

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CSI, EBI/EMI, I ² C, UART/USART
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	56
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 10x12b, 8x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3454gf-r-gas-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 V850E/IG3

1.3.1 Features (V850E/IG3)

O Minimum instruction execution time:

15.6 ns (at internal 64 MHz operation)

- O General-purpose registers: 32 bits \times 32

O Memory space (µPD70F3454GC-8EA-A and 70F3454F1-DA9-A only):

256 MB of linear address space (program/data sharing)

Chip select output function: 2 spaces

- Memory block division function: 2 MB/block
- External bus interface: Multiplexed bus mode: 16-bit address bus

8-bit/16-bit data bus

Separate bus mode: 8-bit address bus 8-bit/16-bit data bus

8-bit/16-bit data bus sizing function

External bus frequency switch function: 32/16 MHz

- Wait function
 - Programmable wait function
 - External wait function
- Idle state function

Address setup wait function

O Internal memory:	Part Number	Internal ROM	Internal RAM
	μPD70F3453	128 KB (flash memory)	8 KB
	μPD70F3454	256 KB (flash memory)	12 KB

O On-chip debug function: Supports MINICUBE and MINICUBE2.

Non-maskable interrupts:	1 source (external: none, internal: 1)
Maskable interrupts:	95 sources (external: 21, internal: 74)
Software exceptions:	32 sources
Exception traps:	2 sources
	Non-maskable interrupts: Maskable interrupts: Software exceptions: Exception traps:

(14/14)

Address	Function Register Name	Symbol	R/W	Bit Ma	: Units nipulat	for tion	After Reset
				1	8	16	
FFFFFC66H	Port 3 function register	PF3	R/W		\checkmark		00H
FFFFFD00H	CSIB0 control register 0	CB0CTL0					01H
FFFFFD01H	CSIB0 control register 1	CB0CTL1					00H
FFFFFD02H	CSIB0 control register 2	CB0CTL2			\checkmark		00H
FFFFFD03H	CSIB0 status register	CB0STR		\checkmark	\checkmark		00H
FFFFFD04H	CSIB0 receive data register	CB0RX	R			\checkmark	0000H
FFFFD04H	CSIB0 receive data register L	CB0RXL			\checkmark		00H
FFFFFD06H	CSIB0 transmit data register	CB0TX	R/W			\checkmark	0000H
FFFFFD06H	CSIB0 transmit data register L	CB0TXL			\checkmark		00H
FFFFFD10H	CSIB1 control register 0	CB1CTL0		\checkmark	\checkmark		01H
FFFFFD11H	CSIB1 control register 1	CB1CTL1		\checkmark	\checkmark		00H
FFFFFD12H	CSIB1 control register 2	CB1CTL2			\checkmark		00H
FFFFFD13H	CSIB1 status register	CB1STR		\checkmark	\checkmark		00H
FFFFFD14H	CSIB1 receive data register	CB1RX	R			\checkmark	0000H
FFFFFD14H	CSIB1 receive data register L	CB1RXL			\checkmark		00H
FFFFFD16H	CSIB1 transmit data register	CB1TX	R/W			\checkmark	0000H
FFFFFD16H	CSIB1 transmit data register L	CB1TXL			\checkmark		00H
FFFFFD20H	CSIB2 control register 0	CB2CTL0		\checkmark	\checkmark		01H
FFFFFD21H	CSIB2 control register 1	CB2CTL1		\checkmark	\checkmark		00H
FFFFFD22H	CSIB2 control register 2	CB2CTL2			\checkmark		00H
FFFFFD23H	CSIB2 status register	CB2STR		\checkmark	\checkmark		00H
FFFFFD24H	CSIB2 receive data register	CB2RX	R			\checkmark	0000H
FFFFD24H	CSIB2 receive data register L	CB2RXL			\checkmark		00H
FFFFFD26H	CSIB2 transmit data register	CB2TX	R/W			\checkmark	0000H
FFFFD26H	CSIB2 transmit data register L	CB2TXL			\checkmark		00H
FFFFFD80H	IIC shift register 0	IIC0			\checkmark		00H
FFFFFD82H	IIC control register 0	IICC0			\checkmark		00H
FFFFFD83H	Slave address register 0	SVA0			\checkmark		00H
FFFFFD84H	IIC clock select register 0	IICCL0		\checkmark	\checkmark		00H
FFFFFD85H	IIC function expansion register 0	IICX0			\checkmark		00H
FFFFFD86H	IIC status register 0	IICS0	R				00H
FFFFD8AH	IIC flag register 0	IICF0	R/W	\checkmark	\checkmark		00H
FFFFFD90H	IIC OPS clock select register	IICOCKS			\checkmark		00H
FFFFF44H	Pull-up resistor option register DL	PUDL					0000H
FFFFFF44H	Pull-up resistor option register DLL	PUDLL		\checkmark	\checkmark		00H
FFFFF45H	Pull-up resistor option register DLH	PUDLH					00H

