

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	19
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LSSOP (0.220", 5.60mm Width)
Supplier Device Package	24-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213g5cnsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/3GC Group.

Table 1.1 Specifications for R8C/3GC Group (1)

Item	Function	Specification
CPU	Central processing	R8C CPU core
	unit	Number of fundamental instructions: 89
		Minimum instruction execution time:
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)
		Multiplier: 16 bits × 16 bits → 32 bits
		• Multiply-accumulate instruction: 16 bits × 16 bits + 32 bits → 32 bits
		Operation mode: Single-chip mode (address space: 1 Mbyte)
Memory	ROM, RAM, Data	Refer to Table 1.3 Product List for R8C/3GC Group.
,	flash	
Power Supply	Voltage detection	Power-on reset
Voltage	circuit	Voltage detection 3 (detection level of voltage detection 0 and voltage
Detection		detection 1 selectable)
I/O Ports	Programmable I/O	• Input-only: 1 pin
	ports	CMOS I/O ports: 19, selectable pull-up resistor
		High current drive ports: 19
Clock	Clock generation	4 circuits: XIN clock oscillation circuit,
	circuits	XCIN clock oscillation circuit (32 kHz),
		High-speed on-chip oscillator (with frequency adjustment function),
		Low-speed on-chip oscillator
		Oscillation stop detection: XIN clock oscillation stop detection function
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16
		• Low power consumption modes:
		Standard operating mode (high-speed clock, low-speed clock, high-speed
		on-chip oscillator, low-speed on-chip oscillator), wait mode, stop mode
		Real-time clock (timer RE)
Interrupts		Number of interrupt vectors: 69
monapio		• External Interrupt: 7 (INT × 3, Key input × 4)
		• Priority levels: 7 levels
Watchdog Time	er	• 14 bits x 1 (with prescaler)
Tratoridog Tim	01	Reset start selectable
		Low-speed on-chip oscillator for watchdog timer selectable
DTC (Data Tra	insfer Controller)	1 channel
Bro (Bata IIa	moror controller)	Activation sources: 23
		Transfer modes: 2 (normal mode, repeat mode)
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)
1111101		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits × 1 (with 8-bit prescaler)
	Timor IXD	Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits × 1 (with 4 capture/compare registers)
	TIME NO	Timer mode (input capture function, output compare function), PWM mode
	Timer RE	(output 3 pins), PWM2 mode (PWM output pin)
	I IIII EI KE	8 bits x 1 Pool time clock made (count seconds, minutes, hours, days of week)
	1	Real-time clock mode (count seconds, minutes, hours, days of week)

1.2 Product List

Table 1.3 lists Product List for R8C/3GC Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/3GC Group.

Table 1.3 Product List for R8C/3GC Group

Current of Oct 2010

Part No.	ROM Capacity		RAM	Dookogo Typo	Remarks
Pail No.	Program ROM	Data flash	Capacity	Package Type	Remarks
R5F213G2CNNP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PWQN0024KC-A	N version
R5F213G4CNNP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PWQN0024KC-A	
R5F213G5CNNP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PWQN0024KC-A	
R5F213G6CNNP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PWQN0024KC-A	
R5F213G1CNSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	
R5F213G2CNSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A	
R5F213G4CNSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A	
R5F213G5CNSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A	
R5F213G6CNSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A	
R5F213G1CDSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	D version
R5F213G2CDSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A	
R5F213G4CDSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A	
R5F213G5CDSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A	
R5F213G6CDSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A	

