E. Renesas Electronics America Inc - UPD78F0431GB-GAG-AX Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detalls	
Product Status	Active
Core Processor	78K/0
Core Size	8-Bit
Speed	10MHz
Connectivity	3-Wire SIO, LINbus, UART/USART
Peripherals	LCD, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f0431gb-gag-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Special Function Register (SFR) Name	Symbol	R/W	Mani			After
				1 Bit	8 Bits	16 Bits	Reset
FF00H	Receive buffer register 6	RXB6	R	_		_	FFH
FF01H	Port register 1	P1	R/W			-	00H
FF02H	Port register 2	P2	R/W	\checkmark	\checkmark	-	00H
FF03H	Port register 3	P3	R/W	\checkmark	\checkmark	-	00H
FF04H	Port register 4	P4	R/W	\checkmark	\checkmark	-	00H
FF05H	Transmit buffer register 6	TXB6	R/W	_	\checkmark	-	FFH
FF06H	A/D conversion result register ^{Note}	ADCR	R	_	_	\checkmark	0000H
FF07H	A/D conversion result register (H) ^{Note}	ADCRH	R	_	\checkmark	_	00H
FF08H	Port register 8	P8	R/W	\checkmark	\checkmark	-	00H
FF0AH	Port register 10	P10	R/W	\checkmark	\checkmark	-	00H
FF0BH	Port register 11	P11	R/W	\checkmark	\checkmark	-	00H
FF0CH	Port register 12	P12	R/W	\checkmark	\checkmark	-	00H
FF0EH	Port register 14	P14	R/W	\checkmark	\checkmark	-	00H
FF0FH	Port register 15	P15	R/W	\checkmark	\checkmark	-	00H
FF10H	16-bit timer counter 00	ТМ00	R	_	-	\checkmark	0000H
FF11H							
FF12H	16-bit timer capture/compare register 000	CR000	R/W	-	-		0000H
FF13H							
FF14H	16-bit timer capture/compare register 010	CR010	R/W	_	-		0000H
FF15H							
FF16H	8-bit timer counter 50	TM50	R	_	\checkmark	-	00H
FF17H	8-bit timer compare register 50	CR50	R/W	-	\checkmark	-	00H
FF18H	8-bit timer H compare register 00	CMP00	R/W	-	\checkmark	-	00H
FF19H	8-bit timer H compare register 10	CMP10	R/W	_	\checkmark	_	00H
FF1AH	8-bit timer H compare register 01	CMP01	R/W	_	\checkmark	-	00H
FF1BH	8-bit timer H compare register 11	CMP11	R/W	_	\checkmark	-	00H
FF1FH	Serial I/O shift register 10	SIO10	R	_	\checkmark	-	00H
FF20H	Port function register 1	PF1	R/W	\checkmark	\checkmark	-	00H
FF21H	Port mode register 1	PM1	R/W	\checkmark	\checkmark	-	FFH
FF22H	Port mode register 2	PM2	R/W	\checkmark	\checkmark	-	FFH
FF23H	Port mode register 3	PM3	R/W	\checkmark	\checkmark	_	FFH
FF24H	Port mode register 4	PM4	R/W	\checkmark	\checkmark	-	FFH
FF28H	Port mode register 8	PM8	R/W	\checkmark	\checkmark	-	FFH
FF2AH	Port mode register 10	PM10	R/W	\checkmark	\checkmark	-	FFH
FF2BH	Port mode register 11	PM11	R/W	\checkmark	\checkmark	-	FFH
FF2CH	Port mode register 12	PM12	R/W	\checkmark	\checkmark	_	FFH
FF2EH	Port mode register 14	PM14	R/W	\checkmark	\checkmark	_	FFH
FF2FH	Port mode register 15	PM15	R/W	\checkmark	\checkmark	-	FFH

Table 3-6.	Special	Function	Register List	(1/5)
1 4 5 1 5 6 61	opeenai			(

Note μ PD78F043x only.

