

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	19
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213g4cnnp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/3GC Group.

ltem	Function	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits
		• Multiply-accumulate instruction: 16 bits \times 16 bits + 32 bits \rightarrow 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data	Refer to Table 1.3 Product List for R8C/3GC Group.
)	flash	
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	Input-only: 1 pin
	ports	CMOS I/O ports: 19, selectable pull-up resistor
	pono	High current drive ports: 19
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
CICCIC	circuits	XCIN clock oscillation circuit (32 kHz),
	onound	High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		 Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		Number of interrupt vectors: 69
Interrupts		• External Interrupt: 7 (INT \times 3, Key input \times 4)
Watchdog Tim	or	Priority levels: 7 levels 14 bits × 1 (with prescaler)
watchuog him	lei	Reset start selectable
		Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	ansfer Controller)	• 1 channel
		Activation sources: 23
		Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits × 1 (with 8-bit prescaler)
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits x 1 (with 4 capture/compare registers)
		Timer mode (input capture function, output compare function), PWM mode
		(output 3 pins), PWM2 mode (PWM output pin)
	Timer RE	8 bits x 1
		Real-time clock mode (count seconds, minutes, hours, days of week)

Table 1.1 Specifications for R8C/3GC Group (1)

ltem	Function	Specification			
Serial	UART0	Clock synchronous serial I/O/UART			
Interface	UART2	Clock synchronous serial I/O/UART, I ² C mode (I ² C-bus),			
		multiprocessor communication function			
Synchronous	Serial	1 (shared with I ² C-bus)			
Communicatio	on Unit (SSU)				
I ² C bus		1 (shared with SSU)			
LIN Module		Hardware LIN: 1 (timer RA, UART0)			
A/D Converte	r	10-bit resolution × 8 channels, includes sample and hold function, with sweep			
		mode			
D/A Converte	r	8-bit resolution × 2 circuits			
Comparator E	3	2 circuits			
Flash Memor	y	 Programming and erasure voltage: VCC = 2.7 to 5.5 V 			
		 Programming and erasure endurance: 10,000 times (data flash) 			
		1,000 times (program ROM)			
		 Program security: ROM code protect, ID code check 			
		 Debug functions: On-chip debug, on-board flash rewrite function 			
		Background operation (BGO) function			
Operating Fre	equency/Supply	f(XIN) = 20 MHz (VCC = 2.7 to 5.5 V)			
Voltage		f(XIN) = 5 MHz (VCC = 1.8 to 5.5 V)			
Current Cons	umption	Typ. 6.5 mA (VCC = 5.0 V, f(XIN) = 20 MHz)			
		Typ. 3.5 mA (VCC = 3.0 V, f(XIN) = 10 MHz)			
		Typ. 3.5 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz))			
		Typ. 2.0 μA (VCC = 3.0 V, stop mode)			
Operating Am	bient Temperature	-20 to 85°C (N version)			
		-40 to 85°C (D version) ⁽¹⁾			
Package		24-pin HWQFN			
		Package code: PWQN0024KC-A			
		24-pin LSSOP			
		Package code: PLSP0024JB-A (previous code: 24P2F-A)			

Table 1.2 Specifications for R8C/3GC Group (2)

Note:

1. Specify the D version if D version functions are to be used.

Current of Oct 2010

1.2 Product List

Table 1.3 lists Product List for R8C/3GC Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/3GC Group.