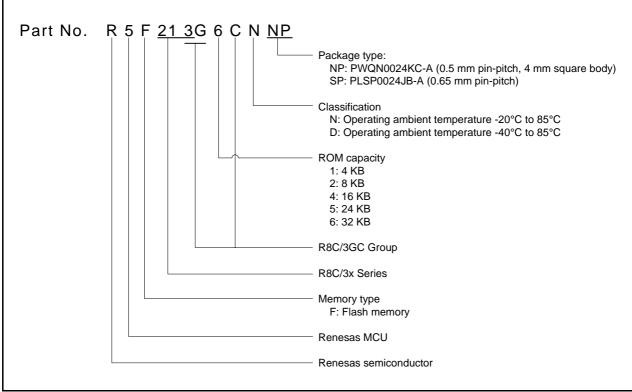


Figure 1.1 Part Number, Memory Size, and Package of R8C/3GC Group

Table 1.4 Pin Name Information by Pin Number

			I/O Pin Functions for Peripheral Modules							
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	I ² C bus	A/D Converter, D/A Converter, Comparator B		
1	MODE									
2	RESET									
3	XOUT(/XCOUT)	P4_7								
4	VSS/AVSS									
5	XIN(/XCIN)	P4_6								
6	VCC/AVCC									
7		P3_7		TRAO	(RXD2/SCL2/ TXD2/SDA2)	SSO	SDA			
8		P3_5		(TRCIOD)	(CLK2)	SSCK	SCL			
9		P3_4		(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)	SSI		IVREF3		
10		P3_3	ĪNT3	(TRCCLK)	(CTS2/RTS2)	SCS		IVCMP3		
11		P4_5	ĪNT0		(RXD2/SCL2)			ADTRG		
12		P1_7	ĪNT1	(TRAIO)				IVCMP1		
13		P1_6			(CLK0)			IVREF1		
14		P1_5	(INT1)	(TRAIO)	(RXD0)					
15		P1_4		(TRCCLK)	(TXD0)					
16		P1_3	KI3	TRBO/ (TRCIOC)				AN11		
17		P1_2	KI2	(TRCIOB)				AN10		
18		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9		
19		P1_0	KI0	(TRCIOD)				AN8		
20		P0_7		(TRCIOC)				AN0/DA1		
21		P0_6		(TRCIOD)				AN1/DA0		
22		P0_2		(TRCIOA/ TRCTRG)				AN5		
23		P0_1		(TRCIOA/ TRCTRG)				AN6		
24		P4_2						VREF		

^{1.} Can be assigned to the pin in parentheses by a program.

Table 1.7 Pin Functions (2)

Item	Pin Name	I/O Type	Description
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter
A/D converter	AN0, AN1, AN5, AN6, AN8 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
D/A converter	DA0, DA1	0	D/A converter output pins
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins
	IVREF1, IVREF3	I	Comparator B reference voltage input pins
I/O port	P0_1, P0_2, P0_6, P0_7, P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5 to P4_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
Input port	P4_2	I	Input-only port

I: Input

O: Output

I/O: Input and output

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1.

The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

SFR Information (3) (1) Table 4.3

Address	Pogistor	Symbol	After Reset
0080h	Register DTC Activation Control Register	DTCTL	00h
0080h	DTC Activation Control Register	DICIL	0011
0081h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h	DTC Activation Enable Register 0	DTCEN0	00h
0089h	DTC Activation Enable Register 1	DTCEN1	00h
008Ah	DTC Activation Enable Register 2	DTCEN2	00h
008Bh	DTC Activation Enable Register 3	DTCEN3	00h
008Ch			
008Dh	DTC Activation Enable Register 5	DTCEN5	00h
008Eh	DTC Activation Enable Register 6	DTCEN6	00h
008Fh	0		
0090h			
0091h			
0092h		+	1
0092h			
0093h			
0094h		<u> </u>	
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h	_		XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00/ton	O/IKTO Receive Bullet Register	CONE	XXh
00A711	UART2 Transmit/Receive Mode Register	U2MR	00h
		U2BRG	XXh
00A9h	UART2 Bit Rate Register		
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00ABh	HARTOT W/D : O	11222	XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AFh			XXh
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			1
00B8h			
00B9h		+	<u> </u>
00BAh			
00BAI1	UART2 Special Mode Register 5	U2SMR5	00h
00BCh	UART2 Special Mode Register 5 UART2 Special Mode Register 4		I .
LILIES L.D.		U2SMR4	00h 000X0X0Xb
	LIADTO Cassial Made Desister C		
00BDh	UART2 Special Mode Register 3	U2SMR3	
	UART2 Special Mode Register 3 UART2 Special Mode Register 2 UART2 Special Mode Register	U2SMR3 U2SMR2 U2SMR	X0000000b X0000000b

X: Undefined
Note:

