E. Kenesas Electronics America Inc - UPD78F0422GB-GAG-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	3-Wire SIO, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0422gb-gag-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

8.4 Operation of 8-Bit Timers H0, H1 and H2	
8.4.1 Operation as interval timer/square-wave output	
8.4.2 Operation as PWM output	254
8.4.3 Carrier generator operation (8-bit timer H1 only)	260
CHAPTER 9 REAL-TIME COUNTER	
9.1 Functions of Real-Time Counter	
9.2 Configuration of Real-Time Counter	
9.3 Registers Controlling Real-Time Counter	
9.4 Real-Time Counter Operation	
9.4.1 Starting operation of real-time counter	281
9.4.2 Reading/writing real-time counter	282
9.4.3 Setting alarm of real-time counter	284
CHAPTER 10 WATCHDOG TIMER	
10.1 Functions of Watchdog Timer	
10.2 Configuration of Watchdog Timer	
10.3 Register Controlling Watchdog Timer	
10.4 Operation of Watchdog Timer	
10.4.1 Controlling operation of watchdog timer	288
10.4.2 Setting overflow time of watchdog timer	289
10.4.3 Setting window open period of watchdog timer	290
CHAPTER 11 BUZZER OUTPUT CONTROLLER	292
11.1 Functions of Buzzer Output Controller	
11.2 Configuration of Buzzer Output Controller	
11.3 Registers Controlling Buzzer Output Controller	
11.4 Operations of Buzzer Output Controller	
CHAPTER 12 10-BIT SUCCESSIVE APPROXIMATION TYPE A/D CONVERTER	
(<i>μ</i> PD78F043x only)	
12.1 Function of 10-Bit Successive Approximation Type A/D Converter	295
12.2 Configuration of 10-Bit Successive Approximation Type A/D Converter	
12.3 Registers Used in 10-Bit Successive Approximation Type A/D Converter	
12.4 10-Bit Successive Approximation Type A/D Converter Operations	306
12.4.1 Basic operations of A/D converter	306
12.4.2 Input voltage and conversion results	
12.4.3 A/D converter operation mode	
12.5 How to Read A/D Converter Characteristics Table	
12.6 Cautions for 10-Bit Successive Approximation Type A/D Converter	313
CHAPTER 13 SERIAL INTERFACE UART0	
13.1 Functions of Serial Interface UART0	
13.2 Configuration of Serial Interface UART0	318
13.3 Registers Controlling Serial Interface UART0	

(2) Control mode

P150 to P153 function as segment signal output for the LCD controller/driver.

(a) SEG14 to SEG17

These pins are the segment signal output pins for the LCD controller/driver.

2.2.11 AVREF (µPD78F043x only)

This is the 10-bit successive approximation type A/D converter reference voltage input pin and the positive power supply pin of P20 to P25.

When the A/D converter is not used, connect this pin directly to VDD^{Note}.

Note When one or more of the pins of port 2 is used as the digital port pins or for segment output, make AV_{REF} the same potential as V_{DD}.

2.2.12 AVss (µPD78F043x only)

This is the A/D converter ground potential pin. Even when the A/D converter is not used, always use this pin with the same potential as the Vss pin.

2.2.13 COM0 to COM7

These pins are the common signal output pins for the LCD controller/driver.

2.2.14 VLC0 to VLC3

These pins are the power supply voltage pins for driving the LCD.

2.2.15 RESET

This is the active-low system reset input pin.

2.2.16 REGC

This is the pin for connecting regulator output (2.4 V) stabilization capacitance for internal operation. Connect this pin to Vss via a capacitor (0.47 to 1 μ F: recommended).

Caution Keep the wiring length as short as possible in the area enclosed by the broken lines in the above figures.

2.2.17 VDD

This is the positive power supply pin.

2.2.18 Vss

This is the ground potential pin.

2.2.19 FLMD0

This is a pin for setting flash memory programming mode.

Connect FLMD0 to Vss in the normal operation mode.

In flash memory programming mode, connect this pin to the flash memory programmer.

3.2 Processor Registers

The 78K0/LD3 products incorporate the following processor registers.