Pin Name	Alternat	e Pin	Pnx Bit of Pn Register	PMnx Bit of PMn Register	PMCnx Bit of PMCn	PFCEnx Bit of	PFCnx Bit of PFCn	Other Bit
	Name	I/O			Register	PFCEn Register	Register	(Register)
P23	TOB1B2	Output	P23 = Setting not required	PM23 = Setting not required	PMC23 = 1	-	PFC23 = 0	
	TIB10	Input	P23 = Setting not required	PM23 = Setting not required	PMC23 = 1	-	PFC23 = 1	
P24	TOB1T3	Output	P24 = Setting not required	PM24 = Setting not required	PMC24 = 1	-	PFC24 = 0	
	EVTB1	Input	P24 = Setting not required	PM24 = Setting not required	PMC24 = 1	-	PFC24 = 1	
P25	TOB1B3	Output	P25 = Setting not required	PM25 = Setting not required	PMC25 = 1	-	PFC25 = 0	
	TRGB1	Input	P25 = Setting not required	PM25 = Setting not required	PMC25 = 1	_	PFC25 = 1	
P26	TOB10	Output	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFCE26 = 0	PFC26 = 0	
	TOB10FF	Input	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFCE26 = 0	PFC26 = 1	
	INTP10	Input	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFCE26 = 0	PFC26 = 1	INTF10 (INTF1), INTR10 (INTR1)
	ADTRG1	Input	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFCE26 = 1	PFC26 = 0	
	INTADT1	Input	P26 = Setting not required	PM26 = Setting not required	PMC26 = 1	PFCE26 = 1	PFC26 = 0	ADTF1 (ADTF), ADTR1 (ADTR)
P27	DMS ^{Notes 1, 2}	Input	P27 = Setting not required	PM27 = Setting not required	_	_	_	
P30	RXDA1	Input	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	PFCE30 = 0	PFC30 = 0	
	SCL	I/O	P30 = Setting not required	PM30 = Setting not required	PMC30 = 1	PFCE30 = 0	PFC30 = 1	PF30 (PF3) = 1
P31	TXDA1	Output	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	PFCE31 = 0	PFC31 = 0	
	SDA	I/O	P31 = Setting not required	PM31 = Setting not required	PMC31 = 1	PFCE31 = 0	PFC31 = 1	PF31 (PF3) = 1

Table 4-14. Using Port Pin as Alternate-Function Pin (4/8)

Notes 1. V850E/IG3 only

2. The P27 pin is also used for on-chip debugging. Switching between on-chip debug function and port function can be set by using the DRST pin level. The following shows the setting method.

	Port 2 Fi	unctions
Lo	w-Level Input to DRST Pin	High-Level Input to DRST Pin
P27		DMS

(3) Power save control register (PSC)

The PSC register is an 8-bit register that controls the standby function and specifies the standby mode by setting the STB bit. The PSC register is a special register (see **3.4.8 Special registers**). Data can be written to this register only in a combination of specific sequences.

