

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	19
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LSSOP (0.220", 5.60mm Width)
Supplier Device Package	24-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213g5cnsp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		I/O Pin Functions for Peripheral Modules						
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	l ² C bus	A/D Converter, D/A Converter, Comparator B
1	MODE							
2	RESET							
3	XOUT(/XCOUT)	P4_7						
4	VSS/AVSS							
5	XIN(/XCIN)	P4_6						
6	VCC/AVCC							
7		P3_7		TRAO	(RXD2/SCL2/ TXD2/SDA2)	SSO	SDA	
8		P3_5		(TRCIOD)	(CLK2)	SSCK	SCL	
9		P3_4		(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)	SSI		IVREF3
10		P3_3	INT3	(TRCCLK)	(CTS2/RTS2)	SCS		IVCMP3
11		P4_5	INT0		(RXD2/SCL2)			ADTRG
12		P1_7	INT1	(TRAIO)				IVCMP1
13		P1_6			(CLK0)			IVREF1
14		P1_5	(INT1)	(TRAIO)	(RXD0)			
15		P1_4		(TRCCLK)	(TXD0)			
16		P1_3	KI3	TRBO/ (TRCIOC)				AN11
17		P1_2	KI2	(TRCIOB)				AN10
18		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9
19		P1_0	KI0	(TRCIOD)				AN8
20		P0_7		(TRCIOC)				AN0/DA1
21		P0_6		(TRCIOD)				AN1/DA0
22		P0_2		(TRCIOA/ TRCTRG)				AN5
23		P0_1		(TRCIOA/ TRCTRG)				AN6
24		P4_2						VREF

Table 1.4 Pin Name Information by Pin Number

Note:

1. Can be assigned to the pin in parentheses by a program.

Figure 1.4 shows Pin Assignment (Top View) of PLSP0024JB-A Package. Table 1.5 outlines the Pin Name Information by Pin Number.

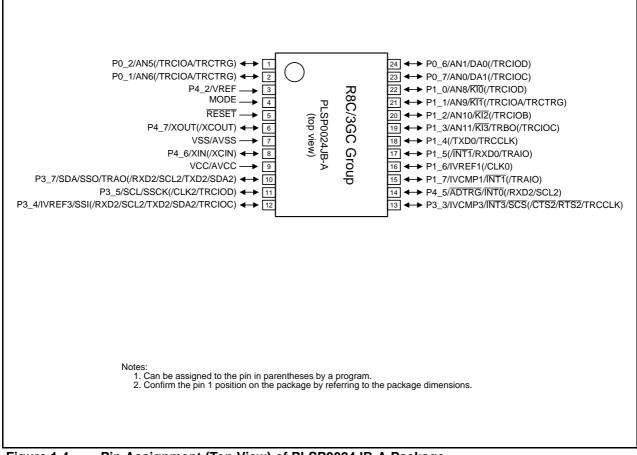


Figure 1.4 Pin Assignment (Top View) of PLSP0024JB-A Package

				I/O Pir	Functions for Po	eripheral	Modules	6
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	SSU	l ² C bus	A/D Converter, D/A Converter, Comparator B
1		P0_2		(TRCIOA/ TRCTRG)				AN5
2		P0_1		(TRCIOA/ TRCTRG)				AN6
3		P4_2						VREF
4	MODE							
5	RESET							
6	XOUT(/XCOUT)	P4_7						
7	VSS/AVSS							
8	XIN(/XCIN)	P4_6						
9	VCC/AVCC							
10		P3_7		TRAO	(RXD2/SCL2/ TXD2/SDA2)	SSO	SDA	
11		P3_5		(TRCIOD)	(CLK2)	SSCK	SCL	
12		P3_4		(TRCIOC)	(RXD2/SCL2/ TXD2/SDA2)	SSI		IVREF3
13		P3_3	INT3	(TRCCLK)	(CTS2/RTS2)	SCS		IVCMP3
14		P4_5	INTO		(RXD2/SCL2)			ADTRG
15		P1_7	INT1	(TRAIO)				IVCMP1
16		P1_6			(CLK0)			IVREF1
17		P1_5	(INT1)	(TRAIO)	(RXD0)			
18		P1_4		(TRCCLK)	(TXD0)			
19		P1_3	KI3	TRBO/ (TRCIOC)				AN11
20		P1_2	KI2	(TRCIOB)				AN10
21		P1_1	KI1	(TRCIOA/ TRCTRG)				AN9
22		P1_0	KI0	(TRCIOD)				AN8
23		P0_7		(TRCIOC)				AN0/DA1
24		P0_6		(TRCIOD)				AN1/DA0

Table 1.5	Pin Name Information by Pin Number
-----------	------------------------------------

Note:

1. Can be assigned to the pin in parentheses by a program.

1.5 Pin Functions

Tables 1.6 and 1.7 list Pin Functions.