3.2.1 Control registers

The control registers control the program sequence, statuses and stack memory. The control registers consist of a program counter (PC), a program status word (PSW) and a stack pointer (SP).

(1) Program counter (PC)

The program counter is a 16-bit register that holds the address information of the next program to be executed. In normal operation, PC is automatically incremented according to the number of bytes of the instruction to be fetched. When a branch instruction is executed, immediate data and register contents are set. Reset signal generation sets the reset vector table values at addresses 0000H and 0001H to the program counter.

Figure 3-9. Format of Program Counter

(2) Program status word (PSW)

The program status word is an 8-bit register consisting of various flags set/reset by instruction execution. Program status word contents are stored in the stack area upon interrupt request generation or PUSH PSW instruction execution and are restored upon execution of the RETB, RETI and POP PSW instructions. Reset signal generation sets PSW to 02H.

(a) Interrupt enable flag (IE)

This flag controls the interrupt request acknowledge operations of the CPU.

When 0, the IE flag is set to the interrupt disabled (DI) state, and all maskable interrupt requests are disabled. When 1, the IE flag is set to the interrupt enabled (EI) state and interrupt request acknowledgment is controlled with an in-service priority flag (ISP), an interrupt mask flag for various interrupt sources, and a priority specification flag.

The IE flag is reset (0) upon DI instruction execution or interrupt acknowledgment and is set (1) upon EI instruction execution.

Symbol	7	6	5	4	3	2	1	0	Address	After reset	R/W
PM1	1	1	1	1	PM13	PM12	PM11	1	FF21H	FFH	R/W
PM2	1	1	PM25	PM24	PM23	PM22	PM21	PM20	FF22H	FFH	R/W
PM3	1	1	1	PM34	PM33	PM32	PM31	1	FF23H	FFH	R/W
									_		
PM4	1	1	1	1	1	1	PM41	PM40	FF24H	FFH	R/W
PM8	1	1	1	1	1	1	1	PM80	FF28H	FFH	R/W
PM10	1	1	1	1	1	1	PM101	PM100	FF2AH	FFH	R/W
PM11	1	1	1	1	PM113	PM112	PM111	1	FF2BH	FFH	R/W
PM12	1	1	1	1	1	1	1	PM120	FF2CH	FFH	R/W
PM14	1	1	1	1	PM143	PM142	PM141	PM140	FF2EH	FFH	R/W
						-					
PM15	1	1	1	1	PM153	PM152	PM151	PM150	FF2FH	FFH	R/W
	PMmn					Pmn pin I/	O mode se	lection			
					(m = 1	to 4, 8, 10	to 12, 14,	15; n = 0 to	5)		
	0	Output m	node (outpu	ut buffer on	ı)						
	1	Input mo	de (output	buffer off)							

Figure 4-20. Format of Port Mode Register

Caution Be sure to set bits 0 and 4 to 7 of PM1, bits 6 and 7 of PM2, bits 0 and 5 to 7 of PM3, bits 2 to 7 of PM4, bits 1 to 7 of PM8, bits 2 to 7 of PM10, bits 0 and 4 to 7 of PM11, bits 1 to 7 of PM12, bits 4 to 7 of PM14, and bits 4 to 7 of PM15 to "1".

Pin Name	Alternate Function		PFALL,	PF1	ISC	PM××	P××
	Function Name	I/O	PF2 ^{Note⁴}				
P11	kR2	Input	-			1	×
	SCK10	Input	-			1	×
		Output	-			0	1
P12	SI10	Input	-			1	×
	KR3	Input	_			1	×
	RxD0	Input	-			1	×
	<rxd6></rxd6>	Input	-		ISC4 = 0, ISC5 = 1 ^{Notes 5, 7}	1	×
P13 ^{Note 9}	SO10	Output	-	PF13 = 0		0	0
	KR4	Input	_	PF13 = 0		1	×
	TxD0	Output	_	PF13 = 1		0	×
	<txd6></txd6>	Output	-	PF13 = 1	ISC4 = 0, ISC5 = 1	0	×
P20 to P25 ^{Note 2}	SEG23 to SEG18	Output	1			×	×
	ANI0 to ANI5 ^{Note 1}	Input	0			1	×
P31	TOH1	Output	_			0	0
	INTP3	Input	_			1	×
P32	TOH0	Output	_			0	0
	MCGO	Output	_			0	0
P33	TI000	Input	_		ISC1 = 0	1	×
	RTCDIV	Output	_			0	0
	RTCCL	Output	-			0	0
	BUZ	Output	-			0	0
	INTP2	Input	_			1	×
P34	TI52	Input	_		Note 6	1	×
	TI010	Input	_			1	×
	TO00	Output	_			0	0
	RTC1HZ	Output	_			0	0
	INTP1	Input	_			1	×
P40	KR0	Input	_			1	×
	VLC3	Input	_			×	×
P41	KR1	Input	_			1	×
	RIN	Input	_			1	×