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After res	set: 00H	R/W	Address:	FFFFF1FE	ΞH				
	7	6	5	<4>	3	2	<1>	0	_
PSC	0	0	0	INTM	0	0	STB	0	
	INTM	Standb	y mode co	ntrol ^{Note 2} by	maskable	interrupt r	equest (IN	Txx ^{Note 1})	
	0	Standby	mode relea	se by INTxx	request e	nabled			
	1	Standby I	mode relea	se by INTxx	request c	lisabled			
	STB			Sets	operation	mode			
	0	Normal m	node						
	1	Standby I	node						
Notes 1. For detail 2. Setting is	s, see Ta valid onl <u>y</u>	ble 20-1 y in the ID	Interrupt LE mode	Source Li and STOF	st. mode.				
Cautions 1. Be su 2. Before to 03I releas desire	re to set e setting H and the ed. Afte ed value.	bits 0, 2, a standb en set th er releasir	3, and 5 t y mode b e STB bi ng the sta	o 7 to "0" by setting t to 1. O andby mo	the STB therwise de, char	bit to 1, e, the sta nge the v	be sure t Indby mo alue of th	to set the ode may r ne PCC re	PCC regist not be set egister to th

3. To set the IDLE mode or STOP mode, set the PCC register to 03H, and the PSMR.PSM0 bit in that order and then set the STB bit to 1.

(5) TAAm I/O control register 2 (TAAmIOC2)

The TAAmIOC2 register is an 8-bit register that controls the valid edge for the external event count input signal (TIAm0 pin) and external trigger input signal (TIAm0 pin).

This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After res	set: 00H	R/W	Address:	TAA2IO	DC2 FFFF6	A4H, TAA	3IOC2 FF	FFFB04H ^{Note} ,
				TAA4I0	DC2 FFFFF	324H		
	7	6	5	4	3	2	1	0
TAAmIOC2	0	0	0	0	TAAmEES1	TAAmEES0	TAAmETS1	TAAmETS0
V850E/IF3								
(III = 2, 4 J	TAAmEES1	TAAmEES0	External e	vent cou	nt input signa	l (TIAm0 p	in) valid ec	lge setting
V850E/IG3	0	0	No edge	detection	(external eve	ent count ir	ivalid)	
[m = 2 to 4]	0	1	Detection	of rising	edge			
	1	0	Detection	of falling	edge			
	1	1	Detection	of both e	edges			
	TAAmETS1	TAAmETS0	Extern	al trigger	input signal (TIAm0 pin)	valid edge	e setting
	0	0	No edge	detection	(external trig	ger invalid)	
	0	1	Detection	of rising	edge			
	1	0	Detection	of falling	edge			
	1	1	Detection	of both e	edges			
e V850E/IG3 only Itions 1. Rewrite TAAmCT rewriting 2. The TAA	the TA TLO.TAAm gwasmis mEES1 a	AmEES1, nCE bit = ntakenly p nd TAAm	TAAmE 0. (The s performed iEES0 bit	ES0, 1 same va I, clear t	AAmETS1 lue can be he TAAmC alid only w	, and T written v E bit to 0 hen the 1	AAmETS when the and ther AAmCTI	0 bits when TAAmCE bit = 1 set the bits ag _1.TAAmEEE bi
or whe	en the	externa	al even	nt cou	int mode	e (the	TAAmC	TL1.TAAmMD2
ΤΛ Λ		INDU DITS	s = 00 i) na	аз рееп	Sel.			
					المراجع المالية			