Part No.	ROM C	apacity	RAM	Package Type	Remarks
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F213G2CNNP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PWQN0024KC-A	N version
R5F213G4CNNP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PWQN0024KC-A	
R5F213G5CNNP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PWQN0024KC-A	
R5F213G6CNNP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PWQN0024KC-A	
R5F213G1CNSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	
R5F213G2CNSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A	
R5F213G4CNSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A	
R5F213G5CNSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A	
R5F213G6CNSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A	
R5F213G1CDSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	D version
R5F213G2CDSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A	
R5F213G4CDSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A	
R5F213G5CDSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A	
R5F213G6CDSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A	

Table 1.3 Product List for R8C/3GC Group

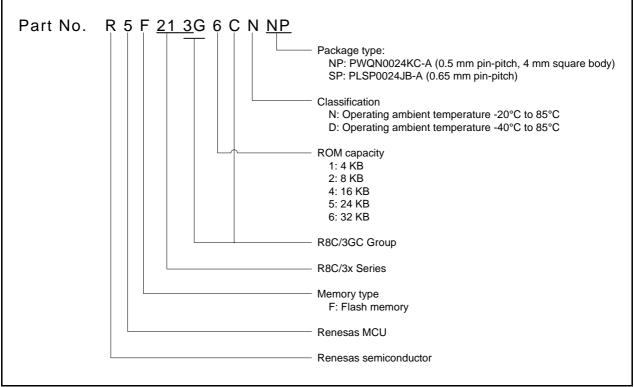


Figure 1.1 Part Number, Memory Size, and Package of R8C/3GC Group

1.3 **Block Diagram**

Figure 1.2 shows a Block Diagram.

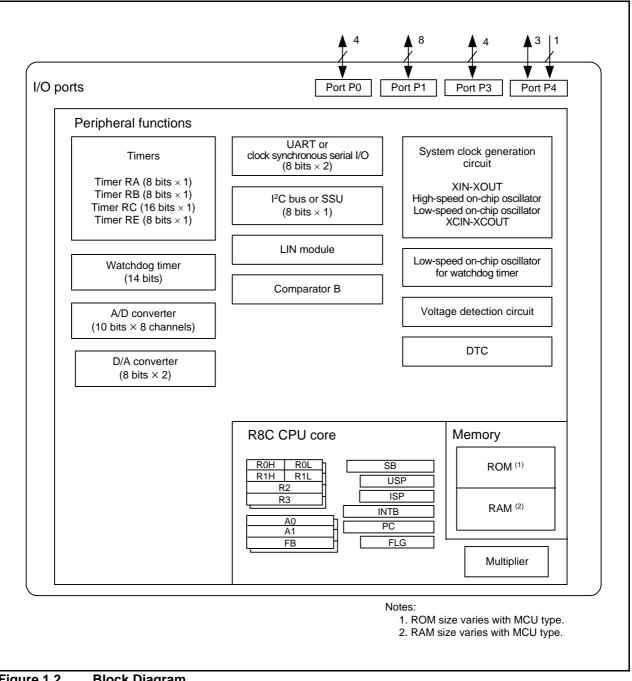
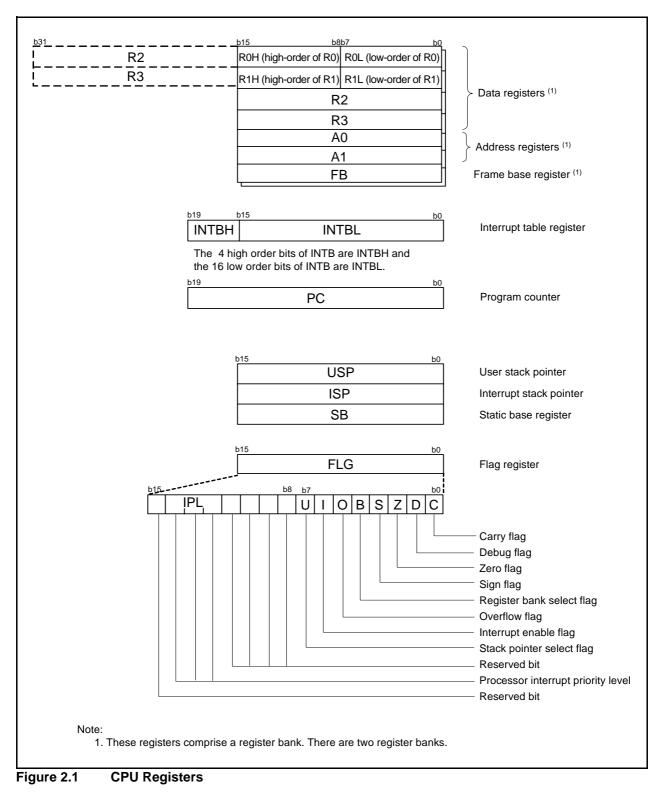