Table 1.6Pin Functions (1)

Item	Pin Name	I/O Type	Description
Power supply input	VCC, VSS	-	Apply 1.8 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power supply input	AVCC, AVSS	-	Power supply for the A/D converter. Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	I/O	the XIN and XOUT pins $^{(1)}$. To use an external clock, input it to the XOUT pin and leave the XIN pin open.
XCIN clock input	XCIN	I These pins are provided for XCIN clock generation circ Connect a crystal oscillator between the XCIN and X	
XCIN clock output	leave the XCOUT pin open.		pins ⁽¹⁾ . To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INTO, INT1, INT3	I	INT interrupt input pins. INT0 is timer RB, and RC input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RC	TRCCLK	I	External clock input pin
	TRCTRG	I	External trigger input pin
	TRCIOA, TRCIOB, TRCIOC, TRCIOD	I/O	Timer RC I/O pins
Serial interface	CLK0, CLK2	I/O	Transfer clock I/O pins
	RXD0, RXD2	I	Serial data input pins
	TXD0, TXD2	0	Serial data output pins
	CTS2	I	Transmission control input pin
	RTS2	0	Reception control output pin
	SCL2	I/O	I ² C mode clock I/O pin
	SDA2	I/O	I ² C mode data I/O pin
I ² C bus	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
SSU	SSI	I/O	Data I/O pin
	SCS	I/O	Chip-select signal I/O pin
	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin

I: Input Note: I/O: Input and output

1. Refer to the oscillator manufacturer for oscillation characteristics.

O: Output

Address	Register	Symbol	After Reset
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah 014Bh			
014Bh			
014Dh			
014Eh			
014Eh			
0150h			
0151h			
0152h			
0153h			
0154h			
0155h			
0156h			
0157h			
0158h			
0159h			
015Ah			
015Bh			
015Ch			
015Dh			
015Eh			
015Fh			
0160h 0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
0175h			
0176h 0177h			
0177h 0178h			
0178h			
0179h 017Ah			
017An 017Bh			
017Ch		L	
017Dh			
()17⊢h i			
017Eh 017Fh			

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.12	SFR Information (12) ⁽¹⁾
------------	-------------------------------------

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h	1		XXh
2CF2h	1		XXh
2CF3h	1		XXh
2CF4h	1		XXh
2CF5h	1		XXh
2CF6h	1		XXh
2CF7h	1		XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h	1		XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh]		XXh
2CFFh]		XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:		0.500	
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
FFEFh	ID4		(Note 2)
:			(
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
: FFFBh	ID7		(Note 2)
	וטו		
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