Table 4-5. Settings of PFALL, PF2, PF1, ISC, Port Mode Register, and Output Latch When Using Alternate Function (1/2)

(Note and Remark are listed on the page after next.)

6.4 Operation of 16-Bit Timer/Event Counter 00

6.4.1 Interval timer operation

If bits 3 and 2 (TMC003 and TMC002) of the 16-bit timer mode control register (TMC00) are set to 11 (clear & start mode entered upon a match between TM00 and CR000), the count operation is started in synchronization with the count clock.

When the value of TM00 later matches the value of CR000, TM00 is cleared to 0000H and a match interrupt signal (INTTM000) is generated. This INTTM000 signal enables TM00 to operate as an interval timer.

Remarks 1. For the setting of I/O pins, see 6.3 (6) Port mode register 3 (PM3).

2. For how to enable the INTTM000 interrupt, see CHAPTER 19 INTERRUPT FUNCTIONS.

Figure 6-21. Example of Register Settings in External Event Counter Mode (2/2)

(e) 16-bit timer counter 00 (TM00)

By reading TM00, the count value can be read.

(f) 16-bit capture/compare register 000 (CR000)

If M is set to CR000, the interrupt signal (INTTM000) is generated when the number of external events reaches (M + 1).

Setting CR000 to 0000H is prohibited.

(g) 16-bit capture/compare register 010 (CR010)

Usually, CR010 is not used in the external event counter mode. However, a compare match interrupt (INTTM010) is generated when the set value of CR010 matches the value of TM00. Therefore, mask the interrupt request by using the interrupt mask flag (TMMK010).

Figure 6-38. Timing Example of Free-Running Timer Mode (CR000: Capture Register, CR010: Capture Register) (1/2)

(a) TOC00 = 13H, PRM00 = 50H, CRC00 = 05H, TMC00 = 04H

This is an application example where the count values that have been captured at the valid edges of separate capture trigger signals are stored in separate capture registers in the free-running timer mode.

The count value is captured to CR010 when the valid edge of the TI000 pin input is detected and to CR000 when the valid edge of the TI010 pin input is detected.

(3) Measuring the pulse width by using one input signal of the TI000 pin (clear & start mode entered by the TI000 pin valid edge input)

Set the clear & start mode entered by the TI000 pin valid edge (TMC003 and TMC002 = 10). The count value of TM00 is captured to CR000 in the phase reverse to the valid edge of the TI000 pin, and the count value of TM00 is captured to CR010 and TM00 is cleared (0000H) when the valid edge of the TI000 pin is detected. Therefore, a cycle is stored in CR010 if TM00 does not overflow.

If an overflow occurs, take the value that results from adding 10000H to the value stored in CR010 as a cycle. Clear bit 0 (OVF00) of 16-bit timer mode control register 00 (TMC00) to 0.

Figure 6-51. Timing Example of Pulse Width Measurement (3)

• TMC00 = 08H, PRM00 = 10H, CRC00 = 07H

Figure 8-17. Carrier Generator Mode Operation Timing (1/3)

