

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LED, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	28-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/nuvoton-technology-corporation-america/n79e854awg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	GENE	RAL DESCRIPTION	5
2	FEAT	URES	6
3	PART	S INFORMATION LIST	8
4	BLOC	K DIAGRAM	
5	PIN C	ONFIGURATION	10
5	MEM		10
0		ADDOM Flock Memory	13
	0.1 6.2	APROM Flash Memory	15 1/
	6.3	CONFIG-bits	
	6.4	On-chip Non-volatile Data Flash	
	6.5	On-chip XRAM	16
	6.6	On-chip scratch-pad RAM and SFR	16
	6.7	Working Registers	
	6.8	Bit-addressable Locations	17 19
-	0.9		10
1	SPECI	AL FUNCTION REGISTER (SFR)	19
8	GENE	RAL 80C51 SYSTEM CONTROL	23
9	I/O PC	ORT STRUCTURE AND OPERATION	
	9.1	Quasi-Bidirectional Output Configuration	27
		9.1.1 Read-Modify-Write	
	9.2	Open Drain Output Configuration	
	9.3	Push-Pull Output Configuration	
10	9.4		
10	TIME	RS/COUNTERS	
	10.1	Timers/Counters 0 and 1	
		10.1.1 Mode 0 (15-bit Timer)	
		10.1.3 Mode 2 (8-bit Auto-Reload Timer)	
		10.1.4 Mode 3 (Two Separate 8-bit Timers)	
	10.2	Timer/Counter 2	41
		10.2.1 Input Capture Mode	43
		10.2.2 Auto-reload Mode	
		10.2.3 Compare Mode	
11	WATC	CHDOG TIMER (WDT)	
	11.1	Functional Description	
	11.2	Applications of Watchdog Timer Reset	
	11.5		
12	SERIA	AL PORT (UART)	
	12.1	Mode 0	
	12.2	Mode 2	
	12.3	Mode 3	
	12.5	Baud Rates	
	12.6	Framing Error Detection	66
	12.7	Multiprocessor Communication	66
	12.8	Automatic Address Recognition	67
13	SERIA	AL PERIPHERAL INTERFACE (SPI)	70
	13.1	Features	70

5 Pin Configuration

Figure 5-1 TSSOP/SOP 28-pin Assignment

Table 5–1 Pin Description

Pin No.	Symbol	Alternate Function				Type	Description
SOP28 TSSOP28	Junio	1	2	:	3	туре	Description
14	P2.3				MISO2	I/O	The SPI-2 ports are by software switched from SPI-1 port. ADC7: ADC channel input.
15	P2.4				/SS2	I/O	IC2: Input Capture pin
16	P2.5				SPICLK2	I/O	- CO
27	P2.6	TXD2	ADC7			I/O	St Sh
28	P2.7	RXD2				I/O	32.0%
9	P3.0	XTAL2	CLKOUT			I/O	PORT3: Port 3 has 4-type I/O port. Its multifunction pins are for XTAL1, XTAL2 and CLKOUT,
8	P3.1	XTAL1				I/O	 CLKOUT: Internal RC OSC/4 output pin. XTAL2: This is the output pin from the internal inverting amplifier. It emits the inverted signal of XTAL2. XTAL1: This is the output pin from the internal inverting amplifier. It emits the inverted signal of XTAL1.

[1] I/O type description — I: input, O: output, I/O: quasi bi-direction, D: open-drain, P: power pins, ST: Schmitt trigger.

ηυνοΤοη

6.5 On-chip XRAM

The N79E855/854 provides additional on-chip 256 bytes auxiliary RAM called XRAM to enlarge the RAM space. It occupies the address space from 00H through FFH. The 256 bytes of XRAM are indirectly accessed by move external instruction MOVX @DPTR or MOVX @Ri. (See the demo code below.) Note that the stack pointer may not be located in any part of XRAM. Figure 6-1 shows the memory map for this product series.

XRAM demo code:

MOV MOV MOVX	R0,#23H A,#5AH @R0,A	;write #5AH to XRAM with address @23H
MOV MOVX	R1,#23H A,@R1	;read from XRAM with address @23H
MOV MOV MOVX	DPTR,#0023H A,#5BH @DPTR,A	;write #5BH to XRAM with address @0023H $^{\circ}$
MOV MOVX	DPTR,#0023H A,@DPTR	;read from XRAM with address @0023H

6.6 On-chip scratch-pad RAM and SFR

The N79E855/854 provides the on-chip 256 bytes scratch pad RAM and Special Function Registers (SFRs) which be accessed by software. The SFRs be accessed only by direct addressing, while the on-chip RAM be accessed by either direct or indirect addressing.