6.3 Registers Controlling 16-Bit Timer/Event Counter 00

Registers used to control 16-bit timer/event counter 00 are shown below.

- 16-bit timer mode control register 00 (TMC00)
- Capture/compare control register 00 (CRC00)
- 16-bit timer output control register 00 (TOC00)
- Prescaler mode register 00 (PRM00)
- Input switch control register (ISC)
- Port mode register 3 (PM3)
- Port register 3 (P3)

(1) 16-bit timer mode control register 00 (TMC00)

TMC00 is an 8-bit register that sets the 16-bit timer/event counter 00 operation mode, TM00 clear mode, and output timing, and detects an overflow.

Rewriting TMC00 is prohibited during operation (when TMC003 and TMC002 = other than 00). However, it can be changed when TMC003 and TMC002 are cleared to 00 (stopping operation) and when OVF00 is cleared to 0. TMC00 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets TMC00 to 00H.

Caution 16-bit timer/event counter 00 starts operation at the moment TMC002 and TMC003 are set to values other than 00 (operation stop mode), respectively. Set TMC002 and TMC003 to 00 to stop the operation.

(5) Input switch control register (ISC)

The input source to TI000 becomes the input signal from the P33/TI000 pin, by setting ISC1 to 0. ISC can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets ISC to 00H.

Figure 6-10. Format of Input Switch Control Register (ISC)

Address: FF4FH After reset: 00H R/W

Symbol 5 0 7 6 4 3 2 1 ISC 0 0 ICS5 ICS4 ICS3 ICS2 ICS1 ICS0

ICS5	ICS4	TxD6, RxD6 input source selection
0	0	TxD6:P112, RxD6: P113
1	0	TxD6:P13, RxD6: P12
Other than above		Setting prohibited

ISC3	RxD6/P113 input enabled/disabled
0	RxD6/P113 input disabled
1	RxD6/P113 input enabled

ISC2	TI52 input source control
0	No enable control of TI52 input (P34)
1	Enable controlled of TI52 input (P34) ^{Note 1}

ISC1	TI000 input source selection
0	TI000 (P33)
1	RxD6 (P12 or P113 ^{Note 2})

ISC0	INTP0 input source selection
0	INTP0 (P120)
1	RxD6 (P12 or P113 ^{Note 2})

Notes 1. TI52 input is controlled by TOH2 output signal.

2. TI000 and INTP0 inputs are selected by ISC5 and ISC4.

7.4 Operations of 8-Bit Timer/Event Counters 50, 51, and 52

7.4.1 Operation as interval timer

8-bit timer/event counter 5n operates as an interval timer that generates interrupt requests repeatedly at intervals of the count value preset to 8-bit timer compare register 5n (CR5n).

When the count value of 8-bit timer counter 5n (TM5n) matches the value set to CR5n, counting continues with the TM5n value cleared to 0 and an interrupt request signal (INTTM5n) is generated.

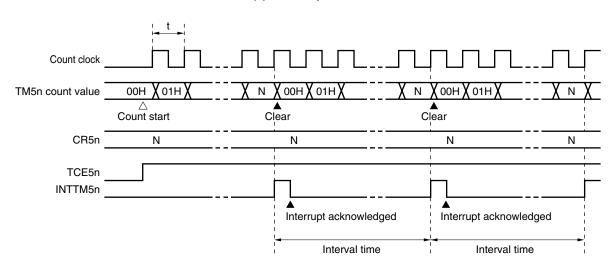
The count clock of TM5n can be selected with bits 0 to 2 (TCL5n0 to TCL5n2) of timer clock selection register 5n (TCL5n).

Setting

<1> Set the registers.