(a) Operation when CMP01 = N, CMP11 = N

- <1> When TMHE1 = 0 and TCE51 = 0, the 8-bit timer counter H1 operation is stopped.
- <2> When TMHE1 = 1 is set, the 8-bit timer counter H1 starts a count operation. At that time, the carrier clock remains default.
- <3> When the count value of the 8-bit timer counter H1 matches the CMP01 register value, the first INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with the 8-bit timer counter H1 is switched from the CMP01 register to the CMP11 register. The 8-bit timer counter H1 is cleared to 00H.
- <4> When the count value of the 8-bit timer counter H1 matches the CMP11 register value, the INTTMH1 signal is generated, the carrier clock signal is inverted, and the compare register to be compared with the 8-bit timer counter H1 is switched from the CMP11 register to the CMP01 register. The 8-bit timer counter H1 is cleared to 00H. By performing procedures <3> and <4> repeatedly, a carrier clock with duty fixed to 50% is generated.
- <5> When the INTTM51 signal is generated, it is synchronized with the 8-bit timer H1 count clock and is output as the INTTM5H1 signal.
- <6> The INTTM5H1 signal becomes the data transfer signal for the NRZB1 bit, and the NRZB1 bit value is transferred to the NRZ1 bit.
- <7> When NRZ1 = 0 is set, the TOH1 output becomes low level.

Remark INTTM5H1 is an internal signal and not an interrupt source.

10.3 Register Controlling Watchdog Timer

The watchdog timer is controlled by the watchdog timer enable register (WDTE).

(1) Watchdog timer enable register (WDTE)

Writing ACH to WDTE clears the watchdog timer counter and starts counting again. This register can be set by an 8-bit memory manipulation instruction. Reset signal generation sets this register to 9AH or 1AH^{Note}.

Figure 10-2. Format of Watchdog Timer Enable Register (WDTE)

Address: FF99H Afte		After reset: 9AH	H/1AH ^{Note} F	R/W				
Symbol	7	6	5	4	3	2	1	0
WDTE								

Note The WDTE reset value differs depending on the WDTON setting value of the option byte (0080H). To operate watchdog timer, set WDTON to 1.

WDTON Setting Value	WDTE Reset Value
0 (watchdog timer count operation disabled)	1AH
1 (watchdog timer count operation enabled)	9AH

- Cautions 1. If a value other than ACH is written to WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - 2. If a 1-bit memory manipulation instruction is executed for WDTE, an internal reset signal is generated. If the source clock to the watchdog timer is stopped, however, an internal reset signal is generated when the source clock to the watchdog timer resumes operation.
 - 3. The value read from WDTE is 9AH/1AH (this differs from the written value (ACH)).

12.3 Registers Used in 10-Bit Successive Approximation Type A/D Converter

The A/D converter uses the following seven registers.

- A/D converter mode register (ADM)
- A/D port configuration register 0 (ADPC0)
- Analog input channel specification register (ADS)
- Port function register 2 (PF2)
- Port mode register 2 (PM2)
- 10-bit A/D conversion result register (ADCR)
- 8-bit A/D conversion result register (ADCRH)

(1) A/D converter mode register (ADM)

This register sets the conversion time for analog input to be A/D converted, and starts/stops conversion. ADM can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 12-3. Format of A/D Converter Mode Register (ADM)

ADCS	A/D conversion operation control
0	Stops conversion operation
1	Enables conversion operation

ADCE	Comparator operation control ^{Note 2}
0	Stops comparator operation
1	Enables comparator operation

Notes 1. For details of FR3 to FR0, LV1, LV0, and A/D conversion, see Table 12-2 A/D Conversion Time Selection.

2. The operation of the comparator is controlled by ADCS and ADCE, and it takes 1 μ s from operation start to operation stabilization. Therefore, when ADCS is set to 1 after 1 μ s or more has elapsed from the time ADCE is set to 1, the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

ADCS	ADCE	A/D Conversion Operation
0	0	Stop status (DC power consumption path does not exist)
0	1	Conversion waiting mode (comparator operation, only comparator consumes power)
1	0	Conversion mode (comparator operation stopped ^{Note})
1	1	Conversion mode (comparator operation)

Table 12-1. Settings of ADCS and ADCE

Note Ignore data of the first conversion.

13.2 Configuration of Serial Interface UART0

Serial interface UART0 includes the following hardware.