Figure 6-3 256 bytes RAM and SFR

Since the scratch-pad RAM is only 256 byte it can be used only when data contents are small. There are several other special purpose areas within the scratch-pad RAM, which are described as follows.

			Indire	ect Acc	essing	RAM			
80H 7FH									
		Dire	ect or I	ndirect	Acces	sing R	AM		
30H 2FH	7F	7F	7D	7C	7B	7A	79	78	
2FH	77	76	75	74	73	72	71	70	
2DH	6F	6E	6D	6C	6B	6A	69	68	
2СН	67	66	65	64	63	62	61	60	
2BH	5F	5E	5D	5C	5B	5A	59	58	
2AH	57	56	55	54	53	52	51	50	
29H	4F	4E	4D	4C	4B	4A	49	48	
28H	47	46	45	44	43	42	41	40	
27H	3F	3E	3D	3C	3B	3A	39	38	
26H	37	36	35	34	33	32	31	30	
25H	2F	2E	2D	2C	2B	2A	29	28	
24H	27	26	25	24	23	22	21	20	
23H	1F	1E	1D	1C	1B	1A	19	18	
22H	17	16	15	14	13	12	11	10	
21H	0F	0E	0D	0C	0B	0A	09	08	
20H	07	06	05	04	03	02	01	00	
те 18Н			R	egiste	r Bank	3			
ÍŹH			R	egiste	r Bank	2			
10H)FH				ediste	r Bank	1			
08H 07H				cyiste		•			
оон			R	egiste	r Bank	0			

Figure 6-4 Data Memory and Bit-addressable Region

6.7 Working Registers

There are four sets of working registers, each consisting of eight 8-bit registers, which are termed as Banks 0, 1, 2, and 3. Individual registers within these banks can be directly accessed by separate instructions. These individual registers are named as R0, R1, R2, R3, R4, R5, R6 and R7. However, at one time the N79E855/854 can work with only one particular bank. The bank selection is done by setting RS1-RS0 bits in the PSW. The R0 and R1 registers are used to store the address for indirect accessing.

6.8 Bit-addressable Locations

The Scratch-pad RAM area from location 20h to 2Fh is byte as well as bit-addressable. This means that a bit in this area can be individually addressed. In addition, some of the SFRs are also bit-addressable. The instruction decoder is able to distinguish a bit access from a byte access by the type of the instruction itself. In the SFR area, any existing SFR whose address ends in a 0 or 8 is bit-addressable.

Instruction	CY	ov	AC	Instruction	CY	ov	AC
RLC A	Х			CJNE	Х		
SETB C	1			mr.			

[1] X indicates the modification is dependent on the result of the instruction

PCON – Power Control

7	6	5	4	3	2	1	0
SMOD	SMOD0	-	POF	GF1	GF0	PD	IDL
R/W	R/W	-	R/W	R/W	R/W	R/W	R/W

Address: 87H

Reset value: see Table 7-2 N79E855/854 SFR Description and Reset Values

Bit	Name	Description
3	GF1	General Purpose Flag 1
		The general purpose flag that can be set or cleared by the user.
2	GF0	General Purpose Flag 0
		The general purpose flag that can be set or cleared by the user.

General 80C51 support one DPTR but the N79E855/854 support two DPTRs by switching AUXR1.DPS. The setting is as follows.

AUXR1 – AUX Function Resgister-1

7	6	5	4	3	2	1	0
SPI_Sel	UART_Sel	-	-	DisP26	-	0	DPS
R/W	R/W	-	-	R/W	-	R	R/W
A 1 1 A OTT						D 1	0000 00000

Address: A2H

Reset value: 0000 0000B

1200	Bit	Name	Description
-18-	0	DPS	Dual Data Pointer Selection
			0 = Select DPTR of standard 8051.
			1 = Select DPTR1
April 2	23, 2014		Page 26 of 180

TH0 – Timer 0 High Byte

7	6	5	4	3	2	1	0
			TH0	[7:0]			
			R/	W			
Address: 8CH				42 3		Reset valu	ie: 0000 0000B

Bit	Name	Description
7:0	TH0[7:0]	Timer 0 High Byte
		The TH0 register is the high byte of the 16-bit Timer 0.

