

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	TriCore™
Core Size	32-Bit Single-Core
Speed	180MHz
Connectivity	ASC, CANbus, EBI/EMI, MLI, MSC, SSC
Peripherals	DMA, POR, WDT
Number of I/O	219
Program Memory Size	4MB (4M × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	224K x 8
Voltage - Supply (Vcc/Vdd)	1.42V ~ 1.58V
Data Converters	A/D 48x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	416-BBGA
Supplier Device Package	PG-BGA-416-10
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/sak-tc1797-512f180e-ac

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

ed ibla a basino

egienaescolaira de raenefix <u>"</u>"fothe actalegierraen (foex de raenefix and CON"ishe kerel he keretohe pipeal deshe kerelegierraess The pipeal du the actalegier raessin de pfines

- Variablessed todesribe estop prand barcaes Foesalen, egi MSGCFG"egiessika saiable n. The twee he egisrepsisisitsed asseeded inhe estohe etx
- The defatuadixisdeciant Headdeciant I countsae fix berth," asin100 H. Binanycountsae fixed iutra bisit/berth," asin 111_B.
- When he exent begiver fields gp cbctrely named in he bdy b h NAME[A:B]," bruch defines a ange fothe ignals operation of the bound of the ignals operation of the bound of the bound of the he betk Fore adaption of the bound of the bound of the he betk Fore adaption of the bound of the bound of the he betk Fore adaption of the bound of the bound of the he betk Fore adaption of the bound of the bound of the he bound of the bound of the bound of the bound of the he bound of the bound of the bound of the bound of the he bound of the bound of the bound of the bound of the he bound of the bound of the bound of the he bound of the bound of the bound of the he bound of the bound of the bound of the he bound of the he bound of the bound of the he bound of the he

, epated byanodese chaacter alph ASCO_CON, here ASCO'ishe egitenaen). Inchatesdesibing egitesae anhefeenced uta heir e iteratoectoschigefer

eisog uitsoegiessaparinined ternaen MSGCFGni efestulpa boolsohe vaiabesae abaşginen (foevalpa) h= 0-31), and ae epated

- duba a basipleterB", asin. egiber bits ogpeto jonsae
 - e doent hey ae epented as naterd grides trA. Individal bis ee he ange bhe saiabe Cisginenin

- Unitae abbeiated astav
 - MHz = Megahez
 - $\mu s = Micecods$
 - kBaud, kbit = 1000 chaace sbite recod
 - MBaud, Mbit = 1,000,000 chaace so its record
 - Kbyte, KB = 1024 byesbengn
 - Mbyte, MB = 1048576 bigsbergin Ingereal he k pfixsalesa uitby 1024. Herce, he Kbig uitsaleshe ex kBad uitsaleshe episopeceding

1000 Inveeashe Kipfixsalesa intby pisopeceding it by 1024. The it by 1000. The Mipfixsalesby

Introduction

• [- f_{GPTA}/4 enicinitignal fequoryin 2-end/de, isgnal fequoryin 3-end/de DyCyste Measent (DCM) - Foindeprotentois - 0 - 100% arginand teactinanding - f_{GPTA} ance to - f_{GPTA}/2 anionitignal fequory Digital Phase Loked Lp(PLL) 	$f_{\rm GPTA}$ /6 ейстр
• (–Ore od –Abiaytpocatofactbeteen1 and 65535 – f _{GPTA} axceto – f _{GPTA} /2 axionipignalfeency Cok DitotoUnit(CDU)	
	–One bit –Piodesine cbk (bigrass $f_{\rm GPTA}$, divided $f_{\rm GPTA}$ cbksFPC1/FPC4 (pDCM	cbk, LTC ps abrcbk
Sig	nal Generation Unit	
• (• (