Item	Configuration
Registers	Receive buffer register 0 (RXB0) Receive shift register 0 (RXS0) Transmit shift register 0 (TXS0)
Control registers	Asynchronous serial interface operation mode register 0 (ASIM0) Asynchronous serial interface reception error status register 0 (ASIS0) Baud rate generator control register 0 (BRGC0) Port function register 1 (PF1) Port mode register 1 (PM1) Port register 1 (P1)

Table 13-1. Configuration of Serial Interface UART0

(4) Clock selection register 6 (CKSR6)

This register selects the base clock of serial interface UART6. CKSR6 can be set by an 8-bit memory manipulation instruction. Reset signal generation sets this register to 00H.

Remark CKSR6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

Figure 14-8. Format of Clock Selection Register 6 (CKSR6)

Address: FF56H After reset: 00H R/W

Symbol	7	6	5	4	3	2	1	0
CKSR6	0	0	0	0	TPS63	TPS62	TPS61	TPS60

TPS63	TPS62	TPS61	TPS60	Base clock (fxcLK6) selection ^{Note 1}					
					f _{PRS} = 2 MHz	f _{PRS} = 5 MHz	f _{PRS} = 8 MHz	f _{PRS} = 10 MHz	
0	0	0	0	fprs ^{Note 2}	2 MHz	5 MHz	8 MHz	10 MHz	
0	0	0	1	fprs/2	1 MHz	2.5 MHz	4 MHz	5 MHz	
0	0	1	0	fprs/2 ²	500 kHz	1.25 MHz	2 MHz	2.5 MHz	
0	0	1	1	fprs/2 ³	250 kHz	625 kHz	1 MHz	1.25 MHz	
0	1	0	0	fprs/2 ⁴	125 kHz	312.5 kHz	500 kHz	625 kHz	
0	1	0	1	fprs/2⁵	62.5 kHz	156.25 kHz	250 kHz	312.5 kHz	
0	1	1	0	fprs/2 ⁶	31.25 kHz	78.13 kHz	125 kHz	156.25 kHz	
0	1	1	1	fprs/27	15.625 kHz	39.06 kHz	62.5 kHz	78.13 kHz	
1	0	0	0	fprs/2 ⁸	7.813 kHz	19.53 kHz	31.25 kHz	39.06 kHz	
1	0	0	1	fprs/2 ⁹	3.906 kHz	9.77 kHz	15.625 kHz	19.53 kHz	
1	0	1	0	fprs/2 ¹⁰	1.953 kHz	4.88 kHz	7.513 kHz	9.77 kHz	
1	0	1	1	TM50 output ^{Note 3}					
	Other than above								

- **Notes 1.** If the peripheral hardware clock (fPRs) operates on the high-speed system clock (fxH) (XSEL = 1), the fPRs operating frequency varies depending on the supply voltage.
 - VDD = 2.7 to 5.5 V: fprs $\leq 10 \ MHz$
 - VDD = 1.8 to 2.7 V: fPRs \leq 5 MHz
 - 2. If the peripheral hardware clock (fPRS) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when 1.8 V ≤ VDD < 2.7 V, the setting of TPS63 = TPS62 = TPS61 = TPS60 = 0 (base clock: fPRS) is prohibited.</p>
 - **3.** When selecting the TM50 output as the base clock, start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

Caution Make sure POWER6 = 0 when rewriting TPS63 to TPS60.

Remark fPRs: Peripheral hardware clock frequency

(5) Baud rate generator control register 6 (BRGC6)

This register sets the division value of the 8-bit counter of serial interface UART6. BRGC6 can be set by an 8-bit memory manipulation instruction. Reset signal generation sets this register to FFH.

Remark BRGC6 can be refreshed (the same value is written) by software during a communication operation (when bits 7 and 6 (POWER6, TXE6) of ASIM6 = 1 or bits 7 and 5 (POWER6, RXE6) of ASIM6 = 1).

Figure 14-9. Format of Baud Rate Generator Control Register 6 (BRGC6)

Address: FF57H After reset: FFH R/W

Symbol	7	6	5	4	3	2	1	0
BRGC6	MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60

MDL67	MDL66	MDL65	MDL64	MDL63	MDL62	MDL61	MDL60	k	Output clock selection of 8-bit counter
0	0	0	0	0	0	×	×	×	Setting prohibited
0	0	0	0	0	1	0	0	4	fxclk6/4
0	0	0	0	0	1	0	1	5	fxclk6/5
0	0	0	0	0	1	1	0	6	fxclk6/6
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•
1	1	1	1	1	1	0	0	252	fxclk6/252
1	1	1	1	1	1	0	1	253	fxclk6/253
1	1	1	1	1	1	1	0	254	fxclк6/254
1	1	1	1	1	1	1	1	255	fxclк6/255

Cautions 1. Make sure that bit 6 (TXE6) and bit 5 (RXE6) of the ASIM6 register = 0 when rewriting the MDL67 to MDL60 bits.