TL1 – Timer 1 Low Byte

7	6	5	4	3	2	1	0
			TL1	[7:0]	8	SAL	2
			R/	W		2	3

Address: 8BH

Reset value: 0000 0000B

Bit	Name	Description	(0)
7:0	TL1[7:0]	Timer 1 Low Byte	
		The TL1 register is the low byte of the 16-bit Timer 1.	

TH1 – Timer 1 High Byte

7	6	5	4	3	2	1	0
			TH1	[7:0]			
			R/	W			

Address: 8DH

Reset value: 0000 0000B

Bit	Name	Description
7:0	TH1[7:0]	Timer 1 High Byte
		The TH1 register is the high byte of the 16-bit Timer 1.

P3M1 - Port3 Output Mode1

7	6	5	4	3	2	1	0
P3S	P2S	P1S	POS	T1OE	TOOE	P3M1.1	P3M1.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 96H

Reset value: 0000 0000B

Bit	Name	Description
3	T1OE	P0.7 pin is toggled whenever Timer 1 overflows. The output frequency is therefore one
	R	half of the Timer 1 overflow rate.
2	TOOE	P1.2 pin is toggled whenever Timer 0 overflows. The output frequency is therefore one-
		half of the filmer 0 overflow rate.

10.1.1 Mode 0 (13-bit Timer)

In Mode 0, the timers/counters act as a 8-bit counter with a 5-bit, divide by 32 pre-scale. In this mode we have a 13-bit timer/counter. The 13-bit counter consists of 8 bits of THx and 5 lower bits of TLx. The upper 3 bits of TLx are ignored.

The negative edge of the clock is increments count in the TLx register. When the fifth bit in TLx moves from 1 to 0, then the count in the THx register is incremented. When the count in THx moves from FFh to 00h, then the overflow flag TFx in TCON SFR is set. The counted input is enabled only if TRx is set and either GATE = 0 or \overline{INTx} = 1. When C/T is set to 0, then it will count clock cycles, and if C/T is set to 1, then it will count 1 to 0 transitions on T0 (P1.2) for timer 0 and T1 (P0.7) for timer 1. When the 13-bit count reaches 1FFFh, the next count will cause it to rollover to 0000h. The timer overflow flag TFx of the relevant timer is set and if enabled an interrupts will occur.

Figure 10–1 Timers/Counters 0 and 1 in Mode 0

10.1.2 Mode 1 (16-bit Timer)

Mode 1 is similar to Mode 0 except that the counting registers are fully used as a 16-bit counter. Rollover occurs when a count moves FFFFH to 0000H. The Timer overflow flag TFx of the relevant Timer/Counter is set and an interrupt will occurs if enabled.

(TMOD.2). TH0 is forced as a clock cycle counter (clock/12 or clock/4) and takes over the use of TR1 and TF1 from Timer/Counter 1. Mode 3 is used in cases where an extra 8 bit timer is needed. With Timer 0 in Mode 3, Timer 1 can still be used in Modes 0, 1 and 2, but its flexibility is somewhat limited. While its basic functionality is maintained, it no longer has control over its overflow flag TF1 and the enable bit TR1. Timer 1 can still be used as a timer/counter and retains the use of GATE and INT1 pin. In this condition it can be turned on and off by switching it out of and into its own Mode 3. It can also be used as a baud rate generator for the serial port.

Figure 10-4 Timer/Counter 0 in Mode 3

Bit	Name	Description
6:4	T2DIV[2:0]	Timer 2 Clock Divider 000 = Timer 2 clock divider is 1/4. 001 = Timer 2 clock divider is 1/8. 010 = Timer 2 clock divider is 1/16. 011 = Timer 2 clock divider is 1/32. 100 = Timer 2 clock divider is 1/64. 101 = Timer 2 clock divider is 1/128. 110 = Timer 2 clock divider is 1/256. 111 = Timer 2 clock divider is 1/512.
3	CAPCR	Capture Auto-clear This bit enables auto-clear Timer 2 value in TH2 and TL2 when a determined input capture event occurs. 0 = Timer 2 continues counting when a capture event occurs. 1 = Timer 2 value is auto-cleared as 0000H when a capture event occurs.
2	COMPCR	Compare Match Auto-clearThis bit enables auto-clear Timer 2 value in TH2 and TL2 when a compare match occurs.0 = Timer 2 continues counting when a compare match occurs.1 = Timer 2 value is auto-cleared as 0000H when a compare match occurs.
1:0	LDTS[1:0]	Auto-reload Trigger SelectionThese bits select the reload trigger event.00 = Reload when Timer 2 overflows.01 = Reload when input capture 0 event occurs.10 = Reload when input capture 1 event occurs.11 = Reload when input capture 2 event occurs.