Figure 1.2 **Block Diagram**

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

3. Memory

3. Memory

3.1 R8C/3GC Group

Figure 3.1 is a Memory Map of R8C/3GC Group. The R8C/3GC Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/3GC Group

Address	Register	Symbol	After Reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0100h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0108h	Timer RB One-Shot Control Register	TRBOCR	00h
		TRBIOC	00h
010Ah	Timer RB I/O Control Register		
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h	Timer RE Second Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register	TREMIN	00h
011Ah	Timer RE Hour Data Register	TREHR	00h
011Bh	Timer RE Day of Week Data Register	TREWK	00h
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0123h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
012411 0125h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0126h	Timer RC Counter	TRC	00h
0127h		TROOPA	00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h		750055	FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh			FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h			
0135h		İ	
0136h		1	
0137h		1	<u> </u>
0138h			<u> </u>
0139h			
013Ah		ł	<u> </u>
013An 013Bh			<u> </u>
013Bh			
013Ch 013Dh			
013Eh			ļ
013Fh			l

SFR Information (5)⁽¹⁾ Table 4.5

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h			XXh
2C42h	4		XXh
2C43h			XXh
2C44h			XXh
2C45h			XXh
2C46h			XXh
2C47h			XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h			XXh
2C4Ah			XXh
2C4Bh			XXh
2C4Ch			XXh
2C4Dh			XXh
2C4Eh			XXh
2C4Fh			XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h			XXh
2C52h			XXh
2C53h			XXh
2C54h			XXh
2C55h			XXh
2C56h			XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Eh]		XXh
2C5Fh			XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h]		XXh
2C62h			XXh
2C63h			XXh
2C64h]		XXh
2C65h			XXh
2C66h			XXh
2C67h]		XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah	1		XXh
2C6Bh	1		XXh
2C6Ch	1		XXh
2C6Dh	1		XXh
	1		XXh
2C6Eh			7711

SFR Information (9)⁽¹⁾ Table 4.9

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2CB0h	DTC Control Data 14	DTCD14	XXh
2CB1h			XXh
2CB2h	-		XXh
2CB3h			XXh
2CB4h			XXh
2CB5h			XXh
	_		
2CB6h			XXh
2CB7h			XXh
2CB8h	DTC Control Data 15	DTCD15	XXh
2CB9h		2.02.0	XXh
2CBAh			XXh
2CBBh			XXh
2CBCh			XXh
	-		
2CBDh			XXh
2CBEh			XXh
2CBFh			XXh
2CC0h	DTC Control Data 16	DTCD16	XXh
	DTC Control Data To	DICDIO	
2CC1h			XXh
2CC2h			XXh
2CC3h	1		XXh
2003h	4		
	4		XXh
2CC5h			XXh
2CC6h			XXh
2CC7h	1		XXh
	DTO Operated Data 47	DT00/7	
2CC8h	DTC Control Data 17	DTCD17	XXh
2CC9h			XXh
2CCAh			XXh
2CCBh	-		XXh
2CCCh			XXh
2CCDh			XXh
2CCEh			XXh
2CCFh			XXh
2CD0h	DTC Control Data 18	DTCD18	XXh
2CD1h			XXh
	-		
2CD2h			XXh
2CD3h			XXh
2CD4h			XXh
2CD5h			XXh
2CD6h			XXh
2CD7h			XXh
2CD8h	DTC Control Data 19	DTCD19	XXh
2CD9h		BIODIO	
			XXh
2CDAh			XXh
2CDBh			XXh
2CDCh	7		XXh
	4		
2CDDh	4		XXh
2CDEh			XXh
2CDFh			XXh
2CE0h	DTC Control Data 20	DTCD20	XXh
		010020	
2CE1h			XXh
2CE2h			XXh
2CE3h	7		XXh
	4		
2CE4h	4		XXh
2CE5h			XXh
2CE6h	7		XXh
	4		XXh
2CE7h			
2CE8h	DTC Control Data 21	DTCD21	XXh
2CE9h			XXh
2CEAh	7		XXh
	-		
2CEBh			XXh
2CECh			XXh
2CEDh	1		XXh
	4		
2CEEh	4		XXh
2CEFh			XXh
		•	