2. The baud rate is the output clock of the 8-bit counter divided by 2.

Remarks 1. fxclk6: Frequency of base clock selected by the TPS63 to TPS60 bits of CKSR6 register

- 2. k: Value set by MDL67 to MDL60 bits (k = 4, 5, 6, ..., 255)
- 3. X: Don't care

16.3 Registers Controlling LCD Controller/Driver

The following five registers are used to control the LCD controller/driver.

- LCD mode register (LCDMD)
- LCD display mode register (LCDM)
- LCD clock control register (LCDC0)
- Port function register 2 (PF2)
- Port function register ALL (PFALL)

(1) LCD mode register (LCDMD)

LCDMD sets the LCD drive voltage generator. LCDMD is set using a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets LCDMD to 00H.

Figure 16-2. Format of LCD Mode Register

Address: FFB0H After		After reset: 00H	R/W							
Symbol	7	6	5	4	3	2	1	0		
LCDMD	0	0	MDSET1	MDSET0	0	0	0	0		

MDSET1	MDSET0	LCD drive voltage generator selection
0	0	External resistance division method
0	1	Internal resistance division method (no step-down transforming) (Used when $V_{LCD} = V_{DD}$)
1 1 In		Internal resistance division method (step-down transforming) (Used when $V_{LCD} = 3/5V_{DD}$)
Other than abo	ove	Setting prohibited

Caution Bits 0 to 3, 6 and 7 must be set to 0.

(2) MCG transmit bit count specification register (MC0BIT)

This register is used to set the number of transmit bits.

Set the transmit bit count to this register before setting the transmit data to MC0TX.

In continuous transmission, the number of transmit bits to be transmitted next needs to be written after the occurrence of a transmission start interrupt (INTMCG). However, if the next transmit count is the same number as the previous transmit count, this register does not need to be written.

This register can be set by an 8-bit memory manipulation instruction.

Reset signal generation sets this register to 07H.

Figure 17-3. Format of MCG Transmit Bit Count Specification Register (MC0BIT)

Address: FF4	BH After re	set: 07H	R/W					
Symbol	7	6	5	4	3	<2>	<1>	<0>
MC0BIT	0	0	0	0	0	MC0BIT2	MC0BIT1	MC0BIT0

MC0BIT2	MC0BIT1	MC0BIT0	Transmit bit count setting
0	0	0	1 bit
0	0	1	2 bits
0	1	0	3 bits
0	1	1	4 bits
1	0	0	5 bits
1	0	1	6 bits
1	1	0	7 bits
1	1	1	8 bits

- **Remark** When the number of transmit bits is set as 7 bits or smaller, the lower bits are always transmitted regardless of MSB/LSB settings as the transmission start bit.
 - ex. When the number of transmit bits is set as 3 bits, and D7 to D0 are written to MCG transmit buffer register (MC0TX)

Figure 24-8. Timing of Low-Voltage Detector Interrupt Signal Generation (Detects Level of Input Voltage from External Input Pin (EXLVI))

Notes 1. The LVIMK flag is set to "1" by reset signal generation.

- 2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
- **3.** If LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1.
- **Remark** <1> to <8> in Figure 24-8 above correspond to <1> to <8> in the description of "When starting operation" in 24.4.2 (2) When detecting level of input voltage from external input pin (EXLVI).

26.5.6 Other signal pins

Connect X1 and X2 in the same status as in the normal operation mode when using the on-board clock.

- To input the operating clock from the dedicated flash memory programmer, however, connect as follows.
- PG-FP4, FL-PR4: Connect CLK of the programmer to EXCLK/X2/P122.
- PG-FPL3, FP-LITE3: Connect CLK of the programmer and X1/P121, and connect its inverted signal to X2/EXCLK/P122.

