

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	19
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213g5cnnp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Current of Oct 2010

1.2 Product List

Table 1.3 lists Product List for R8C/3GC Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/3GC Group.

Part No.	ROM C	apacity	RAM	Package Type	Remarks
Fait NO.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F213G2CNNP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PWQN0024KC-A	N version
R5F213G4CNNP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PWQN0024KC-A	
R5F213G5CNNP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PWQN0024KC-A	
R5F213G6CNNP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PWQN0024KC-A	
R5F213G1CNSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	
R5F213G2CNSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A	
R5F213G4CNSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A	
R5F213G5CNSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A	
R5F213G6CNSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A	
R5F213G1CDSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	D version
R5F213G2CDSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A	
R5F213G4CDSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A	
R5F213G5CDSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A	
R5F213G6CDSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A	

Table 1.3 Product List for R8C/3GC Group

Figure 1.1 Part Number, Memory Size, and Package of R8C/3GC Group

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3. Memory

3.1 R8C/3GC Group

Figure 3.1 is a Memory Map of R8C/3GC Group. The R8C/3GC Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/3GC Group

Address	Register	Symbol	After Reset
0100h	Timer RA Control Register	TRACR	00h
0101h	Timer RA I/O Control Register	TRAIOC	00h
0102h	Timer RA Mode Register	TRAMR	00h
0103h	Timer RA Prescaler Register	TRAPRE	FFh
0104h	Timer RA Register	TRA	FFh
0105h	LIN Control Register 2	LINCR2	00h
0106h	LIN Control Register	LINCR	00h
0100h	LIN Status Register	LINST	00h
0108h	Timer RB Control Register	TRBCR	00h
0108h	Timer RB One-Shot Control Register	TRBOCR	00h
		TRBIOC	00h
010Ah	Timer RB I/O Control Register		
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h			
0111h			
0112h			
0113h			
0114h			
0115h			
0116h			
0117h			
0118h	Timer RE Second Data Register	TRESEC	00h
0119h	Timer RE Minute Data Register	TREMIN	00h
011Ah	Timer RE Hour Data Register	TREHR	00h
011Bh	Timer RE Day of Week Data Register	TREWK	00h
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0123h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
012411 0125h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0126h	Timer RC Counter	TRC	00h
0127h		TROOPA	00h
0128h	Timer RC General Register A	TRCGRA	FFh
0129h		750055	FFh
012Ah	Timer RC General Register B	TRCGRB	FFh
012Bh			FFh
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh			FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	01111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h			
0135h		İ	
0136h		1	
0137h		1	<u> </u>
0138h			<u> </u>
0139h			
013Ah		ł	<u> </u>
013An 013Bh			<u> </u>
013Bh			
013Ch 013Dh			
013Eh			ļ
013Fh			

SFR Information (5)⁽¹⁾ Table 4.5

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
01C0h	Address Match Interrupt Register 0	RMAD0	XXh
01C1h			XXh
01C2h			0000XXXXb
01C3h	Address Match Interrupt Enable Register 0	AIER0	00h
01C4h	Address Match Interrupt Register 1	RMAD1	XXh
01C5h			XXh
01C6h			0000XXXXb
01C7h	Address Match Interrupt Enable Register 1	AIER1	00h
01C8h			
01C9h			
01CAh			
01CBh			
01CCh			
01CDh			
01CEh			
01CFh			
01D0h			
01D1h			
01D2h		1	
01D3h		1	l
01D4h			
01D5h		1	
01D6h			
01D7h			l
01D8h			
01D9h			
01DAh			
01DBh			
01DCh			
01DDh			
01DEh			
01DFh			
01E0h	Pull-Up Control Register 0	PUR0	00h
01E1h	Pull-Up Control Register 1	PUR1	00h
01E2h			0011
01E3h			
01E4h			
01E5h			
01E6h			
01E7h			
01E8h			
01E9h			
01EAh			
01EBh			l
01ECh			ł
01EDh			ł
01EDh			
01EEh			ł
01EPh	Port P1 Drive Capacity Control Register	P1DRR	00h
01F0h	I OTT I DAVE CAPACITY COMMON REGISTER		
01F1h	Drive Capacity Control Register 0	DRR0	00h
	Drive Capacity Control Register 0	DRR1	
01F3h	Drive Dapavity Duritor Negister 1		00h
01F4h 01F5h	Input Threshold Control Register 0	VLTO	00h
		VLT0 VLT1	
01F6h	Input Threshold Control Register 1		00h
01F7h	Comparator P. Control Register 0	INTCMP	00b
01F8h	Comparator B Control Register 0		00h
01F9h	Enternal langut Enable Danistan (0.01
01FAh	External Input Enable Register 0	INTEN	00h
01FBh	INT log of Eilter Onland De sinter O		0.01
01FCh	INT Input Filter Select Register 0	INTF	00h
01FDh		1	1
			0.01
01FEh 01FFh	Key Input Enable Register 0	KIEN	00h