RCOMP2L - Timer 2 Reload/Compare Low Byte

7	6	5	4	3	2	1	0
			RCOMI	P2L[7:0]			
			R/	W/W			

Address: CAH

Reset value: 0000 0000B

Bit	Name	Description
7:0	RCOMP2L[7:0]	Timer 2 Reload/Compare Low Byte This register stores the low byte of compare value when Timer 2 is configured in compare mode, It holds the low byte of the reload value when auto-reload mode.

RCOMP2H – Timer 2 Reload/Compare High Byte

7	6	5	4	3	2	1	0
2 Car	42.		RCOMI	P2H[7:0]			
-0	2:0		R	W			
Address: CBH	In On	P				Reset valu	ie: 0000 0000B

Bit	Name	Description
7:0	RCOMP2H[7:0]	Timer 2 Reload/Compare High Byte This register stores the high byte of compare value when Timer 2 is configured in compare mode. And it holds the high byte of the reload value when auto-reload mode.

13 Serial Peripheral Interface (SPI)

13.1 Features

The N79E855/854 exists a Serial Peripheral Interface (SPI) block to support high-speed serial communication. SPI is a full-duplex, high-speed, synchronous communication bus between MCUs or other peripheral devices such as serial EEPROM, LCD driver, or D/A converter. It provides either Master or Slave mode, high-speed rate up to $F_{SYS}/16$ for Master mode and $F_{SYS}/4$ for Slave mode, transfer complete and write collision flag. For a multi-master system, SPI supports Master Mode Fault to protect a multi-master conflict.

13.2 Functional Description

Figure 13–1 SPI Block Diagram

Figure 13–1 shows SPI block diagram and provides an overview of SPI architecture in this device. The main blocks of SPI are the SPI control register logic, SPI status logic, clock rate control logic, and pin control logic. For a serial data transfer

nuvoton

Bit	Name	Description
1:0	PWMPH	PWM Counter Bits Register bit[9:8]

The user should follow the initialization steps below to start generating the PWM signal output. In the first step by setting CLRPWM (PWMCON0.4), it ensures the 10-bit down counter a determined value. After setting all period and duty registers, PWMRUN (PWMCON0.7) can be set as logic 1 to trigger the 10-bit down counter running. In the beginning the PWM output remains high until the counter value is less than the value in duty control registers of PWMnH and PWMnL. At this point the PWM output goes low until the next underflow. When the 10-bit down counter underflows, PWMP buffer register will be reloaded in 10-bit down counter. It continues PWM signal output by repeating this routine.

The hardware for all period and duty control registers is double buffered designed. Therefore the PWMP and PWMn registers can be written to at any time, but the period and duty cycle of PWM will not updated immediately until the Load (PWMCON0.6) is set and previous period is complete. This allows updating the PWM period and duty glitch less operation.

PWM0L – PWM 0 Low Register

7	6	5	4	3	2	1	0	
PWM0.7	PWM0.6	PWM0.5	PWM0.4	PWM0.3	PWM0.2	PWM0.1	PWM0.0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address: DAH Reset value: 0000 0000								

Address: DAH

Bit	Name	Description
7:0	PWM0L	PWM 0 Low Bits Register bit[7:0].

PWM0H - PWM 0 High Register

7	6	5	4	3	2	1	0
-	-	-	-	-	-	PWM0.9	PWM0.8
- 100	-	-	-	-	-	R/W	R/W
						n 1	

Address: D2H

Reset value: 0000 0000B

	Bit	Name	Description
2	7:2	-	Reserved
1	1:0	PWM0H	PWM 0 High Bits Register bit[9:8].

PWM1L - PWM 1 Low Register

7	6	5	4	3	2	1	0	
PWM1.7	PWM1.6	PWM1.5	PWM1.4	PWM1.3	PWM1.2	PWM1.1	PWM1.0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Addresse DBU Besst visition 0000 0000B								

Address: DBH

|--|--|

Bit	Name	Description
7:0	PWM1L	PWM 0 Low Bits Register bit[7:0].