					TAAmEES1	TAAmEES0) TAAmETS1	TAAmET	<u>30</u>
TAAmIOC2	0	0	0	0	0	0	0/1	0/1	
									Select valid edge of external trigger input (TIAm0 pi
(e) TAAr	n countei	r read bu	uffer reg	jister (T/	AmCNT)			
The v	alue of th	e 16-bit o	counter of	can be re	ad by re	ading the) TAAmC	NT regi	ister.
(f) TΔΔr	n canture	./comnai	re reaist	tors 0 an	νd 1 (ΤΔΔ) and TA	AmCCE	21)
(f) TAAr	n capture	the TAA	re regist	ters 0 ar	nd 1 (TAA	AmCCRC) and TA	AmCCF	R1)
(f) TAAr If Do	n capture is set to	the TAA	re regist mCCR0	ters 0 ar register	nd 1 (TAA and D1	AmCCR(to the TA) and TA AAmCCF	AmCCF	R1) ster, the active level width
(f) TAAr If Do outpu	n capture is set to It delay pe	e/company the TAA	re regis t mCCR0 he one-s	ters 0 ar register shot pulse	nd 1 (TA/ and D ₁ e are as f	AmCCR(to the T/ follows.) and TA . AAmCCF	AmCCF	R1) ster, the active level width
(f) TAAr If Do outpu	n capture is set to it delay pe e level wid	e/company the TAA priod of the lth = (Do	re regis mCCR0 he one-s – D1 + 1	ters 0 ar register shot pulse) × Coun	nd 1 (TA/ and D1 e are as f it clock cv	AmCCR(to the T/ follows. vcle) and TA . AAmCCF	AmCCF	R1) ster, the active level width
(f) TAAr If Do outpu Active Outpu	n capture is set to it delay pe e level wid ut delay pe	e/compa the TAA riod of th th = (Do eriod = D	re regis mCCR0 he one-s – D1 + 1)1 × Cou	ters 0 ar register shot pulse) × Coun nt clock c	nd 1 (TA/ and D1 e are as f nt clock cy cycle	AmCCR(to the T/ follows. ycle) and TA AAmCCF	AmCCF	R1) ster, the active level width
(f) TAAr If Do outpu Active Outpu	n capture is set to it delay pe e level wic ut delay pe	e/compare the TAA eriod of the th = (Do eriod = D	re regis mCCR0 he one-s – D1 + 1)1 × Cou	ters 0 ar register shot pulse) × Coun nt clock c	and 1 (TA/ and D1 e are as f nt clock cy cycle	AmCCR(to the T/ follows. ycle) and TA . AAmCCF	AmCCF	R1) ster, the active level width
(f) TAAr If Do outpu Active Outpu Caute	n capture is set to it delay pe e level wid ut delay pe ion One	e/compa the TAA eriod of th th = (Do eriod = D -shot pu	re regis mCCR0 he one-s – D1 + 1)1 × Cour JIses ar	ters 0 ar register shot pulse) × Coun nt clock o re not ou	and 1 (TA/ and D1 e are as f it clock cy cycle utput eve	AmCCR(to the T/ follows. ycle en in the) and TA. AAmCCF ∋ one-sh	AmCCF	R1) ster, the active level width se output mode, if the va
(f) TAAr If Do outpu Active Outpu Caut	n capture is set to it delay pe e level wid ut delay pe ion One set i	e/compare the TAA eriod of the lth = (Do eriod = D -shot putin the TA	re regis mCCR0 he one-s – D1 + 1)1 × Cou ulses ar \AmCCF	ters 0 ar register shot pulse) × Coun nt clock o re not ou R1 regist	and 1 (TA/ and D1 e are as t nt clock cy cycle utput eve ter is gre	AmCCR(to the Tr follows. ycle en in the ater tha) and TA. AAmCCF ∋ one-sh n that se	AmCCF R1 regis tot puls t in the	R1) ster, the active level width se output mode, if the va sTAAmCCR0 register.
(f) TAAr If Do outpu Active Outpu Cauti	n capture is set to it delay pe e level wid ut delay pe ion One set i arks 1. 1	e/compare the TAA eriod of the eriod = $(D_0 = C)$ eriod = D -shot put in the TA	re regis mCCR0 he one-s – D1 + 1)1 × Cour ulses ar \AmCCF	ters 0 ar register shot pulse) × Coun nt clock o re not ou R1 register	and 1 (TA/ and D1 e are as 1 nt clock cy cycle utput eve ter is gre 1 (TAAm	AmCCR(to the Tr follows. ycle en in the eater tha IOC1) ar	and TA. AAmCCF one-sh n that se	AmCCF R1 regis Not puls In the option	R1) ster, the active level width se output mode, if the va TAAmCCR0 register. register 0 (TAAmOPT0) are
(f) TAAr If Do outpu Active Outpu Cauti	n capture is set to it delay pe e level wid ut delay pe ion One set i arks 1. 1	e/compare the TAA eriod of the th = $(D_0$ eriod = D -shot put in the TA	re regist mCCR0 he one-s $- D_1 + 1$ $)_1 \times Courtureulses arAmCCF) controlhe one-s$	ters 0 ar register shot pulse) × Coun nt clock o re not ou R1 register hot pulse	and 1 (TA/ and D1 e are as 1 nt clock cy cycle utput eventer is gree 1 (TAAm e output r	AmCCR(to the Tr follows. ycle en in the sater tha IOC1) ar node.	and TA. AAmCCF e one-sh n that se nd TAAm	AmCCF R1 regis Not puls In the option	R1) ster, the active level width se output mode, if the va > TAAmCCR0 register. register 0 (TAAmOPT0) are