Table 4.8 SFR Information (8)	(1)
-------------------------------	-----

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
2C00h	DTC Transfer Vector Area		XXh
2C01h	DTC Transfer Vector Area		XXh
2C02h	DTC Transfer Vector Area		XXh
2C03h	DTC Transfer Vector Area		XXh
2C04h	DTC Transfer Vector Area		XXh
2C05h	DTC Transfer Vector Area		XXh
2C06h	DTC Transfer Vector Area		XXh
2C07h	DTC Transfer Vector Area		XXh
2C08h	DTC Transfer Vector Area		XXh
2C09h	DTC Transfer Vector Area		XXh
2C0Ah	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
:	DTC Transfer Vector Area		XXh
2C3Ah	DTC Transfer Vector Area		XXh
2C3Bh	DTC Transfer Vector Area		XXh
2C3Ch	DTC Transfer Vector Area		XXh
2C3Dh	DTC Transfer Vector Area		XXh
2C3Eh	DTC Transfer Vector Area		XXh
2C3Fh	DTC Transfer Vector Area		XXh
2C40h	DTC Control Data 0	DTCD0	XXh
2C41h			XXh
2C42h	4		XXh
2C43h			XXh
2C44h			XXh
2C45h			XXh
2C46h			XXh
2C47h			XXh
2C48h	DTC Control Data 1	DTCD1	XXh
2C49h			XXh
2C4Ah			XXh
2C4Bh			XXh
2C4Ch			XXh
2C4Dh			XXh
2C4Eh			XXh
2C4Fh			XXh
2C50h	DTC Control Data 2	DTCD2	XXh
2C51h			XXh
2C52h			XXh
2C53h			XXh
2C54h			XXh
2C55h			XXh
2C56h			XXh
2C57h			XXh
2C58h	DTC Control Data 3	DTCD3	XXh
2C59h			XXh
2C5Ah			XXh
2C5Bh			XXh
2C5Ch			XXh
2C5Dh			XXh
2C5Eh]		XXh
2C5Fh			XXh
2C60h	DTC Control Data 4	DTCD4	XXh
2C61h]		XXh
2C62h			XXh
2C63h			XXh
2C64h]		XXh
2C65h			XXh
2C66h			XXh
2C67h]		XXh
2C68h	DTC Control Data 5	DTCD5	XXh
2C69h			XXh
2C6Ah	1		XXh
2C6Bh	1		XXh
2C6Ch	1		XXh
2C6Dh	1		XXh
	1		XXh
2C6Eh			7711