19 Interrupt System

The N79E855/854 has four priority level of interrupts structure with 14 interrupt sources. Each of the interrupt sources has an individual priority bit, flag, interrupt vector and enable bit. In addition, the interrupts can be globally enabled or disabled.

19.1 Interrupt Sources

The External Interrupts INTO and INT1 can be either edge triggered or level triggered, depending on bits ITO and IT1. The bits IEO and IE1 in the TCON register are the flags which are checked to generate the interrupt. In the edge triggered mode, the INTx inputs are sampled in every machine-cycle. If the sample is high in one cycle and low in the next, then a high to low transition is detected and the interrupts request flag IEx in TCON is set. The flag bit requests the interrupt. Since the external interrupts are sampled every machine-cycle, they have to be held high or low for at least one complete machine-cycle. The IEx flag is automatically cleared when the service routine is called. If the level triggered mode is selected, then the requesting source has to hold the pin low till the interrupt is serviced. The IEx flag will not be cleared by the hardware on entering the service routine. If the interrupt continues to be held low even after the service routine is completed, then the processor may acknowledge another interrupt request from the same source.

The Timer 0 and 1 Interrupts are generated by the TF0 and TF1 flags. These flags are set by the overflow in the Timer 0 and Timer 1. The TF0 and TF1 flags are automatically cleared by the hardware when the timer interrupt is serviced.

The Watchdog timer can be used as a system monitor or a simple timer. In either case, when the timeout

count is reached, the Watchdog Timer interrupt flag WDTRF (WDCON0.3) is set. If the interrupt is

enabled by the enable bit EIE.4, then an interrupt will occur.

The Serial block can generate interrupt on reception or transmission. There are two interrupt sources from the Serial block, which are obtained by the RI and TI bits in the SCON SFR. These bits are not automatically cleared by the hardware, and the user will have to clear these bits using software.

I²C will generate an interrupt due to a new SIO state present in I2STA register, if both EA and ES bits (in IE register) are both enabled.

SPI asserts interrupt flag, SPIF, upon completion of data transfer with an external device. If SPI interrupt is enabled (ESPI at EIE.6), a serial peripheral interrupt is generated. SPIF flag is software clear, by writing 0. MODF and SPIOVF will also generate interrupt if occur. They share the same vector address as SPIF.

The ADC can generate interrupt after finished ADC converter. There is one interrupt source, which is obtained by the ADCI bit in the ADCCON0 SFR. This bit is not automatically cleared by the hardware, and the user will have to clear this bit using software.

PWM brake interrupt flag BKF is generated if P0.2 (Brake pin) detects a high (BKPS=1) or low (BKPS=0) at port pin. At this moment, BKF (PWMCON2.0) is set by hardware and it should be cleared by software. PWM period interrupt flag CF is set by hardware when its' 10-bit down counter underflow and is only cleared by software. BKF is set the PWM interrupt is requested If PWM interrupt is enabled (EPWM=1).

other interrupt source. So, if two requests of different priority levels are received simultaneously, the request of higher priority level is serviced.

If requests of the same priority level are received simultaneously, an internal polling sequence determines which request is serviced. This is called the arbitration ranking. Note that the arbitration ranking is only used to resolve simultaneous requests of the same priority level.

The following table summarizes the interrupt sources, flag bits, vector addresses, enable bits, priority bits, arbitration ranking, and whether each interrupt may wake up the CPU from Power-down mode.

Description	Interrupt Flag Bit(s)	Vector Address	Interrupt Enable Bit(s)	Flag cleared by	Interrupt Priority	Arbitration Ranking	Power-down Wake-up
External Interrupt 0	IE0	0003H	EX0 (IE0.0)	Hardware, Software	IPH.0, IP.0	1 (highest)	Yes
BOD Detect	BOF	0043H	EBOD (IE.5)	Software	IPH.5, IP.5	2	Yes
Watchdog Timer	WDTF	0053H	EWDI (EIE.4)	Software	EIPH.4, EIP.4	3	Yes
Timer 0 Interrupt	TF0	000BH	ET0 (IE.1)	Hardware, Software	IPH.1, IP.1	4	No
I ² C Interrupt	SI I2TOF	0033H	EI2C (EIE.0)	Software	EIPH.0, EIP.0	5	No
ADC Converter	ADCI	005BH	EADC (IE.6)	Software	IPH.6, IP.6	6	Yes ⁽¹⁾
External Interrupt 1	IE1	0013H	EX1 (IE.2)	Hardware, Software	IPH.2, IP.2	7	Yes
KBI Interrupt	KBIF[7:0]	003BH	EKB (EIE.1)	Software	EIPH.1, EIP.1	8	Yes
Timer 1 Interrupt	TF1	001BH	ET1 (IE.3)	Hardware, Software	IPH.3, IP.3	9	No
Serial Port Tx and Rx	TI & RI	0023H	ES (IE.4)	Software	IPH.4, IP.4	10	No
PWM Interrupt	BKF	0073H	EPWM (EIE.5)	Software	EIPH.5, EIP.5	11	No
SPI	SPIF + MODF + SPIOVF	004BH	ESPI (EIE.6)	Software	EIPH.6, EIP.6	12	No
Timer 2 Overflow/Match	TF2	002Bh	ET2 (EIE.7)	Software	EIPH.7, EIP.7	13	No
Capture	CAPF0-2	0063H	ECPTF (EIE.2)	Software	IPH.7, IP.7	14 (lowest)	No