5. Electrical Characteristics

Table 5.1 Absolute Maximum Rati	ngs
---------------------------------	-----

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc + 0.3	V
Vo	Output voltage		-0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Cumb al	Parameter				Conditions	Standard			Linit
Symbol					Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage					1.8	-	5.5	V
Vss/AVss	Supply voltage					_	0	_	V
Vih	Input "H" voltage Other than CMOS input					0.8 Vcc		Vcc	V
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V
		input	switching	0.35 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.55 Vcc	-	Vcc	V
			function		$1.8~V \leq Vcc < 2.7~V$	0.65 Vcc	-	Vcc	V
			(I/O port)	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.65 Vcc	-	Vcc	V
				0.5 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.7 Vcc	-	Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0.8 Vcc	-	Vcc	V
				Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	-	Vcc	V
				0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.85 Vcc	-	Vcc	V
			$1.8~V \leq Vcc < 2.7~V$	0.85 Vcc	_	Vcc	V		
		Externa	l clock input	(XOUT)		1.2	_	Vcc	V
VIL	Input "L" voltage Other than CMOS input		nput		0	-	0.2 Vcc	V	
		CMOS	Input level	Input level selection:	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.2 Vcc	V
		input	switching	0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.2 Vcc	V
			function		$1.8~V \leq Vcc < 2.7~V$	0	_	0.2 Vcc	V
			(I/O port)	Input level selection: 0.5 Vcc	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	0.4 Vcc	V
					$2.7~V \leq Vcc < 4.0~V$	0	_	0.3 Vcc	V
					$1.8~V \leq Vcc < 2.7~V$	0	_	0.2 Vcc	V
				Input level selection:	$4.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	0.55 Vcc	V
		0.7 Vcc	$2.7~V \leq Vcc < 4.0~V$	0	_	0.45 Vcc	V		
					$1.8~V \leq Vcc < 2.7~V$	0	_	0.35 Vcc	V
		Externa	l clock input	(XOUT)		0	_	0.4	V
IOH(sum)	Peak sum output "H	" current	Sum of all	pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "	H" current	Sum of all	pins IOH(avg)		-	-	-80	mA
IOH(peak)	Peak output "H" curr	ent	Drive capa	city Low		-	-	-10	mA
			Drive capacity High			-	-	-40	mA
IOH(avg)	Average output "H" of	current	Drive capacity Low			-	-	-5	mA
			Drive capa	city High		-	-	-20	mA
IOL(sum)	Peak sum output "L"	current	Sum of all	pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "	L" current	Sum of all	pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L" curr	ent	Drive capa	city Low		-	-	10	mA
			Drive capa	city High		-	-	40	mA
IOL(avg)	Average output "L" of	urrent	Drive capa	city Low		-	-	5	mA
			Drive capa	city High		-	-	20	mA
f(XIN)	XIN clock input oscil	lation free	quency		$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz
					$1.8~V \leq Vcc < 2.7~V$	-	-	5	MHz
f(XCIN)	XCIN clock input os	cillation fr	equency		$1.8~V \leq Vcc \leq 5.5~V$	-	32.768	50	kHz
fOCO40M	When used as the c	ount sour	ce for timer	RC ⁽³⁾	$2.7~V \leq Vcc \leq 5.5~V$	32	-	40	MHz
fOCO-F	fOCO-F frequency				$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
	. ,				$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	_	-	5	MHz
-	System clock freque	ncy			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
		-			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	_	5	MHz
f(BCLK)	CPU clock frequenc	у			$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	-	_	20	MHz
		-			1.8 V ≤ Vcc < 2.7 V	_	_	5	MHz

Table 5.2 Recommended Operating Conditions

Notes:

1. Vcc = 1.8 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. The average output current indicates the average value of current measured during 100 ms.

3. fOCO40M can be used as the count source for timer RC in the range of Vcc = 2.7 V to 5.5V.

Symbol	Parameter	Condition		Unit			
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit	
Vdet2	Voltage detection level Vdet2_0	At the falling of Vcc	3.70	4.00	4.30	V	
-	Hysteresis width at the rising of Vcc in voltage detection 2 circuit		-	0.10	-	V	
-	Voltage detection 2 circuit response time ⁽²⁾	At the falling of Vcc from 5 V to (Vdet2_0 – 0.1) V	-	20	150	μS	
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	1.7	-	μA	
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS	

Table 5.10 Voltage Detection 2 Circuit Electrical Characteristics

Notes:

- 1. The measurement condition is Vcc = 1.8 V to 5.5 V and $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

 Table 5.11
 Power-on Reset Circuit ⁽²⁾

Symbol	Parameter	Condition		Standard			
		Condition	Min.	Тур.	Max.	Unit	
trth	External power Vcc rise gradient	(1)	0	-	50,000	mV/msec	

Notes:

- 1. The measurement condition is $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