SFR Information (9)⁽¹⁾ Table 4.9

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Desister	Os mak - I	After Deset
Address	Register	Symbol DTCD6	After Reset
2C70h	DTC Control Data 6	DTCD6	XXh
2C71h			XXh
2C72h			XXh
2C73h			XXh
2C74h			XXh
2C75h	1		XXh
2C76h	4		XXh
2C77h	4		XXh
2C78h	DTC Control Data 7	DTCD7	XXh
2C79h		ысы	XXh
	4		
2C7Ah	4		XXh
2C7Bh			XXh
2C7Ch			XXh
2C7Dh			XXh
2C7Eh			XXh
2C7Fh			XXh
2C80h	DTC Control Data 8	DTCD8	XXh
2C81h	1		XXh
2C82h	4		XXh
2C83h	4		XXh
2C83h	4		XXh
	4		
2C85h	-		XXh
2C86h			XXh
2C87h			XXh
2C88h	DTC Control Data 9	DTCD9	XXh
2C89h			XXh
2C8Ah			XXh
2C8Bh	1		XXh
2C8Ch	4		XXh
2C8Dh	4		XXh
2005h	4		XXh
	4		
2C8Fh		DTOD40	XXh
2C90h	DTC Control Data 10	DTCD10	XXh
2C91h			XXh
2C92h			XXh
2C93h			XXh
2C94h			XXh
2C95h			XXh
2C96h			XXh
2C97h	-		XXh
2C98h	DTC Control Data 11	DTCD11	XXh
2C99h		втовтт	XXh
2C93h	4		XXh
	4		
2C9Bh	4		XXh
2C9Ch	4		XXh
2C9Dh	4		XXh
2C9Eh			XXh
2C9Fh			XXh
2CA0h	DTC Control Data 12	DTCD12	XXh
2CA1h	1		XXh
2CA2h	1		XXh
2CA3h	1		XXh
2CA4h	4		XXh
	4		
2CA5h	4		XXh
2CA6h	4		XXh
2CA7h			XXh
2CA8h	DTC Control Data 13	DTCD13	XXh
2CA9h			XXh
2CAAh]		XXh
2CABh	1		XXh
2CACh	1		XXh
2CADh	1		XXh
2CAEh	4		XXh
2CAEN 2CAFh	4		XXh
ZUAFII			7711

SFR Information (10)⁽¹⁾ Table 4.10

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h	1		XXh
2CF2h	1		XXh
2CF3h	1		XXh
2CF4h	1		XXh
2CF5h	1		XXh
2CF6h	1		XXh
2CF7h	1		XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h	1		XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh]		XXh
2CFFh]		XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:		0.500	
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
FFEFh	ID4		(Note 2)
:			(
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
: FFFBh	ID7		(Note 2)
	וטו		
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

Figure 5.1 Ports P0 to P1, P3 to P4 Timing Measurement Circuit

Cumbal	Parameter	Conditions		Standard		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μS
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	-	_	μS
_	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		1.8	_	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Condition	Standard			Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		-	0.10	-	V
-	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to (Vdet2_0 – 0.1) V	-	20	150	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

Table 5.10 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

 Table 5.11
 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Standard			
	Falameter	Condition	Min.	Тур.	Max.	Unit	
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/msec	

Notes:

- 1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Table 5.15	Power Supply Circuit Timing Characteristics
------------	---

Symbol	Parameter	Condition	6,	Unit		
Symbol		Condition	Min.	Тур.	Max.	Unit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		-	-	2,000	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and $T_{opr} = 25^{\circ}C$.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾

Symbol	Descenter		Conditions		Linit		
Symbol	Paramete	Parameter		Min.	Тур.	Max.	- Unit
tsucyc	SSCK clock cycle tim	е		4	-	-	tcyc ⁽²⁾
tHI	SSCK clock "H" width	1		0.4	-	0.6	tsucyc
t∟o	SSCK clock "L" width			0.4	_	0.6	tsucyc
trise	SSCK clock rising	Master		-	-	1	tCYC (2)
	time	Slave		-	-	1	μs
tFALL	SSCK clock falling time	Master		-	-	1	tcyc ⁽²⁾
		Slave		-	_	1	μs
tsu	SSO, SSI data input	setup time		100	_	-	ns
tн	SSO, SSI data input	nold time		1	-	-	tcyc (2)
tlead	SCS setup time	Slave		1tcyc + 50	-	-	ns
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns
tod	SSO, SSI data output	t delay time		-	-	1	tcyc ⁽²⁾
tsa	SSI slave access time	Э	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_	-	1.5tcyc + 100	ns
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	_	1.5tcyc + 200	ns
tor	SSI slave out open til	ne	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	-	1.5tcyc + 100	ns
				-	_	1.5tcyc + 200	ns

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

Symbol	Parameter	Condition			Standard		Unit
Cymbol			Condition	Min.	Тур.	Max.	Unit
CC	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division XIN = 16 MHz (square wave)	-	6.5 5.3	15 12.5	mA mA
	output pins are open, other pins are Vss		High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz	-	3.6	-	mA
			No division XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz	-	3.0	-	mA
			Divide-by-8 XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.2	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division XIN clock off	-	7.0	- 15	mA mA
			High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 XIN clock off	-	3.0	_	mA
		Low-speed	High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1 XIN clock off	_	90	400	μA
		on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0 XIN clock off		85	400	•
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	_		400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	47	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	100	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.5	-	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	-	μA

