchroniza- tion Jump Width can be programmed to its maximum. This maximum capacity to shorten or lengthen the bit time decreases the sensitivity to node oscillator tolerances, so that lower cost oscillators such as ceramic resonators may be used.			
	Late sampling allows more Time Quanta in the Propagation Time Segment which allows a poorer bus topology and maximum bus length.			

Arbitration

The CAN protocol handles bus accesses according to the concept called "Carrier Sense Multiple Access with Arbitration on Message Priority".

During transmission, arbitration on the CAN bus can be lost to a competing device with a higher priority CAN Identifier. This arbitration concept avoids collisions of messages whose transmission was started by more than one node simultaneously and makes sure the most important message is sent first without time loss.

The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a data frame and a remote frame with the same identifier are initiated at the same time, the data frame prevails over the remote frame (c.f. RTR bit).

The CAN protocol signals any errors immediately as they occur. Three error detection mechanisms are implemented at the message level and two at the bit level:

Error at Message Level

Errors

 Cyclic Redundancy Check (CRC) The CRC safeguards the information in the frame by adding redundant check bits at the transmission end. At the receiver these bits are re-computed and tested against the received bits. If they do not agree there has been a CRC error.

• Frame Check This mechanism verifies the structure of the transmitted frame by checking the bit

AT89C51CC03

IT CAN Management

The different interrupts are:

- Transmission interrupt,
- Reception interrupt,
- Interrupt on error (bit error, stuff error, crc error, form error, acknowledge error),
- Interrupt when Buffer receive is full,
- Interrupt on overrun of CAN Timer.

To enable a transmission interrupt:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt by message object, EICHi,
- Enable transmission interrupt, ENTX.

To enable a reception interrupt:

- Enable General CAN IT in the interrupt system register,
- Enable interrupt by message object, EICHi,
- Enable reception interrupt, ENRX.

To enable an interrupt on message object error:

Table 83. CANTCON Register

CANTCON (S:A1h) CAN Timer ClockControl

7	6	5	4	3	2	1	0
TPRESC 7	TPRESC 6	TPRESC 5	TPRESC 4	TPRESC 3	TPRESC 2	TPRESC 1	TPRESC 0
Bit Number	Bit Mnemonio	c Descripti	on				
7-0	TPRESC7:0	Timer Pre This regis range = 0 See Figur	escaler of CA ter is a presca to 255. e 55.	N Timer Iler for the ma	in timer upper	counter	

Reset Value = 00h

Table 84. CANTIMH Register

CANTIMH (S:ADh) CAN Timer High

7	6	5	4	3	2	1	0
CANGTIM 15	CANGTIM 14	CANGTIM 13	CANGTIM 12	CANGTIM 11	CANGTIM 10	CANGTIM 9	CANGTIM 8
Bit Number	Bit Mnemonic	Descripti	Description				
7-0	CANGTIM15: 8	High byte See Figur	e of Message e 55.	Timer			

Reset Value = 0000 0000b

Table 85. CANTIML Register

CANTIML (S:ACh) CAN Timer Low

7	6	5	4	3	2	1	0
CANGTIM 7	CANGTIM 6	CANGTIM 5	CANGTIM 4	CANGTIM 3	CANGTIM 2	CANGTIM 1	CANGTIM 0
R it							

Bit Number	Bit Mnemonic	Description
7-0	CANGTIM7:0	Low byte of Message Timer See Figure 55.

Reset Value = 0000 0000b

Table 89. CANTTCL Register

CANTTCL (S:A4h Read Only) CAN TTC Timer Low

7	6	5	4	3	2	1	0
TIMTTC 7	TIMTTC 6	TIMTTC 5	TIMTTC 4	TIMTTC 3	TIMTTC 2	TIMTTC 1	TIMTTC 0
Bit Number	Bit Mnemonio	Description	on				
7-0	TIMTTC7:0	Low byte See Figur	of TTC Time e 55.	r			

Reset Value = 0000 0000b

ADC Converter Operation

A start of single A/D conversion is triggered by setting bit ADSST (ADCON.3).

After completion of the A/D conversion, the ADSST bit is cleared by hardware.

The end-of-conversion flag ADEOC (ADCON.4) is set when the value of conversion is available in ADDH and ADDL, it must be cleared by software. If the bit EADC (IEN1.1) is set, an interrupt occur when flag ADEOC is set (see Figure 76). Clear this flag for rearming the interrupt.

The bits SCH0 to SCH2 in ADCON register are used for the analog input channel selection.

SCH2	SCH1	SCH0	Selected Analog input
0	0	0	ANO
0	0	1	AN1
0	1	0	AN2
0	1	1	AN3
1	0	0	AN4
1	0	1	AN5
1	1	0	AN6
1	1	1	AN7

Table 102. Selected Analog input

Voltage Conversion When the ADCIN is equals to VAREF the ADC converts the signal to 3FFh (full scale). If the input voltage equals VAGND, the ADC converts it to 000h. Input voltage between VAREF and VAGND are a straight-line linear conversion. All other voltages will result in 3FFh if greater than VAREF and 000h if less than VAGND.

Note that ADCIN should not exceed VAREF absolute maximum range! (See section "AC-DC")

Clock Selection The ADC clock is the same as CPU.