SFR Information (11)⁽¹⁾ Table 4.11

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h	1		XXh
2CF2h	1		XXh
2CF3h	1		XXh
2CF4h	1		XXh
2CF5h	1		XXh
2CF6h	1		XXh
2CF7h	1		XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h	1		XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh]		XXh
2CFFh]		XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Area Name Symbol			
:		0.500			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)		
FFDFh	ID1		(Note 2)		
:					
FFE3h	ID2		(Note 2)		
:					
FFEBh	ID3		(Note 2)		
FFEFh	ID4		(Note 2)		
:			(
FFF3h	ID5		(Note 2)		
:					
FFF7h	ID6		(Note 2)		
: FFFBh	ID7		(Note 2)		
	וטו				
FFFFh	Option Function Select Register	OFS	(Note 1)		

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Cumb al	Doromotor			Conditions	Standard			Linit	
Symbol		Parameter			Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	-	5.5	V
Vss/AVss	Supply voltage					_	0	_	V
Vih	Input "H" voltage	Other th	an CMOS ir	nput		0.8 Vcc		Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	0.35 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.55 Vcc	-	Vcc	V
			function		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	-	Vcc	V
			(I/O port)	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	-	Vcc	V
				0.5 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.7 Vcc	-	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.8 Vcc	-	Vcc	V
				Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	-	Vcc	V
				0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	-	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.85 Vcc	_	Vcc	V
	External clock input (XOUT	(XOUT)		1.2	_	Vcc	V		
VIL	Input "L" voltage	Other th	an CMOS ir	nput		0	-	0.2 Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.2 Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.2 Vcc	V
			function		$1.8~V \leq Vcc < 2.7~V$	0	_	0.2 Vcc	V
			(I/O port)	Input level selection: 0.5 Vcc	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	0.4 Vcc	V
					$2.7~V \leq Vcc < 4.0~V$	0	_	0.3 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	_	0.2 Vcc	V
				Input level selection: 0.7 Vcc	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	0.55 Vcc	V
					$2.7~V \leq Vcc < 4.0~V$	0	_	0.45 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	_	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	_	0.4	V
IOH(sum)	Peak sum output "H	" current	Sum of all	pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "	H" current	Sum of all	pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H" curr	ent	-			-	-	-10	mA
			Drive capa	city High		-	-	-40	mA
IOH(avg)	Average output "H" of	current	Drive capa	city Low		-	-	-5	mA
			Drive capa	city High		-	-	-20	mA
IOL(sum)	Peak sum output "L"	current	Sum of all	pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "	L" current	Sum of all	pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L" curr	ent	Drive capa	city Low		-	-	10	mA
			Drive capa	city High		-	-	40	mA
IOL(avg)	Average output "L" of	urrent	Drive capa	city Low		-	-	5	mA
			Drive capa	city High		-	-	20	mA
f(XIN)	XIN clock input oscil	lation free	quency		$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	-	-	5	MHz
f(XCIN)	XCIN clock input os	cillation fr	equency		$1.8~V \leq Vcc \leq 5.5~V$	-	32.768	50	kHz
fOCO40M	When used as the c	ount sour	ce for timer	RC ⁽³⁾	$2.7~V \leq Vcc \leq 5.5~V$	32	-	40	MHz
fOCO-F	fOCO-F frequency				$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
	. ,				$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	_	-	5	MHz
-	System clock freque	ncy			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
		-			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	_	5	MHz
f(BCLK)	CPU clock frequenc	у			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
		-			1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5V.