Figure 6-30. Setting of Registers in One-Shot Pulse Output Mode (2/2)

(b) Operation if TABnCCR0 register is set to FFFFH

If the TABnCCR0 register is set to FFFFH, the 16-bit counter counts to FFFFH each time the valid edge of the external event count signal has been detected. The 16-bit counter is cleared to 0000H in synchronization with the next count-up timing, and the INTTBnCC0 signal is generated. At this time, the TABnOPT0.TABnOVF bit is not set.

8.6.2 External event count mode (TTmMD3 to TTmMD0 bits = 0001)

This mode is valid only in TMT0 (V850E/IG3 only) and TMT1.

In the external event count mode, the valid edge of the external event count input (EVTTm) is counted when the TTmCTL0.TTmCE bit is set to 1, and an interrupt request signal (INTTTEQCm0) is generated each time the number of edges set by the TTmCCR0 register have been counted. The TOTm0 and TOTm1 pins cannot be used.

The TTmCCR1 register is not used in the external event count mode.

(d) Conflict between trigger detection and match with CCR0 buffer register

If the trigger is detected immediately after the INTTTEQCm0 signal is generated, the 16-bit counter is cleared to 0000H and continues counting up. Therefore, the active period of the TOTm1 pin is extended by time from generation of the INTTTEQCm0 signal to trigger detection.

If the trigger is detected immediately before the INTTTEQCm0 signal is generated, the INTTTEQCm0 signal is not generated. The 16-bit counter is cleared to 0000H, the TOTm1 pin is asserted, and the counter continues counting. Consequently, the inactive period of the PWM waveform is shortened.

(2) Interrupt requests

Two types of interrupt requests are available: the INTTBnCC0 (crest interrupt) signal and INTTBnOV (valley interrupt) signal.

The INTTBnCC0 and INTTBnOV signals can be culled by using the TABnOPT1 register.

For details of culling interrupts, see 10.4.3 Interrupt culling function.

- INTTBnCC0 (crest interrupt) signal: Interrupt signal indicating matching between the value of the 16-bit counter that counts up and the value of the TABnCCR0 register
- INTTBnOV (valley interrupt) signal: Interrupt signal indicating matching between the value of the 16-bit counter that counts down and the value 0001H

(3) Rewriting registers during timer operation

The following registers have a buffer register and can be rewritten in the anytime rewriting mode, batch rewrite mode, or intermittent batch rewrite mode.

Related Unit	Register
Timer AAn	TAAn capture/compare register 0 (TAAnCCR0) TAAn capture/compare register 1 (TAAnCCR1)
Timer ABn	TABn capture/compare register 0 (TABnCCR0) TABn capture/compare register 1 (TABnCCR1) TABn capture/compare register 2 (TABnCCR2) TABn capture/compare register 3 (TABnCCR3)
Timer Qn option	TABn option register 1 (TABnOPT1)

Remark n = 0, 1

For details of the transfer function of the compare register, see **10.4.4** Operation to rewrite register with transfer function.

(4) Counting-up/-down operation of 16-bit counter

The operation status of the 16-bit counter can be checked by using the TABnCUF bit of TABn option register 0 (TABnOPT0).