1. The blank areas are reserved and cannot be accessed by users.

SFR Information (6) (1) Table 4.6

Address	Register	Symbol	After Reset
0140h	····g·····		
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h 014Ah			
014An			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			
0154h			
0155h			
0156h			
0157h			
0158h 0159h			
0159H			
015An			
015Ch			
015Dh			
015Eh			
015Fh			
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h 0167h			
0167H			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h 0176h			
0176h			
0177h 0178h			
0179h			
0179h			
017/til			
017Ch			
017Dh			
017Eh			
017Fh			
X: Undefined			-

X: Undefined
Note:

1. The blank areas are reserved and cannot be accessed by users.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.3 A/D Converter Characteristics

Symbol	Parameter			Conditions		Standard		
Symbol	Faiaille	itei	'	Conditions	Min.	Тур.	Max.	Unit
_	Resolution		Vref = AVCC		-	-	10	Bit
-	Absolute accuracy	10-bit mode	Vref = AVCC = 5.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	_	_	±3	LSB
			Vref = AVCC = 3.3 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	=	-	±5	LSB
			Vref = AVCC = 3.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	=	-	±5	LSB
			Vref = AVCC = 2.2 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	-	±5	LSB
		8-bit mode	Vref = AVCC = 5.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	_	±2	LSB
			Vref = AVCC = 3.3 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	=	±2	LSB
			Vref = AVCC = 3.0 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	=	±2	LSB
			Vref = AVCC = 2.2 V	AN0, AN1, AN5, AN6 input, AN8 to AN11 input	-	=	±2	LSB
φAD	A/D conversion cloc	k	4.0 V ≤ Vref = AVCC	≤ 5.5 V ⁽²⁾	2	-	20	MHz
			3.2 V ≤ Vref = AVCC	≤ 5.5 V ⁽²⁾	2	_	16	MHz
			2.7 V ≤ Vref = AVCC	≤ 5.5 V ⁽²⁾	2	_	10	MHz
			2.2 V ≤ Vref = AVCC	≤ 5.5 V ⁽²⁾	2	_	5	MHz
_	Tolerance level impe	edance			_	3	_	kΩ
tconv	Conversion time	10-bit mode	$V_{ref} = AV_{CC} = 5.0 V$,	φAD = 20 MHz	2.2	_	_	μS
		8-bit mode	$V_{ref} = AV_{CC} = 5.0 V$,	φAD = 20 MHz	2.2	-	-	μS
tsamp	Sampling time		φAD = 20 MHz		0.8	=	-	μS
lVref	Vref current		Vcc = 5 V, XIN = f1	= φAD = 20 MHz	_	45	_	μΑ
Vref	Reference voltage				2.2	_	AVcc	V
VIA	Analog input voltage	(3)			0	_	Vref	V
OCVREF	On-chip reference v	oltage	2 MHz ≤ φAD ≤ 4 M	Hz	1.19	1.34	1.49	V

- 1. Vcc/AVcc = Vref = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-current-consumption mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.
- 3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Table 5.8 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Syllibol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level Vdet0_0 (2)		1.80	1.90	2.05	V
	Voltage detection level Vdet0_1 (2)		2.15	2.35	2.50	V
	Voltage detection level Vdet0_2 (2)		2.70	2.85	3.05	V
	Voltage detection level Vdet0_3 (2)		3.55	3.80	4.05	V
_	Voltage detection 0 circuit response time (4)	At the falling of Vcc from 5 V to (Vdet0_0 – 0.1) V	-	6	150	μS
=	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	1.5	-	μА
td(E-A)	Waiting time until voltage detection circuit operation starts (3)		-	-	100	μS

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20 \text{ to } 85^{\circ}C$ (N version) / $-40 \text{ to } 85^{\circ}C$ (D version).
- 2. Select the voltage detection level with bits VDSEL0 and VDSEL1 in the OFS register.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.
- 4. Time until the voltage monitor 0 reset is generated after the voltage passes Vdeto.