 Table 19-3 Summary of interrupt sources

[1] The ADC Converter can wake up "Power-down mode" when its clock source is from internal RC.

19.3 Interrupt Response Time

The response time for each interrupt source depends on several factors, such as the nature of the interrupt and the instruction underway. In the case of external interrupts $\overline{INT0}$ to RI+TI, they are sampled at C3 of every machine-cycle and then their corresponding interrupt flags IEx will be set or reset. The Timer 0 and 1 overflow flags are set at C3 of the machine-cycle in which overflow has occurred. These flag values are polled only in the next machine-cycle. If a request is active and all three conditions are met, then the hardware generated LCALL is executed. This LCALL itself takes four machine-cycles to be completed. Thus there is a minimum time of five machine-cycles between the interrupt flag being set and the interrupt service routine being executed.

A longer response time should be anticipated if any of the three conditions are not met. If a higher or equal priority is being serviced, the interrupt latency time is obviously dependent on the nature of the service routine currently being executed. If the polling cycle is not the last machine-cycle of the instruction being executed, an additional delay is introduced. The maximum response time (if no other interrupt is in service) occurs if the N79E855/854 performs a write to IE, EIE, IP, IPH, EIP or EIPH and then executes a MUL or DIV instruction. From the time an interrupt source is activated, the longest reaction time is 12 machine-cycles. This includes 1 machine-cycle to detect the interrupt, 3 machine-cycles to complete the IE, EIE, IP, IPH, EIP or EIPH access, 5 machine-cycles to complete the MUL or DIV instruction and 4 machine-cycles to complete the hardware LCALL to the interrupt vector location.

Thus in a single-interrupt system the interrupt response time will always be more than 5 machine-cycles and not more than 12 machine-cycles. The maximum latency of 12 machine-cycle is 48 clock cycles. Note that in the standard 8051 the maximum latency is 8 machine-cycles which equals 96 machine-cycles. This is a 50% reduction in terms of clock periods.

19.4 SFR of Interrupt

The SFRs associated with these interrupts are listed below.

7	6	5	4	3	2	1	0
EA	EADC	EBOD	ES	ET1	EX1	ET0	EX0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
A 11 AOTI	D	0000 00000					

IE – Interrupt Enable (Bit-addressable)

Address: A8H

Reset value: 0000 0000B

Bit	Name	Description
7 (EA	Enable All Interrupt
	R	This bit globally enables/disables all interrupts. It overrides the individual interrupt
	~ 43	mask settings.
	9	0 = Disable all interrupt sources.
		1 = Enable each interrupt depending on its individual mask setting. Individual
		interrupts will occur if enabled.

Bit	Name	Description
		0 = Enable ISP function.
		1 = Disable ISP function.
		To enable ISP function will start the internal 22.1184 MHz RC oscillator for timing
		control. To clear ISPEN should always be the last instruction after ISP operation
		to stop internal RC for reducing power consumption.
		× ~ ~ ~ ~

ISPCN – ISP Control

7	6	5	4	3	2	1	0
ISPA17	ISPA16	FOEN	FCEN	FCTRL.3	FCTRL.2	FCTRL.1	FCTRL.0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: AFH

Reset value: 0011 0000B

Bit	Name	Description
7:6	ISPA[17:16]	ISP Control
5	FOEN	This byte is for ISP controlling command to decide ISP destinations and actions.
4	FCEN	200
3:0	FCTRL[3:0]	

ISPAH – ISP Address High Byte

7	6	5	4	3	2	1	0
ISPA[15:8]							
R/W							

Address: A7H

Reset value: 0000 0000B

Reset value: 0000 0000B

Bit	Name	Description
 7:0	ISPA[15:8]	ISP Address High Byte
		ISPAH contains address ISPA[15:8] for ISP operations.

