

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	19
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LSSOP (0.220", 5.60mm Width)
Supplier Device Package	24-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f213g6cdsp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.2 Specifications

Tables 1.1 and 1.2 outline the Specifications for R8C/3GC Group.

Itom	Eurotion	Specification	
	Control processing	Becilication	
CPU	Central processing	ROC CPU cole	
	unit	Number of fundamental instructions: 89	
		• Minimum Instruction execution time:	
		50 ns (f(XIN) = 20 MHz, VCC = 2.7 to 5.5 V)	
		200 ns (f(XIN) = 5 MHz, VCC = 1.8 to 5.5 V)	
		• Multiplier: 16 bits \times 16 bits \rightarrow 32 bits	
		• Multiply-accumulate instruction: 16 bits \times 16 bits $+$ 32 bits \rightarrow 32 bits	
		 Operation mode: Single-chip mode (address space: 1 Mbyte) 	
Memory	ROM, RAM, Data	Refer to Table 1.3 Product List for R8C/3GC Group.	
	flash		
Power Supply	Voltage detection	Power-on reset	
Voltage	circuit	 Voltage detection 3 (detection level of voltage detection 0 and voltage 	
Detection		detection 1 selectable)	
I/O Ports	Programmable I/O	Input-only: 1 pin	
	ports	CMOS I/O ports: 19, selectable pull-up resistor	
		High current drive ports: 19	
Clock	Clock generation	4 circuits: XIN clock oscillation circuit.	
	circuits	XCIN clock oscillation circuit (32 kHz).	
		High-speed on-chip oscillator (with frequency adjustment function).	
		Low-speed on-chip oscillator	
		Oscillation stop detection: XIN clock oscillation stop detection function	
		• Frequency divider circuit: Dividing selectable 1, 2, 4, 8, and 16	
		• Low power consumption modes:	
		 Standard approximation modes. 	
		Standard operating mode (nigh-speed clock, low-speed clock, nigh-speed	
		Depl time clock (timer DE)	
Interrunte		Real-ume clock (umer RE)	
interrupts		• Number of Interrupt Vectors, 69	
		• External Interrupt: 7 (INT × 3, Key Input × 4)	
Matcheller an Time		Priority levels: 7 levels	
vvatchdog 11m	er	• 14 bits × 1 (with prescaler)	
		• Reset start selectable	
		Low-speed on-chip oscillator for watchdog timer selectable	
DIC (Data Ira	nster Controller)	• 1 channel	
		Activation sources: 23	
		Transfer modes: 2 (normal mode, repeat mode)	
Timer	Timer RA	8 bits × 1 (with 8-bit prescaler)	
		Timer mode (period timer), pulse output mode (output level inverted every	
		period), event counter mode, pulse width measurement mode, pulse period	
		measurement mode	
	Timer RB	8 bits x 1 (with 8-bit prescaler)	
		Timer mode (period timer), programmable waveform generation mode (PWM	
		output), programmable one-shot generation mode, programmable wait one-	
		shot generation mode	
	Timer RC	16 bits × 1 (with 4 capture/compare registers)	
		Timer mode (input capture function, output compare function). PWM mode	
		(output 3 pins). PWM2 mode (PWM output pin)	
	Timer RE	8 bits x 1	
		Real-time clock mode (count seconds, minutes, hours, days of week)	

Table 1.1 Specifications for R8C/3GC Group (1)

Current of Oct 2010

1.2 Product List

Table 1.3 lists Product List for R8C/3GC Group, and Figure 1.1 shows a Part Number, Memory Size, and Package of R8C/3GC Group.

Part No	ROM C	apacity	RAM	Package Type	Pomarke	
Fait NO.	Program ROM	Data flash	Capacity	Гаскаде Туре	Remarks	
R5F213G2CNNP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PWQN0024KC-A	N version	
R5F213G4CNNP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PWQN0024KC-A		
R5F213G5CNNP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PWQN0024KC-A		
R5F213G6CNNP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PWQN0024KC-A		
R5F213G1CNSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A		
R5F213G2CNSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A		
R5F213G4CNSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A		
R5F213G5CNSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A		
R5F213G6CNSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A		
R5F213G1CDSP	4 Kbytes	1 Kbyte × 4	512 byte	PLSP0024JB-A	D version	
R5F213G2CDSP	8 Kbytes	1 Kbyte × 4	1 Kbyte	PLSP0024JB-A		
R5F213G4CDSP	16 Kbytes	1 Kbyte × 4	1.5 Kbytes	PLSP0024JB-A		
R5F213G5CDSP	24 Kbytes	1 Kbyte × 4	2 Kbytes	PLSP0024JB-A		
R5F213G6CDSP	32 Kbytes	1 Kbyte × 4	2.5 Kbytes	PLSP0024JB-A		

Table 1.3 Product List for R8C/3GC Group

Figure 1.1 Part Number, Memory Size, and Package of R8C/3GC Group

1.3 **Block Diagram**

Figure 1.2 shows a Block Diagram.