Table 5.9 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level Vdet1_0 (2)	At the falling of Vcc	2.00	2.20	2.40	V
	Voltage detection level Vdet1_1 (2)	At the falling of Vcc	2.15	2.35	2.55	V
	Voltage detection level Vdet1_2 (2)	At the falling of Vcc	2.30	2.50	2.70	V
	Voltage detection level Vdet1_3 (2)	At the falling of Vcc	2.45	2.65	2.85	V
	Voltage detection level Vdet1_4 (2)	At the falling of Vcc	2.60	2.80	3.00	V
	Voltage detection level Vdet1_5 (2)	At the falling of Vcc	2.75	2.95	3.15	V
	Voltage detection level Vdet1_6 (2)	At the falling of Vcc	2.85	3.10	3.40	V
	Voltage detection level Vdet1_7 (2)	At the falling of Vcc	3.00	3.25	3.55	V
	Voltage detection level Vdet1_8 (2)	At the falling of Vcc	3.15	3.40	3.70	V
	Voltage detection level Vdet1_9 (2)	At the falling of Vcc	3.30	3.55	3.85	V
	Voltage detection level Vdet1_A (2)	At the falling of Vcc	3.45	3.70	4.00	V
	Voltage detection level Vdet1_B (2)	At the falling of Vcc	3.60	3.85	4.15	V
	Voltage detection level Vdet1_C (2)	At the falling of Vcc	3.75	4.00	4.30	V
	Voltage detection level Vdet1_D (2)	At the falling of Vcc	3.90	4.15	4.45	V
	Voltage detection level Vdet1_E (2)	At the falling of Vcc	4.05	4.30	4.60	V
	Voltage detection level Vdet1_F (2)	At the falling of Vcc	4.20	4.45	4.75	V
=	Hysteresis width at the rising of Vcc in voltage detection 1 circuit	Vdet1_0 to Vdet1_5 selected	=	0.07	-	V
		Vdet1_6 to Vdet1_F selected	-	0.10	_	V
=	Voltage detection 1 circuit response time (3)	At the falling of Vcc from 5 V to (Vdet1_0 - 0.1) V	=	60	150	μS
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	1.7	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts (4)		-	-	100	μS

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{Opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- 2. Select the voltage detection level with bits VD1S0 to VD1S3 in the VD1LS register.
- 3. Time until the voltage monitor 1 interrupt request is generated after the voltage passes V_{det1}.
- 4. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.15 Power Supply Circuit Timing Characteristics

Symbol Parameter	Condition	,	Unit			
Symbol	,	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on (2)		_	_	2,000	μS

Notes:

- 1. The measurement condition is Vcc = 1.8 to 5.5 V and $T_{opr} = 25$ °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU) (1)

Cumbal	Paramete		Conditions		Stand	ard	Unit
Symbol	Paramete	1	Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time	е		4	=	=	tcyc (2)
tHI	SSCK clock "H" width			0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	=	0.6	tsucyc
trise	SSCK clock rising	Master		=	=	1	tcyc (2)
	time	Slave		-	=	1	μS
tfall	SSCK clock falling	Master		=	=	1	tcyc (2)
	time	Slave		-	-	1	μS
tsu	SSO, SSI data input s	etup time		100	=	=	ns
tH	SSO, SSI data input h	old time		1	_	-	tcyc (2)
tLEAD	SCS setup time	Slave		1tcyc + 50	_	-	ns
tLAG	SCS hold time	Slave		1tcyc + 50	=	=	ns
ton	SSO, SSI data output	delay time		-	=	1	tcyc (2)
tsa	SSI slave access time)	2.7 V ≤ Vcc ≤ 5.5 V	-	-	1.5tcyc + 100	ns
			1.8 V ≤ Vcc < 2.7 V	-	-	1.5tcyc + 200	ns
tor	SSI slave out open tir	ne	2.7 V ≤ Vcc ≤ 5.5 V	-	=	1.5tcyc + 100	ns
			1.8 V ≤ Vcc < 2.7 V	-	-	1.5tcyc + 200	ns

- 1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. 1 tcyc = 1/f1(s)