ISPAL – ISP Address Low Byte

7	6	5	4	3	2	1	0
ISPA[7:0]							
R/W							

Address: A6H

Bit	Name	Description
7:0	ISPA[7:0]	ISP Address Low Byte
	ಿನ್ನಿ	ISPAL contains address ISPA[7:0] for ISP operations.
	- G	5.0×

MOV	ISPCN,#00001100b	;select "Read Device ID" mode
MOV	ISPAH,#00H	;fill address with 0000H for low-byte DID
MOV	ISPAL,#00H	;
CALL	Trigger_ISP	
MOV	A,ISPFD	;now, ISPFD contains low-byte DID, move to ACC for further use
MOV	ISPAH,#00H	;fill address with 0001H for high-byte DID
MOV	ISPAL,#01H	
CALL	Trigger_ISP	
MOV	A,ISPFD	;now, ISPFD contains high-byte DID, move to ACC for further use
CALL	Disable_ISP	

FLASH Page Erase (target address in APROM/Data Flash/LDROM area)

CALL	Enable_ISP	
MOV	ISPCN,#00100010b	<pre>;select "FLASH Page Erase" mode, (A17,A16)=(0,0) for APROM/Data ;Flash/LDROM</pre>
MOV	ISPAH,#??H ISPAL,#??H	;fill page address
CALL CALL	Trigger_ISP Disable_ISP	

FLASH Program (target address in APROM/Data Flash/LDROM area)

CALL	Enable_ISP	
MOV	ISPCN,#00100001b	<pre>;select "FLASH Program" mode, (A17,A16)=(0,0) for APROM/Data ;Flash/LDROM</pre>
MOV MOV	ISPAH,#??H ISPAL,#??H	;fill byte address
MOV CALL CALL	ISPFD,#??H Trigger_ISP Disable_ISP	;fill data to be programmed

FLASH Read (target address in APROM/Data Flash/LDROM area)

CALL	Enable_ISP	
MOV	ISPCN,#0000000b	;select "FLASH Read" mode, (A17,A16)=(0,0) for APROM/Data
		;Flash/LDROM
MOV	ISPAH,#??H	;fill byte address
MOV	ISPAL,#??H	
CALL	Trigger_ISP	
MOV	A, ISPFD	;now, ISPFD contains the Flash data, move to ACC for further use
CALL	Disable_ISP	

CONFIG Page Erase (target address in CONFIG area)

CALL	Enable_ISP	
MOV	ISPCN,#11100010b	;select "CONFIG Page Erase" mode, (A17,A16)=(1,1) for CONFIG
MOV	ISPAH,#00H	;fill page address #0000H, because there is only one page
MOV	ISPAL,#00H	
CALL	Trigger_ISP	
CALL	Disable_ISP	

CONFIG Program (target address in CONFIG area)

CALL	Enable_ISP	
MOV	ISPCN,#11100001b	<pre>;select "CONFIG Program" mode, (A17,A16)=(1,1) for CONFIG</pre>
MOV	ISPAH,#00H	<pre>;fill byte address, 0000H/0001H/0002H/0003H for CONFIG0/1/2/3, ;respectively</pre>

logical states they had at the time Idle was activated. Generally it saves considerable power of typical half of the full operating power.

Since the clock provided for peripheral function logic circuit like timer or serial port still remain in Idle mode, the CPU can be released from the Idle mode using any of the interrupt sources if enabled. The user can put the device into Idle mode by writing 1 to the bit IDL (PCON.0). The instruction that sets the IDL bit is the last instruction that will be executed before the device goes into Idle mode.

The Idle mode can be terminated in two ways. First, any interrupt if enabled will cause an exit. This will automatically clear the IDL bit, terminate the Idle mode, and the interrupt service routine (ISR) will be executed. After using the RETI instruction to jump out of the ISR, execution of the program will be the one following the instruction which put the CPU into Idle mode. The second way to terminate the Idle mode is with any reset other than software reset.