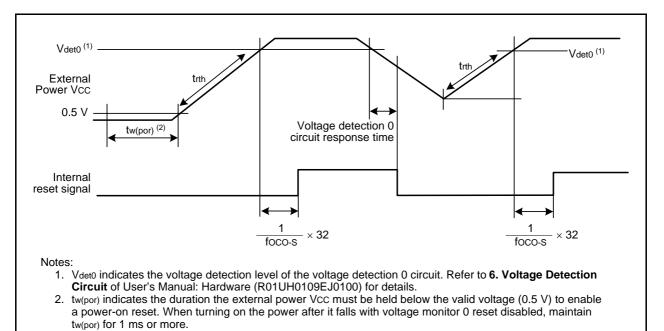


Figure 5.3 Power-on Reset Circuit Electrical Characteristics

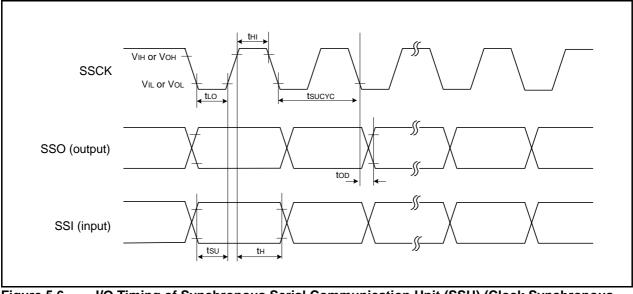


Figure 5.6 I/O Timing of Synchronous Serial Communication Unit (SSU) (Clock Synchronous Communication Mode)

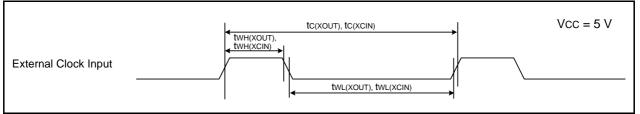
Symbol		Parameter	Condition		S	andard		Unit
Symbol		Falameter	Condition		Min. Typ. Ma		Max.	Unit
Vон	Output "H"	Other than XOUT	Drive capacity High Vcc = $5 V$	Iон = -20 mA	Vcc - 2.0	-	Vcc	V
	voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	-	Vcc	V
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = 5 V	IoL = 20 mA	-	-	2.0	V
voltage		Drive capacity Low Vcc = 5 V	lo∟ = 5 mA	-	-	2.0	V	
		XOUT	Vcc = 5 V	IoL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTR</u> G, TRCCLK, ADTRG, RXD0, RXD2, CLK0, CLK2, SSI, SCL, SDA, SSO RESET			0.1	1.2	_	V
Ін	Input "H" cu		VI = 5 V, Vcc = 5.0 V		_	_	5.0	μA
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		-	_	-5.0	μA
RPULLUP	Pull-up resi	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ
Rfxin	Feedback resistance	XIN			-	0.3	_	MΩ
RfxCIN	Feedback resistance	XCIN			-	8	-	MΩ
Vram	RAM hold v	oltage	During stop mode		1.8	-	-	V

Table 5.18	Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]
------------	--

Note:

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ and $\text{T}_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Parameter	Parameter Condition			Standard		Unit	
Cymbol			Condition	Min.	Тур.	Max.	Unit	
CC	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division XIN = 16 MHz (square wave)	-	6.5 5.3	15 12.5	mA mA	
	output pins are open, other pins are Vss		High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz	-	3.6	-	mA	
			No division XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz	-	3.0	-	mA	
			Divide-by-8 XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.2	-	mA	
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA	
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division XIN clock off	-	7.0	- 15	mA mA	
			High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8 XIN clock off	-	3.0	_	mA	
		Low-speed	High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1 XIN clock off	_	90	400	μA	
		on-chip oscillator mode	High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0 XIN clock off		85	400	•	
		Low-speed clock mode	High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	_		400	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	47	_	μA	
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	100	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	4	90	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.5	-	μA	
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA	
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	-	μA	


Table 5.19Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C)

Table 5.20 External Clock Input (XOUT, XCIN)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XOUT)	XOUT input cycle time	50	-	ns	
twh(xout)	XOUT input "H" width	24	-	ns	
twl(xout)	XOUT input "L" width	24	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	7	-	μS	
twl(xcin)	XCIN input "L" width	7	-	μS	

Figure 5.8 External Clock Input Timing Diagram when VCC = 5 V

Table 5.21 TRAIO Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

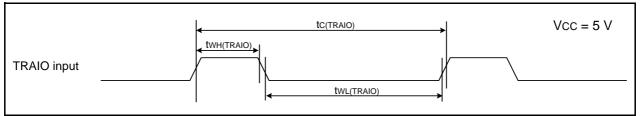


Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Symbol	Parameter		Standard		
Symbol	Falanelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	-	ns	
tW(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 2