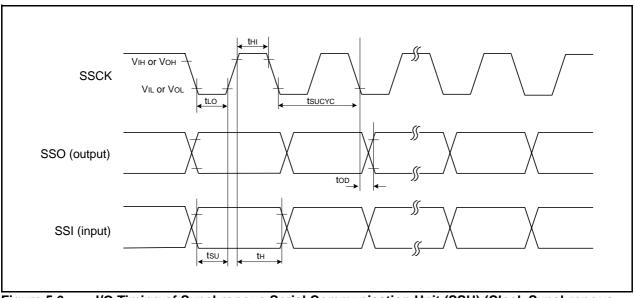


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

Timing Requirements

(Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.20 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falanietei	Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	50	-	ns
twh(xout)	XOUT input "H" width	24	-	ns
twl(xout)	XOUT input "L" width	24	-	ns
tc(XCIN)	XCIN input cycle time	14	Ī	μS
twh(xcin)	XCIN input "H" width	7	Ī	μS
twl(xcin)	XCIN input "L" width	7	-	μS

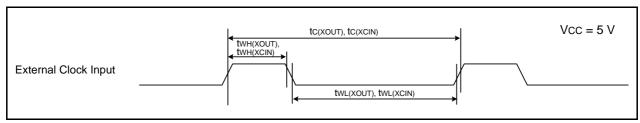


Figure 5.8 External Clock Input Timing Diagram when VCC = 5 V

Table 5.21 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	raidilletei	Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	100	=	ns
tWH(TRAIO)	TRAIO input "H" width	40	-	ns
twl(traio)	TRAIO input "L" width	40	=	ns

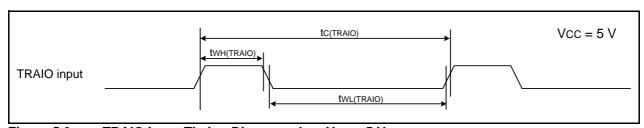


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

	Table	5.22	Serial	Interface
--	--------------	------	--------	-----------

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	200	-	ns
tW(CKH)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	=	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 2

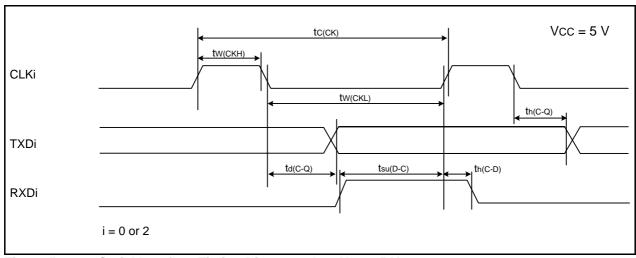


Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.23 External Interrupt $\overline{\text{INTi}}$ (i = 0, 1, 3) Input, Key Input Interrupt $\overline{\text{Kli}}$ (i = 0 to 3)

Symbol	Parameter	Stan	dard	Unit
Symbol	Faianietei	Min.	Max.	Offic
tw(INH)	ĪNTi input "H" width, Kli input "H" width	250 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width	250 ⁽²⁾	1	ns

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

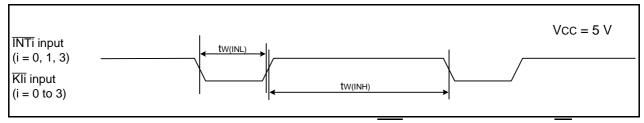


Figure 5.11 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.28 Serial Interface	Table	5.28	Serial	Interface
-----------------------------	--------------	------	--------	-----------

Symbol	Parameter	Stan	dard	Unit
Symbol	Faranietei	Min.	Max.	Offic
tc(CK)	CLKi input cycle time	300	=	ns
tw(ckh)	CLKi input "H" width	150	-	ns
tW(CKL)	CLKi Input "L" width	150	-	ns
td(C-Q)	TXDi output delay time	-	80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	70	=	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 2

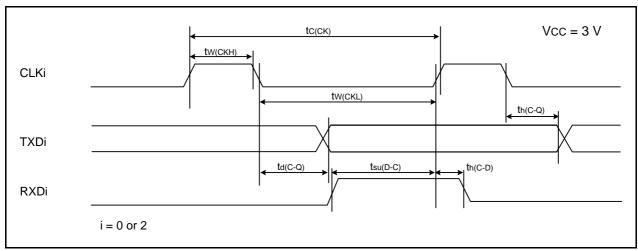


Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.29 External Interrupt $\overline{\text{INTi}}$ (i = 0, 1, 3) Input, Key Input Interrupt $\overline{\text{Kli}}$ (i = 0 to 3)