Table 5.19Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard			Unit	
Symbol	Fala	neter	Condition	JII	Min.	Тур.	Max.	Unit	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -5 mA	Vcc - 0.5	-	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	-	Vcc	V	
		XOUT		$IOH = -200 \ \mu A$	1.0	-	Vcc	V	
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	Iol = 5 mA	-	-	0.5	V	
			Drive capacity Low	Iol = 1 mA	-	-	0.5	V	
		XOUT		IoL = 200 μA	-	-	0.5	V	
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTRG</u> , TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SSI, SCL, SDA, SSO	Vcc = 3.0 V		0.1	0.4	_	V	
		RESET	Vcc = 3.0 V		0.1	0.5	-	V	
Ін	Input "H" current		VI = 3 V, Vcc = 3.0 V	/	_	_	4.0	μΑ	
lı∟	Input "L" current		VI = 0 V, Vcc = 3.0 V		-	-	-4.0	μΑ	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3.0 V	/	42	84	168	kΩ	
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ	
Rfxcin	Feedback resistance	XCIN			-	8	-	MΩ	
Vram	RAM hold voltage		During stop mode		1.8	-	-	V	

Table 5.24	Electrical Characteristics (3) [2.7 V \leq Vcc $<$ 4.2 V]
------------	---

Note:

2.7 V ≤ Vcc < 4.2 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Table 5.25Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard		Unit
-		High-speed	XIN = 10 MHz (square wave)	Min.	Тур.	Max.	
lcc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	_	3.5	10	mA		
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	4.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0		90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	_	80	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1		4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
		XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	5.0	-	μA	

Symbol	Parameter		Condition		S		Unit		
Symbol	Fai	ameter	Condition		Min.	Тур.	Max.	Unit	
Vон	Output "H" voltage	Other than XOUT	Drive capacity High	Iон = -2 mA	Vcc - 0.5	-	Vcc	V	
			Drive capacity Low	Iон = -1 mA	Vcc - 0.5	-	Vcc	V	
		XOUT		Іон = -200 μА	1.0	-	Vcc	V	
Vol	Output "L" voltage	Other than XOUT	Drive capacity High	IOL = 2 mA	-	-	0.5	V	
			Drive capacity Low	IoL = 1 mA	-	-	0.5	V	
		XOUT		IOL = 200 μA	-	-	0.5	V	
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTRG</u> , TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SSI, SCL, SDA, SSO RESET			0.05	0.2	_	V 	
Ін	Input "H" current		VI = 2.2 V, Vcc = 2.2	2 V	-	-	4.0	μA	
lı∟	Input "L" current		VI = 0 V, Vcc = 2.2 \	/	-	_	-4.0	μA	
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 2.2 V		70	140	300	kΩ	
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ	
RfxCIN	Feedback resistance	XCIN			-	8	_	MΩ	
Vram	RAM hold voltage		During stop mode		1.8	-	-	V	

Note:

1. $1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$ and $\text{T}_{opr} = -20 \text{ to } 85^{\circ}\text{C}$ (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Symbol	Parameter		Standard		
	Falanlelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	800	-	ns	
tW(CKH)	CLKi input "H" width	400	-	ns	
tW(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 2

Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.35External Interrupt \overline{INTi} (i = 0, 1, 3) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	I	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.19

19 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Electronics website.

REVISION HISTORY	R8C/3GC Group Datasheet

Γ

Rev.	Date	Description		
		Page	Summary	
0.01	Oct. 30, 2009	—	First Edition issued	
0.10	May 24, 2010	10	Table 1.6 XOUT: $I \rightarrow I/O$	
		28 to 54	"5. Electrical Characteristics" added	
		55, 56	"Package Dimensions" revised	
1.00	Oct 19, 2010	All	"Under development" deleted	
		4	Table 1.3 QFN: D version deleted	
		15	Figure 3.1 QFN: D version deleted	
		31	Table 32.3 "tCONV", "tsAMP" revised	
		37	Table 32.12 added, Table 32.13 revised	

All trademarks and registered trademarks are the property of their respective owners.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6837-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510 Renease Electronics Korea Co., Ltd. 11F., Samik Lavied O'r Bilde, T20-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-3737, Fax: +882-2-558-5141