The maximum clock frequency is defined in the DC parameters for A/D converter. A prescaler is featured (ADCCLH) to generate the ADC clock from the oscillator frequency.

if PRS = 0 then $F_{ADC} = F_{periph} / 64$

if PRS > 0 then $F_{ADC} = F_{periph} / 2 \times PRS$

Bit Number	Bit Mnemonic	Description
7-2	-	Reserved The value read from these bits are indeterminate. Do not set these bits.
1-0	ADAT1:0	ADC result bits 1-0

Reset Value = 00h

AT89C51CC03

Symbol	Туре	Standard Clock	X2 Clock	X parameter	Units
T _{RLRH}	Min	6 T - x	3 T - x	20	ns
T _{WLWH}	Min	6 T - x	3 T - x	20	ns
T _{RLDV}	Max	5 T - x	2.5 T - x	25	ns
T _{RHDX}	Min	х	x	0	ns
T _{RHDZ}	Max	2 T - x	T - x	20	ns
T _{LLDV}	Max	8 T - x	4T -x	40	ns
T _{AVDV}	Max	9 T - x	4.5 T - x	60	ns
T _{LLWL}	Min	3 T - x	1.5 T - x	25	ns
T _{LLWL}	Max	3 T + x	1.5 T + x	25	ns
T _{AVWL}	Min	4 T - x	2 T - x	25	ns
T _{QVWX}	Min	T - x	0.5 T - x	15	ns
T _{QVWH}	Min	7 T - x	3.5 T - x	25	ns
T _{WHQX}	Min	T - x	0.5 T - x	10	ns
T _{RLAZ}	Max	х	х	0	ns
T _{WHLH}	Min	T - x	0.5 T - x	15	ns
T _{WHLH}	Max	T + x	0.5 T + x	15	ns

 Table 123.
 AC Parameters for a Variable Clock

Timings

Test conditions: capacitive load on all pins= 60 pF.

Symbol	Parameter	Min	Max	Unit
	Slave Mode		L	I
Тснсн	Clock Period	6 ⁽¹⁾		T _{PER}
T _{CHCX}	Clock High Time	3 ⁽¹⁾		T _{PER}
T _{CLCX}	Clock Low Time	3(1)		T _{PER}
T _{SLCH} , T _{SLCL}	SS Low to Clock edge	4T _{PER} -20ns ⁽¹⁾		ns
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	50		ns
T _{CLOV} , T _{CHOV}	Output Data Valid after Clock Edge		50	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLSH} , T _{CHSH}	SS High after Clock Edge	4T _{PER} +20ns ⁽¹⁾		ns
T _{SLOV}	SS Low to Output Data Valid		4T _{PER} +20ns ⁽¹⁾	ns
T _{SHOX}	Output Data Hold after SS High		2T _{PER} +100ns ⁽¹⁾	ns
T _{SHSL}	SS High to SS Low	2T _{PER} +120ns ⁽¹⁾		
T _{OLOH}	Output Rise time		100	ns
T _{OHOL}	Output Fall Time		100	ns
	Master Mode	1	1	
Тснсн	Clock Period	4 ⁽¹⁾		T _{PER}
T _{CHCX}	Clock High Time	2T _{PER} -20ns ⁽¹⁾		T _{PER}
T _{CLCX}	Clock Low Time	2T _{PER} -20ns ⁽¹⁾		T _{PER}
T _{IVCL} , T _{IVCH}	Input Data Valid to Clock Edge	50		ns
T _{CLIX} , T _{CHIX}	Input Data Hold after Clock Edge	0		ns
T _{CLOV,} T _{CHOV}	Output Data Valid after Clock Edge		20	ns
T _{CLOX} , T _{CHOX}	Output Data Hold Time after Clock Edge	0		ns
T _{CLCH}	Output Data Rise time		100	ns
Тснсі	Output Data Fall Time		100	ns

Table 1. SPI Interface Master AC Timing V_{DD} = 2.7 to 3.3 V, T_A = -40 to +85°C

Value of this parameter depends on prescacler ratio defined in bits 0,1 and 7 of SCON Register. In the above table, the ratio used is 4. As it can be set also to 8, 16, 32, 64 or 128, the factor of T_{PER} must be changed according to the new ratio. E.g. 2TPER-20ns(1) will be changed to 4TPER-20ns(1) if the prescaler ratio equals 8.

	IT CAN Management	. 94
	Bit Timing and Baud Rate	96
	Fault Confinement	. 98
	Acceptance Filter	. 99
	Data and Remote Frame	100
	Time Trigger Communication (TTC) and Message Stamping	101
	CAN Autobaud and Listening Mode	102
	Routines Examples	102
	CAN SFR's	105
	Registers	106
Seri	al Port Interface (SPI)	129
	Features	129
	Signal Description	129
	Functional Description	131
Drod	arommobile Counter Arrow (PCA)	1 1 1
FIQ		141
	PCA Timer	141
	PCA Modules	142
	PCA Interrupt	143
	PCA Capture Mode	143
	16-bit Software Timer Mode	144
	High Speed Output Mode	145
	Pulse Width Modulator Mode	145
	PCA WatchDog Timer	146
	PCA Registers	147
Ana	log-to-Digital Converter (ADC)	152
	Features	152
	ADC Port1 I/O Functions	152
	ADC Converter Operation	154
	Voltage Conversion	154
	Clock Selection	154
	ADC Standby Mode	155
	IT ADC Management	155
	Routines examples	155
	Registers	157
Inte	rrunt System	160
	Introduction	160
	Registers.	162
	Atriant Characteristics	160
⊏ <i>i</i> ec		100
	Absolute Maximum Ratings	168
	ICCOP Test Conditions	168
	DC Parameters for Standard Voltage	168