Interrupt Sharing Unit

• 286 interpressententing pt92 since eqs

TC1797

Electrical Parameters

Table 11 ADC Characteristics (cool) (Openting Coolitisal)							
Parameter	Symbol	V	alues	l	Jnit N	lote /	
		Min.	Тур.	Max.		Test Condition	
Gained ⁹⁾⁵⁾	EA _{GAIN} CC	_	±0.5	±3.5	LSB	12-bitconeiso Naturias ⁸⁾¹⁰⁾	
Offeteo ⁹⁾⁵⁾	EA _{OFF} CC	_	±1.0	±4.0	LSB	12-bitcores Naturas ⁸⁾¹⁰⁾	
Inpleakage contratanalg	I _{OZ1} CC	-300	-	100	A (($0\% V_{ m DDM}) < V_{ m IN} < (3\% V_{ m DDM})$	
into ADC0/1 11) 12) 13)		-100	-	200	A (:	3% V _{DDM}) < V _{IN} < (97% V _{DDM})	
		-100	-	300	PA (9	$V_{\rm DDM} > V_{\rm DDM} < V_{\rm IN} < (100\% V_{\rm DDM})$	
lnpeakage centat V _{AREF0/1/2,} prote	I _{OZ2} CC	_	-	±1.5	μA	$\begin{array}{l} 0 \; \mathrm{V} < V_{\mathrm{AREF}} < \\ V_{\mathrm{DDM,}} \; \mathbf{recreation} \\ \mathbf{rring} \end{array}$	
Introduct at $V_{\text{AREF0/1/2}}^{16)}$, prote	I _{AREF} CC	-	35	75	μA ns	$0 V < V_{AREF} < V_{DDM}^{14}$	
Tel capciance fo he tage efeence inpa ¹⁵⁾¹⁶⁾	C _{AREFTOT} CC	_	20	40	Б	8)	
Sinched capciance at he jac efeence tage into ¹⁶⁾	C _{AREFSW} CC	_	15	30	Б	8)17)	
Rebance fo he efeence bage inpu ph ¹⁵⁾	R _{AREF} CC	-	500	1000	Ω	500 Ohrinnceaed foAN[1:0] ed as efeence inp ⁸⁾	
Teal capaciance fo he anag imp ¹⁵⁾	C _{AINTOT} CC	_	25	30	Б 	1)8)	

Electrical Parameters

5.2.3 Fast Analog to Digital Converter (FADC)

AlpassesajtoFADC sod indiffe intended dhe bipatio, and twich ta effectinthe entudiffeential erasentsingereal entalote, twich is the defatation he kesadantage for enverocance but

Table 13	FADC Characteristics	(Opatrog Coditosa)p
----------	----------------------	---------------------

Parameter	Symbol		Values l			lote /
		Min.	Тур.	Max.	-	Test Condition
DNL eo	EF _{DNL} C	C –	- :	t LS	в	9)
INL ed	EF _{INL} C	C –		LS	в	9)
Gadienter ⁹⁾	EF _{GRAD}	- C		5 %	Wi	h tc albato gain1, 2, 4
		-	- 1	€ %	Wi	h ticalbatio gain8
Offeten 9)1)	EF _{OFF} ²⁾	-	- :	≆0 ³⁾	λγή V	Vih calbato ¹⁾
	CC	- 2	- :	90 ³⁾	λγή V	Vihtcalbato
Reference endo internal $V_{\text{FAREF}}/2$	EF _{REF} CO		- 1	£0 k∧i	-	
Anaby by	V _{DDMF} SF	R 3.13	-	3.47 ⁴⁾	V	-
lages	V_{DDAF} SF	R 1.42	-	1.58 ⁵⁾	V	-
Anabygood Tage	V _{SSAF} S	-0.1 R	-	0.1	V -	_
Anabjefeence bage	V _{FAREF} S	3.13 R	-	3.47 ⁴⁾⁶⁾	V	Nimal 3.3 V
Anaby efeence god	V _{FAGND} S	R 0.05	 V	V _{SSAF} + 0.05 V	V	-
Anabjinpbage ange	V _{AINF} S	$R \stackrel{V_{FAGN}}{=}$	1D –	V_{DDMF}	V	-
Analg pa	IDDMF SF	२ –	-	15 A	a —	
CEIIS	IDDAF SF	२ –		12 A		7)
Inducentiat V_{FAREF}			-	120	μA s n	Indepindentó coeixo
Independence of the second se	I _{FOZ2} CO			5500 nA	0 V	$< V_{\rm IN} < V_{\rm DDMF}$
Indexade contract at $V_{\text{FAGND}}^{8)}$	I _{FOZ3}		- 1	8	μA	$0 V < V_{IN} < V_{DDMF}$