Status of TABnCUF Bit	Status of 16-Bit Counter	Range of 16-Bit Counter Value
TABnCUF bit = 0	Counting up	0000H – m
TABnCUF bit = 1	Counting down	(m+1) – 0001H

Remarks 1. m = Set value of TABnCCR0 register

2. n = 0, 1

14.1.3 Mode switching between UARTA2 and CSIB1

In the V850E/IF3 and V850E/IG3, UARTA2 and CSIB1 function alternately, and their pins cannot be used at the same time. To switch between UARTA2 and CSIB1, the PMC3, PFC3, and PFCE3 registers must be set in advance.

Caution The operations related to transmission and reception of UARTA2 or CSIB1 are not guaranteed if the mode is switched during transmission or reception. Be sure to disable the unit that is not used.

	7	6	5	4	3	2	1	0
PMC3	PMC37	PMC36	PMC35	PMC34	PMC33	PMC32	PMC31	PMC30
After res	set: 00H	R/W	Address: F	FFFF466F	1			
	7	6	5	4	3	2	1	0
PFC3	PFC37	PFC36	PFC35	PFC34	PFC33	PFC32	PFC31	PFC30
After res	et: 00H	R/W	Address: F	FFFF706H				
	7	6	5	4	3	2	1	0
PFCE3	PFCE37	PFCE36	PFCE35	PFCE34	0	PFCE32	PFCE31	PFCE30
	PMC34	PFCE34	PFC34	Specif	ication of a	alternate fu	nction of P	34 pin
	0	×	×	I/O port				•
	1	0	0	SCKB1 I	0			
	1	0	1	INTP11 i	nput			
	1	1	0	CS0 ^{Note} C	output			
	1	1	1	Setting p	rohibited			
	PMC33	PFC33	S	pecification	of alternat	te function	of P33 pin	
	0	×	I/O port					
	1	0	SOB1 ou	itput				
	1	1	TXDA2 c	output				
	PMC32	PFCE32	PFC32	Specif	ication of a	alternate fu	nction of Pa	32 pin
	0	×	×	I/O port				
	1	0	0	SIB1 inp	ut			
	1	0	1	RXDA2 ii	nput			
	1	1	0	CS1 ^{Note} C	output			
	1	1	1	Setting p	rohibited			

Figure 14-3. Mode Switch Settings of UARTA2 and CSIB1

Remark x = don't care

(5) IIC function expansion register 0 (IICX0)

This register sets the function expansion of I²C (valid only in high-speed mode).

This register can be read or written in 8-bit or 1-bit units. The CLX0 bit is set in combination with the IICCL0.SMC0, IICCL0.CL00, IICOCKS.IICOCKS1, and IICOCKS.IICOCKS0 bits (see 17.4 (7) I²C transfer clock setting method).

Set the IICX0 register when the IICC0.IICE0 bit = 0. Reset sets this register to 00H.

After reset: 00H R/W Address: FFFFFD85H 7 6 5 4 3 2 <0> 1 IICX0 0 0 0 0 0 0 0 CLX0 CLX0 Clock select expansion bit 0 Communicate at transfer rate set by the IICCL0.CL00 bit. Communicate at double transfer rate set by the IICCL0.CL00 bit in 1 high-speed mode .

(6) IICOPS clock select register (IICOCKS)

This register controls the division clock of I^2C .

This register can be read or written in 8-bit or 1-bit units. The IICOCKS1 and IICOCKS0 bits are set in combination with the IICCL0.SMC0, IICCL0.CL00, and IICX0.CLX0 bits (see **17.4 (7)** I²C transfer clock setting method).

Reset sets this register to 00H.