- TCL5n: Select the count clock.
- CR5n: Compare value
- TMC5n: Stop the count operation

 $(TMC50 = 0000 \times \times 0B, TMC51 = TMC52 = 00000000B \times = Don't care)$


- <2> After TCE5n = 1 is set, the count operation starts.
- <3> If the values of TM5n and CR5n match, INTTM5n is generated (TM5n is cleared to 00H).
- <4> INTTM5n is generated repeatedly at the same interval.

Set TCE5n to 0 to stop the count operation.

Caution Do not write other values to CR5n during operation.

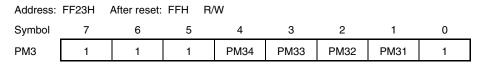
Remarks 1. For how to enable the INTTM5n signal interrupt, see **CHAPTER 19 INTERRUPT FUNCTIONS**. **2.** n = 0 to 2

Figure 7-14. Interval Timer Operation Timing (1/2)

(a) Basic operation

Remark Interval time = $(N + 1) \times t$ N = 01H to FFH n = 0 to 2

(2) Port mode register 3 (PM3)


This register sets port 3 input/output in 1-bit units.

When using the P33/TI000/RTCDIV/RTCCL/BUZ/INTP2 pin for buzzer output, clear PM33 and the output latches of P33 to 0.

PM3 is set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets PM3 to FFH.

Figure 11-3. Format of Port Mode Register 3 (PM3)

PM3n	P3n pin I/O mode selection (n = 1 to 4)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

11.4 Operations of Buzzer Output Controller

The buzzer frequency is output as the following procedure.

- <1> Select the buzzer output frequency with bits 5 and 6 (BCS0, BCS1) of the clock output selection register (CKS) (buzzer output in disabled status).
- <2> Set bit 7 (BZOE) of CKS to 1 to enable buzzer output.

(7) 8-bit A/D conversion result register (ADCRH)

The A/D conversion result is loaded from the successive approximation register to this register each time A/D conversion is completed, and the ADCRH register stores the higher 8 bits of the A/D conversion result.

Caution When data is read from ADCR and ADCRH, a wait cycle is generated. Do not read data from ADCR and ADCRH when the CPU is operating on the subsystem clock and the peripheral hardware clock is stopped. For details, see CHAPTER 31 CAUTIONS FOR WAIT.

(8) Controller

This circuit controls the conversion time of an input analog signal that is to be converted into a digital signal, as well as starting and stopping of the conversion operation. When A/D conversion has been completed, this controller generates INTAD.

(9) AVREF pin

This pin inputs an analog power/reference voltage to the A/D converter. When using at least one port of port 2 as a digital port or for segment output, set it to the same potential as the V_{DD} pin.

The signal input to ANI0 to ANI5 is converted into a digital signal, based on the voltage applied across AV_{REF} and AV_{SS}.

(10) AVss pin

This is the ground potential pin of the A/D converter. Always use this pin at the same potential as that of the Vss pin even when the A/D converter is not used.

(11) A/D converter mode register (ADM)

This register is used to set the conversion time of the analog input signal to be converted, and to start or stop the conversion operation.

(12) A/D port configuration register 0 (ADPC0)

This register switches the ANI0/P20 to ANI5/P25 pins to analog input of 10-bit successive approximation type A/D converter or digital I/O of port.

(13) Analog input channel specification register (ADS)

This register is used to specify the port that inputs the analog voltage to be converted into a digital signal.

(14) Port mode register 2 (PM2)

This register switches the ANI0/P20 to ANI5/P25 pins to input or output.

(15) Port function register 2 (PF2)

This register switches the ANI0/P20 to ANI5/P25 pins to I/O of port, analog input of A/D converter, or segment output.