21.2 Power-down Mode

Power-down mode is the lowest power state that N79E855/854 can enter. It remain the power consumption as a " μ A" level. This is achieved by stopping the clock system no matter internal RC clock or external crystal. Both of CPU and peripheral functions like Timers or UART are frozen. Flash memory stops. All activity is completely stopped and the power consumption is reduced to the lowest possible value. The device can be put into Power-down mode by writing 1 to bit PD (PCON.1). The instruction that does this action will be the last instruction to be executed before the device goes into Power-down mode. In Power-down mode, RAM maintains its content. The port pins output the values held by their respective.

There are two ways to exit N79E855/854 from Power-down mode. The first is with all resets except software reset. BOD reset will also wake up CPU from Power-down mode. Make sure that BOD detection is enabled before the system enters into Power-down. However, for a principle of least power consumption, it is uncommon to enable BOD detection in Power-down mode, which is not a recommended application. Of course, the RST pin reset and power-on reset will remove the Power Down status. After RST pin reset or power-on reset, the CPU is initialized and starts executing program code from the beginning.

The N79E855/854 can be woken up from Power-down mode by forcing an external interrupt pin activated, providing the corresponding interrupt enabled and the global enable EA bit (IE.7) is set. If these conditions are met, the trigger on the external pin will asynchronously restart the clock system. Then device executes the interrupt service routine (ISR) for the corresponding external interrupt. After the ISR is completed, the program execution returns to the instruction after the one that puts the device into Power-down mode and continues.

BOD, Watchdog and KBI interrupt are other sources to wake up CPU from Power Down. As mentioned before the user will endure the current of BOD detection circuit. Using KBI interrupt to wake up CPU from Power Down has a

nuvoton

Maximum total I_{OL}/I_{OH} for all outputs: 100mA (Through V_{DD} total current) Maximum total I_{OL}/I_{OH} for all outputs: 150mA (Through V_{SS} total current)

- [5] Tested while CPU is kept in reset state.
- [6] general purpose I/O mean the general purpose I/O, such as P0, P1, P2, P3.
- [7] These parameters are characterized but not tested.

Other: P1.2 and P1.3 are open drain structure. They have not quasi or push pull modes.

28.3 AC Electrical Characteristics

28.3.1 Specification of 10-bits SAR-ADC

oner. 11.2 and 11.5 are open dram structure. They have not quasi of push pun modes.							
28.3 AC Electrical Characteristics							
28.3.1 Specification of 10-bits SAR-ADC							
	Symbol	MIN	ТҮР	MAX	Unit		
Operation voltage	V _{DD}	2.7		5.5	v		
Resolution				10	bit		
Conversion time			35t _{ADC} ^[1]		us		
Sampling rate				150K	Hz		
Integral Non-Linearity Error	INL	-1		1	LSB		
Differential Non-Linearity	DNL	-1		1	LSB		
Gain error	Ge	-1		1	LSB		
Offset error	Ofe	-4		4	LSB		
Clock frequency	ADCCLK			5.25	MHz		
Absolute error		-4		4	LSB		
Band-gap	V _{BG}	1	1.3	1.6	V		

[1] t_{ADC} The period time of ADC input clock

Parameter		Condition	MIN.	ТҮР	с. М.	AX.	Unit
Input clock frequency		External crystal		Ser.	2	24	MHz
			3	S2 26			
Parameter	Symbol	MIN.	TYP.	MAX.	Units		Notes
External crystal Frequency	1/t _{CLCL}	4		24	MHz		
Clock High Time	t _{CHCX}	20.8	-	169	nS		
Clock Low Time	t _{CLCX}	20.8	-	- ~(nS	2	
Clock Rise Time	t _{CLCH}	-	-	10	nS	500	
Clock Fall Time	t _{CHCL}	-	-	10	nS	11	2

28.3.2 4 ~ 24 MHz XTAL Specifications

Note: Duty cycle is 50%.

28.3.3 Internal RC Oscillator Specifications - 22.1184 MHz/11.0592 MHz

Parameter	Conditions	MIN.	ТҮР.	MAX.	Unit
Center Frequency			22.1184/11.0592		MHz
Internal Oscillator Frequency	$+25^{\circ}$ C at V _{DD} = 5V	-1		+1	%
	$+25^{\circ}$ C at V _{DD} = 2.7~5.5V	-3		+3	%
	-10° C~+70°C at V _{DD} = 2.7~5.5V	-5		+5	%
	-40° C~+85°C at V _{DD} = 2.7~5.5V	-8		+8	%
N CA					