Symbol	Parame	tor		Conditions		Standard		Unit
Symbol	i alame	lei	,	Sonalions	Min.	Тур.	Max.	Onin
-	Resolution		Vref = AVCC	Vref = AVCC		1	10	Bit
_	Absolute accuracy	10-bit mode	Vref = AVCC = 5.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	-	±3	LSB
			Vref = AVCC = 3.3 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVcc = 3.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	-	±5	LSB
			Vref = AVCC = 2.2 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	1	1	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	_	-	±2	LSB
			Vref = AVCC = 3.3 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	-	±2	LSB
			Vref = AVCC = 2.2 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	_	±2	LSB
φAD	A/D conversion cloc	k	$4.0~V \leq Vref = AVCC$	≤ 5.5 V ⁽²⁾	2	-	20	MHz
			$3.2 \text{ V} \leq \text{Vref} = \text{AVCC}$	\leq 5.5 V ⁽²⁾	2	-	16	MHz
			$2.7 \text{ V} \leq \text{Vref} = \text{AVcc}$	≤ 5.5 V (2)	2	Ì	10	MHz
			$2.2 \text{ V} \leq \text{Vref} = \text{AVcc} \leq 5.5 \text{ V}^{(2)}$		2	-	5	MHz
-	Tolerance level impe	dance			-	3	-	kΩ
t CONV	Conversion time	10-bit mode	Vref = AVCC = 5.0 V,	φAD = 20 MHz	2.2	-	-	μS
		8-bit mode	$V_{ref} = AV_{CC} = 5.0 V,$	φAD = 20 MHz	2.2	-	-	μS
t SAMP	Sampling time		φAD = 20 MHz		0.8	-	-	μS
IVref	Vref current		$Vcc = 5 V$, $XIN = f1 = \phi AD = 20 MHz$		-	45	-	μA
Vref	Reference voltage				2.2		AVcc	V
Via	Analog input voltage	(3)			0		Vref	V
OCVREF	On-chip reference vo	oltage	$2 \text{ MHz} \leq \phi \text{AD} \leq 4 \text{ M}$	Hz	1.19	1.34	1.49	V

Table 5.3	A/D Converter	Characteristics
-----------	---------------	-----------------

Notes:

1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85° C (N version) / -40 to 85° C (D version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-currentconsumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol Parameter	Baramatar	Condition		Unit		
	Condition	Min.	Тур.	Max.	Unit	
-	Resolution		-	-	8	Bit
-	Absolute accuracy		-	-	2.5	LSB
tsu	Setup time		-	-	3	μS
Ro	Output resistor		-	6	-	kΩ
l∨ref	Reference power input current	(Note 2)	-	-	1.5	mA

 Table 5.4
 D/A Converter Characteristics

Notes:

- 1. Vcc/AVcc = Vref = 2.7 to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This applies when one D/A converter is used and the value of the DAi register (i = 0 or 1) for the unused D/A converter is 00h. The resistor ladder of the A/D converter is not included.

Table 5.5 Comparator B Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol Parameter		Condition	Min.	Тур.	Max.	Unit
Vref	IVREF1, IVREF3 input reference voltage		0	-	Vcc - 1.4	V
Vi	IVCMP1, IVCMP3 input voltage		-0.3	-	Vcc + 0.3	V
-	Offset		-	5	100	mV
ta	Comparator output delay time (2)	VI = Vref ± 100 mV	-	0.1	-	μs
ICMP	Comparator operating current	Vcc = 5.0 V	-	17.5	-	μΑ

Notes:

1. Vcc = 2.7 to 5.5 V, T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. When the digital filter is disabled.

Symbol	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μS
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	-	_	μS
_	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	_	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Stan	Unit	
	Falanelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time		-	ns
tW(CKH)	CLKi input "H" width 100		-	ns
tW(CKL)	CLKi input "L" width		-	ns
td(C-Q)	TXDi output delay time		50	ns
th(C-Q)	TXDi hold time 0		-	ns
tsu(D-C)	RXDi input setup time 50 -		-	ns
th(C-D)	RXDi input hold time 90 -		ns	

i = 0 or 2

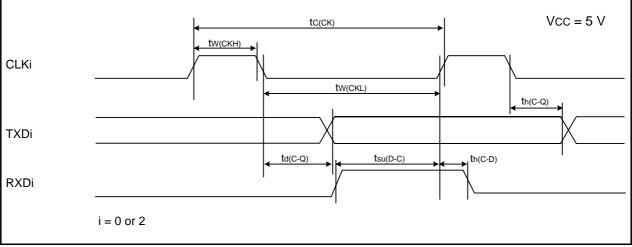


Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.23External Interrupt \overline{INTi} (i = 0, 1, 3) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Parameter		Standard		
	Falanielei	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width 250 (2) -		ns		

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

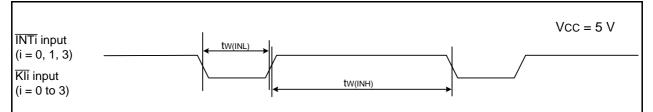


Figure 5.11 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.31Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

0	Demonster			:	Standar	ł	11.2
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open.	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	2.2	-	mA
other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	-	mA	
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	2.5	10	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.7	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	300	μA
Low-speed clock mode Wait mode Stop mode	Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	-	80	350	μA	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	_	μA	
	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	90	μA		
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	80	μA	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	_	μA	
	Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μA	
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	_	μΑ

Symbol	Parameter	Stan	Unit	
	Falanlelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	800	-	ns
tW(CKH)	CLKi input "H" width	400	-	ns
tW(CKL)	CLKi input "L" width	400	-	ns
td(C-Q)	TXDi output delay time		200	ns
th(C-Q)	TXDi hold time		-	ns
tsu(D-C)	RXDi input setup time		-	ns
th(C-D)	RXDi input hold time 90 –		ns	

i = 0 or 2

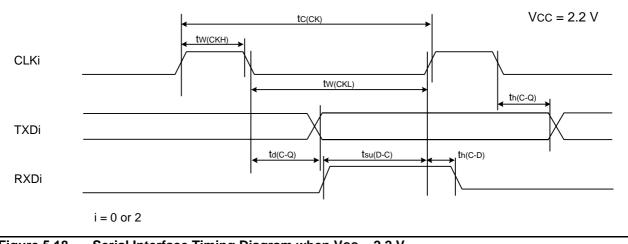


Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.35External Interrupt \overline{INTi} (i = 0, 1, 3) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Parameter		Standard		
	Farameter	Min.	Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width 1000 ⁽²⁾ –		ns		

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

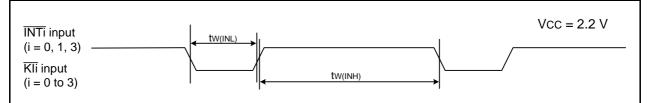


Figure 5.19

19 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

REVISION HISTORY	R8C/3GC Group Datasheet

Γ

Rev.	Date	Description	
		Page	Summary
0.01	Oct. 30, 2009	—	First Edition issued
0.10	May 24, 2010	10	Table 1.6 XOUT: $I \rightarrow I/O$
		28 to 54	"5. Electrical Characteristics" added
		55, 56	"Package Dimensions" revised
1.00	Oct 19, 2010	All	"Under development" deleted
		4	Table 1.3 QFN: D version deleted
		15	Figure 3.1 QFN: D version deleted
		31	Table 32.3 "tCONV", "tsAMP" revised
		37	Table 32.12 added, Table 32.13 revised

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6887-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510 Renease Electronics Korea Co., Ltd. 11F, Samik Lavied O'r Bilde, T20-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-3737, Fax: +882-2-558-5141