Address:	FF8FH	After reset: C	8H R/W						
Symbol	7	6	5	4	3		2	1	0
ADPC0	0	0	0	0	0	ADF	PC02 A	DPC01	ADPC00
	ADPC02 ADPC01 ADPC00 Digital I/O (D)/analog input (A) switching								
				P25/ ANI5	P24/ ANI4	P23/ ANI3	P22/ ANI2	P21/ ANI1	P20/ ANI0
	0	0	0	А	А	A	А	A	А
	0	0	1	А	А	А	А	A	D
	0	1	0	А	A	A	Α	D	D
	0	1	1	А	A	A	D	D	D
	1	0	0	А	A	D	D	D	D
	1	0	1	А	D	D	D	D	D

Figure 12-9. Format of A/D Port Configuration Register 0 (ADPC0)

Cautions 1. Set the channel used for A/D conversion to the input mode by using port mode register 2 (PM2).

Setting prohibited

2. Do not set the pin set by ADPC0 as digital I/O by ADS, ADDS1, or ADDS0.

D

0

3. If data is written to ADPC0, a wait cycle is generated. Do not write data to ADPC0 when the CPU is operating on the subsystem clock and the peripheral hardware clock is stopped. For details, see CHAPTER 31 CAUTIONS FOR WAIT.

D

D

D

D

D

4. If pins ANI0/P20/SEG23 to ANI5/P25/SEG18 are set to segment output pins via the PF2 register, output is set to segment output, regardless of the ADPC0 setting.

1

1

Other than above

(1) Receive buffer register 0 (RXB0)

This 8-bit register stores parallel data converted by receive shift register 0 (RXS0).

Each time 1 byte of data has been received, new receive data is transferred to this register from receive shift register 0 (RXS0).

If the data length is set to 7 bits the receive data is transferred to bits 0 to 6 of RXB0 and the MSB of RXB0 is always 0.

If an overrun error (OVE0) occurs, the receive data is not transferred to RXB0.

RXB0 can be read by an 8-bit memory manipulation instruction. No data can be written to this register. Reset signal generation and POWER0 = 0 set this register to FFH.

(2) Receive shift register 0 (RXS0)

This register converts the serial data input to the RxD0 pin into parallel data. RXS0 cannot be directly manipulated by a program.

(3) Transmit shift register 0 (TXS0)

This register is used to set transmit data. Transmission is started when data is written to TXS0, and serial data is transmitted from the TxD0 pins.

TXS0 can be written by an 8-bit memory manipulation instruction. This register cannot be read. Reset signal generation, POWER0 = 0, and TXE0 = 0 set this register to FFH.

Cautions 1. Set transmit data to TXS0 at least one base clock (fxcLK0) after setting TXE0 = 1.

2. Do not write the next transmit data to TXS0 before the transmission completion interrupt signal (INTST0) is generated.

14.4.4 Calculation of baud rate

(1) Baud rate calculation expression

The baud rate can be calculated by the following expression.

• Baud rate = $\frac{f_{XCLK6}}{2 \times k}$ [bps]

fxclk6: Frequency of base clock selected by TPS63 to TPS60 bits of CKSR6 register

k: Value set by MDL67 to MDL60 bits of BRGC6 register (k = 4, 5, 6, ..., 255)