After rese	et: 00H	R/W	Address: F	FFFFD90H					
	7	6	5	4	3	2	1	0	
IICOCKS	0	0	0	IICOCKSEN	0	0	IICOCKS1	IICOCKS0	
	IICOCKSEN		Spe	cification of I ²	C divisio	n clock op	peration		
	0	I ² C divisio	on clock op	peration stop					
	1	I ² C divisio	C division clock operation enable						
	IICOCKS1	IICOCKS0		I ² C divisio	on clock s	selection			
	0	0	fxx/4						
	0	1	fxx/6						
	1	0	fxx/8						
	1	1	fxx/10						

(3) Start ~ Code ~ Data ~ Start ~ Code ~ Data ~ Stop

Г

	<1> When W	/TIMO k	oit = 0 (after restart	, exten	sion c	ode receptio	n)				
ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ACK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP
	▲1 ▲2								▲3		▲4	Δξ
▲1: IICS0 register = 0010X010B												
▲2: IICS0 register = 0010X000B												
▲3: IICS0 register = 0010X010B												
	▲4: IICS	0 regist	er = 001	0X000B								
	Δ 5: IICS	0 registe	er = 000	00001B								
	Remar <2> When W	rk ▲: ∆: X: /TIMO k	Alway Gener don't bit = 1 (rs generated rated only wh care after restart	nen SPI , exten	E0 bit : sion co	= 1 ode receptio	n)				
ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	ST	AD6 to AD0	R/W	ĀCK	D7 to D0	ĀCK	SP
			▲1 ▲	2		▲3			4	▲5		Δ 6 Δ7
	▲1: IICS	0 regist	er = 001	0X010B								
	▲2: IICS	0 regist	er = 001	0X110B								
	▲3: IICS0 register = 0010XX00B											
▲4: IICS0 register = 0010X010B												
▲5: IICS0 register = 0010X110B												
▲6: IICS0 register = 0010XX00B												
	Δ 7: IICS	0 registe	er = 000	00001B								
	Remark ▲: Always generated ∆: Generated only when SPIE0 bit = 1 X: don't care											

Figure 18-1. Example of Inserting Wait States (2/2)

18.6.4 Bus cycles in which wait function is valid

In the μ PD70F3454GC-8EA-A and 70F3454F1-DA9-A, the number of waits can be specified for each memory block. The following shows the bus cycles in which the wait function is valid and the registers used for wait setting.

Bus Cycle	Wait Type	Prog	Wait by WAIT		
		Register	Bit	Number of Waits	Pin
SRAM, external ROM,	Address setup wait	AWC	ASWn	0, 1	× (invalid)
external I/O cycles	Address hold wait	AWC	AHWn	0, 1	\times (invalid)
	Data wait	DWC0	DWn2 to DWn0	0 to 7	$\sqrt{(valid)}$

Table 18-2. Bus Cycles in Which Wait Function Is Valid

Remark n = 0, 1

18.8 Bus Timing

(1) Read cycle (basic cycle)

19.4 Transfer Modes

19.4.1 Single transfer mode

In single transfer mode, the DMAC releases the bus at each byte/halfword transfer. If there is a subsequent DMA transfer request, transfer is performed again once. This operation continues until a terminal count occurs.

When the DMAC has released the bus, if another higher priority DMA transfer request is issued, the higher priority DMA request always takes precedence. If another DMA transfer request with a lower priority occurs one clock after single transfer has been completed, however, this request does not take precedence even if the previous DMA transfer request signal with a higher priority remains active. DMA transfer with the newly requested lower priority request is executed after the CPU bus has been released.

Figures 19-1 to 19-4 show examples of single transfer.

Figure 19-1. Single Transfer Example 1

Figure 19-2 shows an example of a single transfer in which a higher priority DMA request is issued. DMA channels 0 to 2 are in the block transfer mode and channel 3 is in the single transfer mode.

CHAPTER 21 STANDBY FUNCTION

21.1 Overview

The power consumption of the system can be effectively reduced by using the standby modes in combination and selecting the appropriate mode for the application. The available standby modes are listed in Table 21-1.