Figure 1.2 **Block Diagram**

Item	Pin Name	I/O Type	Description
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter and D/A converter
A/D converter	AN0, AN1, AN5, AN6, AN8 to AN11	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
D/A converter	DA0, DA1	0	D/A converter output pins
Comparator B	IVCMP1, IVCMP3	I	Comparator B analog voltage input pins
	IVREF1, IVREF3	I	Comparator B reference voltage input pins
I/O port	P0_1, P0_2, P0_6, P0_7, P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5 to P4_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. All ports can be used as LED drive ports.
Input port	P4_2	I	Input-only port

Table 1.7Pin Functions (2)

I: Input O: Output I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the starting address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3. Memory

3.1 R8C/3GC Group

Figure 3.1 is a Memory Map of R8C/3GC Group. The R8C/3GC Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 32-Kbyte internal ROM area is allocated addresses 08000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2.5-Kbyte internal RAM area is allocated addresses 00400h to 00DFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh. Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Figure 3.1 Memory Map of R8C/3GC Group

Address	Register	Symbol	After Reset
0080h	DTC Activation Control Register	DTCTL	00h
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088b	DTC Activation Enable Register 0	DTCENO	00b
0080h	DTC Activation Enable Register 1	DTCENI	00h
000311	DTC Activation Enable Register 1	DTCEN2	00h
000A11	DTC Activation Enable Register 2		001
00860	DTC Activation Enable Register 3	DICENS	oon
008Ch		DTOENS	
008Dh	DTC Activation Enable Register 5	DICENS	UUN
008Eh	DIC Activation Enable Register 6	DICEN6	00h
008Fh			
0090h			
0091h			
0092h			
0093h			
0094h			
0095h			
0096h			
0097h			
0098h			
0099h			
009Ah			
009Bh			
009Ch			
009Dh			
009Eh			
009Fh			
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Register	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	UOTB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UARTO Receive Buffer Register	UORB	XXh
00A7h			XXh
00A8h	UART2 Transmit/Receive Mode Register	U2MR	00h
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00AAh	UART2 Transmit Buffer Register	U2TB	XXh
00ABh			XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	0000010b
00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AFh			XXh
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h			
00B4h			
00BRh	LIART2 Special Mode Register 5	U2SMR5	00h
OOBCh	UIART2 Special Mode Register 4	LI2SMR4	00b
	LIART2 Special Mode Register 3	LI2SMR3	000X0X0Xb
OOBEN	UIART2 Special Mode Register 2	LI2SMR2	X000000b
OOBEN	UIART2 Special Mode Register		X000000b
		UZSIVIK	7000000D

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
00C0h	A/D Register 0	AD0	XXXh
00C1h	5		00000XXb
00C2h	A/D Register 1		XXh
00021	A/D Register 1	AD I	000000226
000311	A/D De sister 0	4.00	
00C4h	A/D Register 2	AD2	XXN
00C5h			000000XXb
00C6h	A/D Register 3	AD3	XXh
00C7h			000000XXb
00C8h	A/D Register 4	AD4	XXh
00C9h			00000XXb
00CAb	A/D Register 5		XXh
00CRh	A D Register 5	AD3	000000226
00060		4.50	
OUCCh	A/D Register 6	AD6	XXN
00CDh			000000XXb
00CEh	A/D Register 7	AD7	XXh
00CFh			000000XXb
00D0h			
00D1h			
00D2h			
00D2h			
00D311	A/D Mada Dagistar		0.04
00D4n			0011 44.000000b
00D5h	A/D Input Select Register	ADINSEL	11000000
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h	D/A0 Register	DA0	00h
00D9h	D/A1 Register	DA1	00h
00DAh			
00DBh			
00DCh	D/A Control Pagistor	DACON	00b
	DIA CONTO REGISTER	DACON	0011
UUDDh			
OODEh			
00DFh			
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E2h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
00E4h		101	0011
00E5h	Port D3 Pogistor	D2	X Y h
00E3H	Foit F5 Register	F3	
00200		880	0.01
00E7h	Port P3 Direction Register	PD3	UUh
00E8h	Port P4 Register	P4	XXh
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh			
00EDh			
00FFb			
OOEEh			
0000			
UUFUN			
UUF1h			
00F2h			
00F3h			
00F4h			
00F5h			
00F6h			
00F7h			
00E8b			
00505			
00-90			
UU⊢Ah			
00FBh			
00FCh			
00FDh			
00FEh			
00FFh			
001111		1	

SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
0140h			
0141h			
0142h			
0143h			
0144h			
0145h			
0146h			
0147h			
0148h			
0149h			
014Ah			
014Bh			
014Ch			
014Dh			
014Eh			
014Fh			
0150h			
0151h			
0152h			
0153h			
0154h			
0155h			
01560			
015/1			
01580			
01590			
015An			
015Dh			
015Dh			
015Eh			
015Eh			
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			
0174h			
01765			
01776			
01786			
0170h			
0174h			
017Bh			
017Ch			
017Dh			
017Eh			
017Fh			
÷.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
0180h	Timer RA Pin Select Register	TRASR	00h
0181h	Timer RC Pin Select Register	TRBRCSR	00h
0182h	Timer PC Pin Select Perister 0	TRCPSR0	00h
010211			00h
0183h	Timer RC Pin Select Register 1	TRUPSRI	UUN
0184h			
0185h			
0186h			
0187h			
0188h	LIARTO Pin Select Register	LIOSP	00b
01001		00010	0011
01890		110000	
018Ah	UAR12 Pin Select Register 0	U2SR0	00h
018Bh	UART2 Pin Select Register 1	U2SR1	00h
018Ch	SSU/IIC Pin Select Register	SSUIICSR	00h
018Dh	, , , , , , , , , , , , , , , , , , ,		
018Eh	INT Interrunt Input Pin Select Register	INTSR	00h
010Eh	V/O Euroption Din Solot Dogistor	DINCR	00h
010FII		FINSK	0011
01900			
0191h			
0192h			
0193h	SS Bit Counter Register	SSBR	11111000b
0194h	SS Transmit Data Register L / IIC bus Transmit Data Register (2)	SSTDR / ICDRT	FFh
01056	00 Transmit Data Register L / 110 bus transmit Data Register (~)		EE6
01950	55 Transmit Data Register H 147	SOLDKI	
0196h	SS Receive Data Register L / IIC bus Receive Data Register ⁽²⁾	SSRDR / ICDRR	FFh
0197h	SS Receive Data Register H (2)	SSRDRH	FFh
0198h	SS Control Register H / IIC hus Control Register 1 (2)	SSCRH / ICCR1	00b
013011			
0199h	SS Control Register L / IIC bus Control Register 2 (2)	SSCRL/ICCR2	011111016
019Ah	SS Mode Register / IIC bus Mode Register (2)	SSMR / ICMR	00010000b / 00011000b
019Bh	SS Enable Register / IIC bus Interrupt Enable Register (2)	SSER / ICIER	00h
010Ch	CC Status Degister / IIC hus Status Degister (2)	SSE / ICSE	00b / 0000X000b
01901	SS Status Register / IIC bus Status Register (2)	333R / IC3R	000000000000000000000000000000000000000
019Dh	SS Mode Register 2 / Slave Address Register ⁽²⁾	SSMR2 / SAR	00h
019Eh			
019Fh			
01A0h			
01/101			
01411			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
014.06			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			İ.
01ADh			
01/10/1			<u> </u>
U1AFN			
01B0h			
01B1h			
01B2h	Flash Memory Status Register	FST	10000X00b
01B3h	, , , , , , , , , , , , , , , , , , ,		
01B4b	Elash Memory Control Register 0	EMRO	00b
010411	Elash Memory Control Pagister 1	EMD1	006
01B6h	Flash Memory Control Register 2	FMR2	uun
01B7h			
01B8h			
01B9h			
01BAh			
01225			
01BCh			
01BDh			
01BEh			
01BFh			

Table 4.7	SFR Information (7) ⁽¹⁾
-----------	------------------------------------

X: Undefined Notes: 1. The blank areas are reserved and cannot be accessed by users. 2. Selectable by the IICSEL bit in the SSUIICSR register.