Cautions 1. Only the internal high-speed oscillation clock (fRH) can be used when CSI10 is used. 2. Only the X1 clock (fx) or external main system clock (fEXCLK) can be used when UART6 is used.

26.5.7 Power supply

To use the supply voltage output of the flash memory programmer, connect the VDD pin to VDD of the flash memory programmer, and the Vss pin to GND of the flash memory programmer.

To use the on-board supply voltage, connect in compliance with the normal operation mode.

However, be sure to connect the V_{DD} and V_{SS} pins to V_{DD} and GND of the flash memory programmer to use the power monitor function with the flash memory programmer, even when using the on-board supply voltage.

Supply the same other power supplies (AVREF and AVss) as those in the normal operation mode.

Instruction	Mnemonic	On even de	Bytes	Clo	cks	Orostian	F	lag
Group	whethonic	Operands	Dytes	Note 1	Note 2	Operation	Z	AC CY
Call/return	CALL	!addr16	3	7	-	$(SP - 1) \leftarrow (PC + 3)_{H}, (SP - 2) \leftarrow (PC + 3)_{L},$ $PC \leftarrow addr16, SP \leftarrow SP - 2$		
	CALLF	!addr11	2	5	-	$\begin{split} (SP-1) \leftarrow (PC+2)_{H}, (SP-2) \leftarrow (PC+2)_{L}, \\ PC_{15-11} \leftarrow 00001, \ PC_{10-0} \leftarrow addr11, \\ SP \leftarrow SP-2 \end{split}$		
	CALLT	[addr5]	1	6	_	$\begin{split} (SP-1) &\leftarrow (PC+1)_{H}, (SP-2) \leftarrow (PC+1)_{L}, \\ PC_{H} &\leftarrow (00000000, addr5+1), \\ PC_{L} &\leftarrow (00000000, addr5), \\ SP &\leftarrow SP-2 \end{split}$		
	BRK		1	6	-	$\begin{split} (SP-1) &\leftarrow PSW, (SP-2) \leftarrow (PC+1)_{H}, \\ (SP-3) \leftarrow (PC+1)_{L}, PC_{H} \leftarrow (003FH), \\ PC_{L} \leftarrow (003EH), SP \leftarrow SP-3, IE \leftarrow 0 \end{split}$		
	RET		1	6	_	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $SP \leftarrow SP + 2$		
	RETI		1	6	-	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 3$	R	RR
	RETB		1	6	-	$PC_{H} \leftarrow (SP + 1), PC_{L} \leftarrow (SP),$ $PSW \leftarrow (SP + 2), SP \leftarrow SP + 3$	R	RR
Stack	PUSH	PSW	1	2	-	$(SP - 1) \leftarrow PSW, SP \leftarrow SP - 1$		
manipulate		rp	1	4	-	$(SP - 1) \leftarrow rp_H, (SP - 2) \leftarrow rp_L,$ $SP \leftarrow SP - 2$		
	POP	PSW	1	2	-	$PSW \leftarrow (SP), SP \leftarrow SP + 1$	R	R R
		rp	1	4	-	$rp_H \leftarrow (SP + 1), rp_L \leftarrow (SP),$ SP ← SP + 2		
	MOVW	SP, #word	4	-	10	$SP \leftarrow word$		
		SP, AX	2	-	8	$SP \leftarrow AX$		
		AX, SP	2	-	8	$AX \gets SP$		
Unconditional	BR	!addr16	3	6	-	$PC \leftarrow addr16$		
branch		\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$		
		AX	2	8	-	$PCH \leftarrow A, PC_{L} \leftarrow X$		
Conditional	вс	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 1$		
branch	BNC	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $CY = 0$		
	BZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 1$		
	BNZ	\$addr16	2	6	-	$PC \leftarrow PC + 2 + jdisp8$ if $Z = 0$		

Notes 1. When the internal high-speed RAM area is accessed or for an instruction with no data access

2. When an area except the internal high-speed RAM area is accessed

- **Remarks 1.** One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the processor clock control register (PCC).
 - 2. This clock cycle applies to the internal ROM program.