Mode	Functional Outline
HALT mode	Mode to stop only the operating clock of the CPU
IDLE mode	Mode to stop all the operations of the internal circuit except the oscillator, PLL, CSIB in the slave mode, clock monitor, low-voltage detector (LVI), power-on-clear circuit (POC)
STOP mode	Mode to stop all the operations of the internal circuit except the CSIB in the slave mode, low-voltage detector (LVI), power-on-clear circuit (POC)

Table 21-1. Standby Modes

27.9.2 Features

(1) Flash memory self programming

Flash memory self programming is used to erase or write the flash memory by calling the flash function from a program stored in an area other than the flash memory area to be erased or written. To store the program that implements self programming in the area to be erased or written, copy the program to the internal RAM area, execute the program at the copy destination, and call the flash function.

To call the flash function, change the mode from the normal operation mode to the self programming mode by using the flash programming mode control register.

Figure 27-3. Self Programming

(a) Boot swap cluster

The contents of the boot swap cluster of the lower address side (00000H to 0FFFFH) and the boot swap cluster of the higher address side (10000H to 1FFFFH) can be interchanged while flash memory programming is performed.

(b) Boot block cluster

By specifying the boot block cluster from 00000H in 2 KB units, the contents of the boot block cluster can be protected from rewriting.

28.1.9 Characteristics of A/D converters 0 and 1

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution			12	12	12	bit
Overall error ^{Note 1}					±10	LSB
Conversion time	tconv	f _{AD01} = 16 MHz, ADAnCTC register = 0BH or 0CH	2.0			μS
		f _{AD01} = 12 MHz, ADAnCTC register = 00H			7.42	μS
Zero scale error ^{Note 1}					±10	LSB
Full-scale error ^{Note 1}					±10	LSB
Integral linearity error ^{Note 1}					±4	LSB
Differential linearity error ^{Note 1}					±2.5	LSB
Analog reference voltage	AVDD		4.0		5.5	V
Analog input voltage	VIAN		AVss		AVDD	V
AVDD supply current ^{Note 2}	Aldd	Operating		4.5	7.5	mA
	Aldds	In STOP mode ^{Note 3}		3.5	17.5	μs

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{DD0} = V_{DD1} = \text{EV}_{DD0} = \text{EV}_{DD1} = \text{AV}_{DD0} = \text{AV}_{DD1} = \text{AV}_{DD2} = \text{AV}_{REFP0} = \text{AV}_{REFP1} = 4.0 \text{ to } 5.5 \text{ V},$ $V_{SS0} = V_{SS1} = \text{EV}_{SS0} = \text{EV}_{SS1} = \text{AV}_{SS2} = 0 \text{ V}, C_1 = 50 \text{ nE}.$

Notes 1. Excludes quantization error (±0.5 LSB).

2. This value is for only one A/D converter (A/D converter 0 or 1).

3. Stop the operation of A/D converters 0 and 1 (ADnSCM.ADnCE bit = 0) before setting STOP mode.

Remarks 1. LSB: Least Significant Bit

2. fAD01: Base clock of A/D converters 0 and 1

3. n = 0, 1

28.2.14 Low-voltage detector (LVI)

Vsso = Vss1 = EVsso = EVs	51 = EV 5	ss2 = AV	$V_{SS0} = AV_{SS1} = AV_{SS2} = 0 V, CL = 5$	60 pF)			
Parameter	ter Symbol		Conditions	MIN.	TYP.	MAX.	Unit
LVI detection voltage	VLV10		LVIS.LVIS0 bit = 0	4.2	4.4	4.6	V
	VLVI1		LVIS.LVIS0 bit = 1	4.0	4.2	4.4	V
Response time 1 ^{№te}	tld	<102>	After VDD0 and VDD1 reach VLVI0/VLVI1 (MAX.) or drop to VLVI0/VLVI1 (MIN.)		0.2	2.0	ms
Minimum width of VDD0, VDD1	t∟w	<103>		0.2			ms
Reference voltage stabilization wait time	tlwait	<104>	After VDD0 and VDD1 reach POC detection voltage (MIN.) and the LVIM.LVION bit is changed from 0 to 1		0.1		ms

Note The time required to output an interrupt request signal (INTLVIL, INTLVIH) or internal reset signal (LVIRES) after the LVI detection voltage is detected.