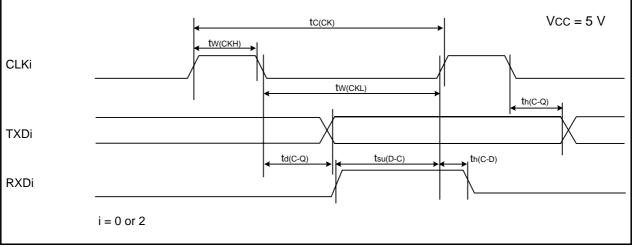


Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

Table 5.23External Interrupt \overline{INTi} (i = 0, 1, 3) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tw(INH)	INTi input "H" width, Kli input "H" width	250 (1)	-	ns	
tw(INL)	INTi input "L" width, Kli input "L" width		-	ns	

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

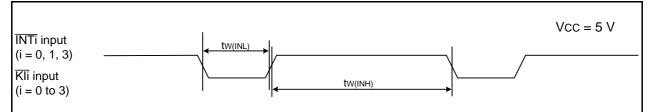
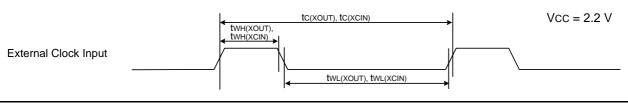


Figure 5.11 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 5 V

Table 5.25Electrical Characteristics (4) [2.7 V \leq Vcc < 3.3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard		Unit
-				Min.	Тур.	Max.	
lcc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	10	mA
	output pins are open, other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	7.5	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	4.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	_	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0		90	390	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	_	80	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	15	90	μΑ
	S		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	4	80	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0, VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off	_	5.0	-	μA

Table 5.31Electrical Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)


0	Demonster			:	Standar	ł	11.2
Symbol	Parameter		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 1.8 to 2.7 V) Single-chip mode, output pins are open.	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	2.2	-	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	0.8	-	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	2.5	10	mA
		mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.7	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16 MSTIIC = MSTTRD = MSTTRC = 1	-	1	_	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	300	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	-	80	350	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	40	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	15	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	80	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	-	5.0	_	μΑ

Timing Requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C)

Table 5.32 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(XOUT)	XOUT input cycle time	200	-	ns
twh(xout)	XOUT input "H" width	90	-	ns
twl(xout)	XOUT input "L" width	90	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

Figure 5.16 External Clock Input Timing Diagram when Vcc = 2.2 V

Table 5.33 TRAIO Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	=	ns
twl(traio)	TRAIO input "L" width	200	-	ns



Figure 5.17 TRAIO Input Timing Diagram when Vcc = 2.2 V

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tc(CK)	CLKi input cycle time	800	-	ns
tW(CKH)	CLKi input "H" width	400	-	ns
tW(CKL)	CLKi input "L" width	400	-	ns
td(C-Q)	TXDi output delay time	-	200	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	150	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 2

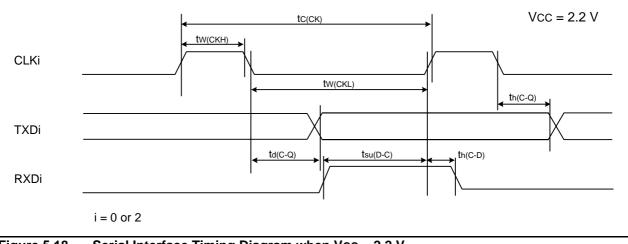


Figure 5.18 Serial Interface Timing Diagram when Vcc = 2.2 V

Table 5.35External Interrupt \overline{INTi} (i = 0, 1, 3) Input, Key Input Interrupt \overline{Kli} (i = 0 to 3)

Symbol	Parameter	Standard		Unit
		Min.	Max.	Unit
tw(INH)	INTi input "H" width, Kli input "H" width	1000 (1)	-	ns
tw(INL)	INTi input "L" width, Kli input "L" width	1000 (2)	I	ns

Notes:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

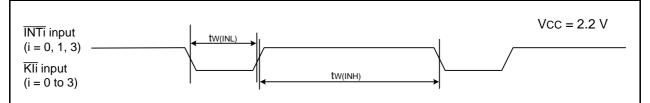


Figure 5.19

19 Input Timing Diagram for External Interrupt INTi and Key Input Interrupt Kli when Vcc = 2.2 V

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6887-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510 Renease Electronics Korea Co., Ltd. 11F., Samik Lavied O'r Bilde, T20-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-3737, Fax: +882-2-558-5141