Table 4.12	SFR Information (12) ⁽¹⁾	
------------	-------------------------------------	--

Address	Register	Symbol	After Reset
2CF0h	DTC Control Data 22	DTCD22	XXh
2CF1h			XXh
2CF2h			XXh
2CF3h			XXh
2CF4h			XXh
2CF5h			XXh
2CF6h			XXh
2CF7h			XXh
2CF8h	DTC Control Data 23	DTCD23	XXh
2CF9h			XXh
2CFAh			XXh
2CFBh			XXh
2CFCh			XXh
2CFDh			XXh
2CFEh			XXh
2CFFh			XXh
2D00h			
:			

2FFFh

X: Undefined

Note:

1. The blank areas are reserved and cannot be accessed by users.

Table 4.13 ID Code Areas and Option Function Select Area

Address	Area Name	Symbol	After Reset
:			
FFDBh	Option Function Select Register 2	OFS2	(Note 1)
:			
FFDFh	ID1		(Note 2)
:			
FFE3h	ID2		(Note 2)
:			
FFEBh	ID3		(Note 2)
:			
FFEFh	ID4		(Note 2)
:			
FFF3h	ID5		(Note 2)
:			
FFF7h	ID6		(Note 2)
FFFBh	ID7		(Note 2)
:			
FFFFh	Option Function Select Register	OFS	(Note 1)

Notes:

 The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the option function select area. If the block including the option function select area is erased, the option function select area is set to FFh.

When blank products are shipped, the option function select area is set to FFh. It is set to the written value after written by the user.When factory-programming products are shipped, the value of the option function select area is the value programmed by the user.The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

2. The ID code areas are allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not write additions to the ID code areas. If the block including the ID code areas is erased, the ID code areas are set to FFh. When blank products are shipped, the ID code areas are set to FFh. They are set to the written value after written by the user. When factory-programming products are shipped, the value of the ID code areas is the value programmed by the user.

5. Electrical Characteristics

Table 5.1	Absolute	Maximum	Ratings
-----------	----------	---------	---------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc/AVcc	Supply voltage		-0.3 to 6.5	V
VI	Input voltage		–0.3 to Vcc + 0.3	V
Vo	Output voltage		–0.3 to Vcc + 0.3	V
Pd	Power dissipation	$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C$	500	mW
Topr	Operating ambient temperature		-20 to 85 (N version) /	°C
Tstg	Storage temperature		-65 to 150	°C

Symbol	Baramator	Conditions		Linit		
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Ofin
-	Program/erase endurance (2)		1,000 (3)	-	-	times
-	Byte program time		-	80	500	μS
-	Block erase time		-	0.3	-	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	5+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	_	-	μS
_	Time from suspend until erase restart		-	_	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
—	Program, erase voltage		2.7	_	5.5	V
-	Read voltage		1.8	-	5.5	V
_	Program, erase temperature		0	-	60	°C
-	Data hold time (7)	Ambient temperature = 55°C	20	-	_	year

Table 5.6 Flash Memory (Program ROM) Electrical Characteristics

Notes: 1. Vcc = 2.7 to 5.5 V and $T_{opr} = 0$ to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 1,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed). 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

7. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.15	Power Supply Circu	uit Timing Characteristics

Symbol Parameter		Condition	9	Lloit		
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		-	-	2,000	μS

Notes:

1. The measurement condition is Vcc = 1.8 to 5.5 V and $T_{opr} = 25^{\circ}C$.

2. Waiting time until the internal power supply generation circuit stabilizes during power-on.

Table 5.16 Timing Requirements of Synchronous Serial Communication Unit (SSU) ⁽¹⁾

Symbol	Doromoto		Conditions		Standard			
Symbol	Paramete	ſ	Conditions	Min.	Тур.	Max.	Unit	
tsucyc	SSCK clock cycle time	e		4	-	_	tCYC ⁽²⁾	
tнı	SSCK clock "H" width			0.4	I	0.6	tsucyc	
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc	
trise	SSCK clock rising	Master		-	-	1	tCYC (2)	
	time	Slave		-	-	1	μs	
tfall	SSCK clock falling	Master		-	-	1	tcyc (2)	
	time	Slave		-	-	1	μs	
ts∪	SSO, SSI data input s	etup time		100	-	-	ns	
tн	SSO, SSI data input h	old time		1	-	-	tCYC (2)	
tlead	SCS setup time	Slave		1tcyc + 50	_	-	ns	
tlag	SCS hold time	Slave		1tcyc + 50	-	-	ns	
top	SSO, SSI data output	delay time		-	-	1	tCYC ⁽²⁾	
tsa	SSI slave access time)	$2.7~V \leq Vcc \leq 5.5~V$	-	Î	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	-	1.5tcyc + 200	ns	
tOR	SSI slave out open tir	ne	$2.7~V \leq Vcc \leq 5.5~V$	-	I	1.5tcyc + 100	ns	
			$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	=	1.5tcyc + 200	ns	

Notes:

1. Vcc = 1.8 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. 1tcyc = 1/f1(s)

Symbol	Baramatar		Condition		Standard			Linit	
Symbol		Parameter	Condition		Min.	Тур.	Max.	Unit	
Vон	Output "H"	Other than XOUT	Drive capacity High $Vcc = 5 V$	Iон = -20 mA	Vcc - 2.0	-	Vcc	V	
	voltage		Drive capacity Low Vcc = 5 V	Iон = -5 mA	Vcc - 2.0	-	Vcc	V	
		XOUT	Vcc = 5 V	Іон = -200 μА	1.0	-	Vcc	V	
Vol	Output "L"	Other than XOUT	Drive capacity High Vcc = $5 V$	IoL = 20 mA	-	-	2.0	V	
	voltage		Drive capacity Low Vcc = 5 V	IoL = 5 mA	-	-	2.0	V	
		XOUT	Vcc = 5 V	IoL = 200 μA	-	-	0.5	V	
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, TRAIO, TRBO, TRCIOA, TRCIOB, TRCIOC, TRCIOD, <u>TRCTRG</u> , TRCCLK, ADTRG, RXDO, RXD2, CLK0, CLK2, SSI, SCL, SDA, SSO RESET			0.1	1.2	_	V	
Ін	Input "H" cu	irrent	VI = 5 V, Vcc = 5.0 V		-	-	5.0	μΑ	
lı∟	Input "L" cu	rrent	VI = 0 V, Vcc = 5.0 V		-	-	-5.0	μA	
RPULLUP	Pull-up resi	stance	VI = 0 V, Vcc = 5.0 V		25	50	100	kΩ	
Rfxin	Feedback resistance	XIN			-	0.3	-	MΩ	
RfxCIN	Feedback resistance	XCIN			-	8	-	MΩ	
VRAM	RAM hold v	oltage	During stop mode		1.8	-	—	V	

Table 5.18	Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]
------------	--

Note:

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ and $\text{T}_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Parameter		Condition		Standard	ł	Unit
Cymbol	rarameter			Min.	Тур.	Max.	Onit
lcc	Power supply current (Vcc = 3.3 to 5.5 V)	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	6.5	15	mA
	Single-chip mode, output pins are open, other pins		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5.3	12.5	mA
	are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	_	mA
			High-speed on-chip oscillator off Low-speed on-chip oscillator off Divide-by-8	_	3.0	_	mA
			Ally = 16 MHZ (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	_	mA
			XIN = 10 MHZ (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		High-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	7.0	15	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3.0	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO-F = 4 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-16, MSTIIC = MSTTRD = MSTTRC = 1	-	1	-	mA
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	90	400	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, FMR27 = 1, VCA20 = 0	-	85	400	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz No division, Program operation on RAM Flash memory off, FMSTP = 1, VCA20 = 0	_	47	-	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	15	100	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	4	90	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (peripheral clock off) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.5	_	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1, Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	5.0	_	μA

Table 5.19Electrical Characteristics (2) [3.3 V \leq Vcc \leq 5.5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Timing Requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C)

Table 5.26 External Clock Input (XOUT, XCIN)

Symbol	Parameter	Stan	Linit	
Symbol	Falameter	Min.	Max.	Offic
tc(XOUT)	XOUT input cycle time	50	-	ns
twh(xout)	XOUT input "H" width	24	-	ns
twl(xout)	XOUT input "L" width	24	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
twh(xcin)	XCIN input "H" width	7	-	μS
twL(XCIN)	XCIN input "L" width	7	-	μS

Figure 5.12 External Clock Input Timing Diagram when VCC = 3 V

Table 5.27 TRAIO Input

Symbol	Symbol		Standard		
Symbol	Falameter	Min.	Max.	Offic	
tc(TRAIO)	TRAIO input cycle time	300	-	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width	120	-	ns	

Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

REVISION HISTORY R8C/3GC Group Datasheet
--

Γ

Rev.	Date	Description	
		Page	Summary
0.01	Oct. 30, 2009	—	First Edition issued
0.10	May 24, 2010	10	Table 1.6 XOUT: I \rightarrow I/O
		28 to 54	"5. Electrical Characteristics" added
		55, 56	"Package Dimensions" revised
1.00	Oct 19, 2010	All	"Under development" deleted
		4	Table 1.3 QFN: D version deleted
		15	Figure 3.1 QFN: D version deleted
		31	Table 32.3 "tCONV", "tSAMP" revised
		37	Table 32.12 added, Table 32.13 revised

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do
 not access these addresses; the correct operation of LSI is not guaranteed if they are
 accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.