Svmbol	Parameter	Stan	dard	Unit
Symbol	raianielei	Min.	Max.	Offic
tw(INH)	ĪNTi input "H" width, Kli input "H" width	380 (1)	-	ns
tW(INL)	INTi input "L" width, Kli input "L" width	380 (2)	-	ns

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

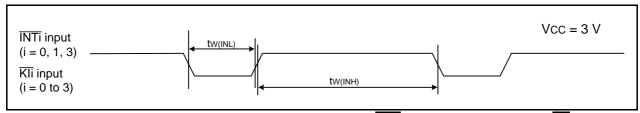


Figure 5.15 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 3 V

Timing Requirements

(Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.32 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Stan	dard	Unit
Symbol	Falametei	Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	200	-	ns
twh(xout)	XOUT input "H" width	90	-	ns
twl(xout)	XOUT input "L" width	90	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	=	μS
tWL(XCIN)	XCIN input "L" width	7	=	μS

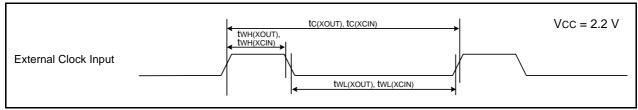


Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.33 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	raidilletei	Min.	Max.	Offic
tc(TRAIO)	TRAIO input cycle time	500	=	ns
twh(traio)	TRAIO input "H" width	200	=	ns
twl(traio)	TRAIO input "L" width	200	-	ns

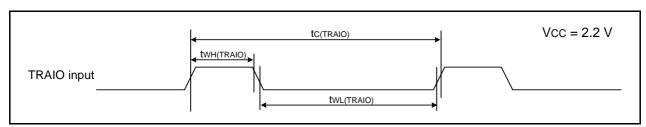
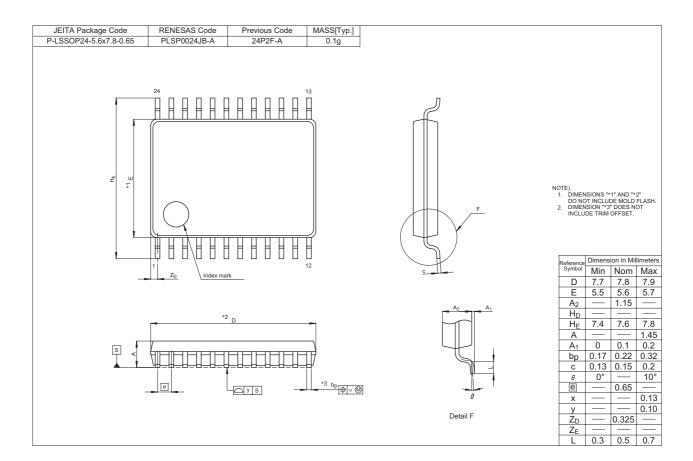



Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

R8C/3GC Group Package Dimensions

REVISION HISTORY R8C/3GC Group Datasheet
--

Rev.	Date	Description	
		Page	Summary
0.01	Oct. 30, 2009	_	First Edition issued
0.10	May 24, 2010	10	Table 1.6 XOUT: I → I/O
		28 to 54	"5. Electrical Characteristics" added
		55, 56	"Package Dimensions" revised
1.00	Oct 19, 2010	All	"Under development" deleted
		4	Table 1.3 QFN: D version deleted
		15	Figure 3.1 QFN: D version deleted
		31	Table 32.3 "tconv", "tsamp" revised
		37	Table 32.12 added, Table 32.13 revised

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft: aerospace equipment: submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Limites State United Programs From Limited Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tet: +952-2866-9318, Fax: +852-2866-9022/9044

Renesas Electronics Taiwan Co., Ltd.

7F, No. 363 Fu Shing North Road Taipei, Taiwar Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.

1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-627-80-3000, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: 482-2-588-3737, Fax: 482-2-558-5141

© 2010 Renesas Electronics Corporation. All rights reserved.