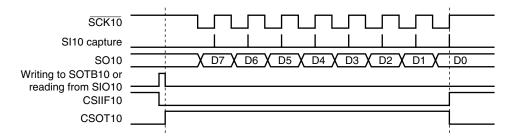

TPS63	TPS62	TPS61	TPS60		Base Clock (fxcLK6) Selection ^{Note 1}					
					f _{PRS} = 2 MHz	fprs = 5 MHz	f _{PRS} = 8 MHz	f _{PRS} = 10 MHz		
0	0	0	0	fprs ^{Note 2}	2 MHz	5 MHz	8 MHz	10 MHz		
0	0	0	1	fprs/2	1 MHz	2.5 MHz	4 MHz	5 MHz		
0	0	1	0	fprs/2 ²	500 kHz	1.25 MHz	2 MHz	2.5 MHz		
0	0	1	1	fprs/2 ³	250 kHz	625 kHz	1 MHz	1.25 MHz		
0	1	0	0	fprs/2 ⁴	125 kHz	312.5 kHz	500 kHz	625 kHz		
0	1	0	1	fprs/2⁵	62.5 kHz	156.25 kHz	250 kHz	312.5 kHz		
0	1	1	0	fprs/2 ⁶	31.25 kHz	78.13 kHz	125 kHz	156.25 kHz		
0	1	1	1	fprs/27	15.625 kHz	39.06 kHz	62.5 kHz	78.13 kHz		
1	0	0	0	fprs/2 ⁸	7.813 kHz	19.53 kHz	31.25 kHz	39.06 kHz		
1	0	0	1	fprs/2 ⁹	3.906 kHz	9.77 kHz	15.625 kHz	19.53 kHz		
1	0	1	0	fprs/2 ¹⁰	1.953 kHz	4.88 kHz	7.813 kHz	9.77 kHz		
1	0	1	1	TM50 or	utput ^{Note 3}					
	Other that	an above		Setting	prohibited					

Table 14-4. Set Value of TPS63 to TPS60

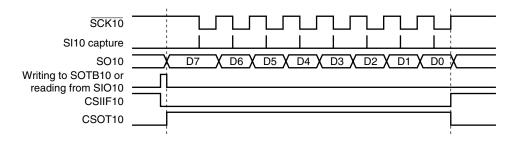
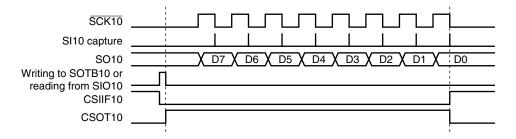
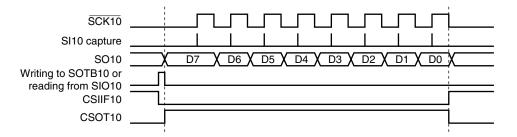
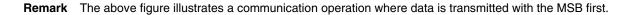

- **Notes 1.** If the peripheral hardware clock (fPRs) operates on the high-speed system clock (fXH) (XSEL = 1), the fPRs operating frequency varies depending on the supply voltage.
 - VDD = 2.7 to 5.5 V: fPRs \leq 10 MHz
 - VDD = 1.8 to 2.7 V: fprs \leq 5 MHz
 - 2. If the peripheral hardware clock (fPRS) operates on the internal high-speed oscillation clock (fRH) (XSEL = 0), when 1.8 V ≤ VDD < 2.7 V, the setting of TPS63 = TPS62 = TPS61 = TPS60 = 0 (base clock: fPRS) is prohibited.</p>
 - **3.** When selecting the TM50 output as the base clock, start the operation of 8-bit timer/event counter 50 first and then enable the timer F/F inversion operation (TMC501 = 1).

Figure 15-7. Timing of Clock/Data Phase


(a) Type 1: CKP10 = 0, DAP10 = 0, DIR10 = 0


(b) Type 2: CKP10 = 0, DAP10 = 1, DIR10 = 0



(c) Type 3: CKP10 = 1, DAP10 = 0, DIR10 = 0

(d) Type 4: CKP10 = 1, DAP10 = 1, DIR10 = 0

(3) LCD clock control register (LCDC0)

LCDC0 specifies the LCD source clock and LCD clock. The frame frequency is determined according to the LCD clock and the number of time slices. LCDC0 is set using a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets LCDC0 to 00H.

Figure 16-4. Format of LCD Clock Control Register

Address	Address: FFB2H After reset: 00H		0H R/W						
Symbol	7	6	5	4	3	2	1	0	
LCDC0	0	LCDC	6 LCDC5	LCDC4	0	LCDC2	LCDC1	LCDC0	1

LCDC6	LCDC5	LCDC4	LCD source clock (fLCD) selection
0	0	0	fхт (32.768 kHz)
0	0	1	fprs/2 ⁶
0	1	0	fprs/2 ⁷
0	1	1	fprs/2 ⁸
1	0	0	f _{RL} /2 ³
Other than abo	ove		Setting prohibited

LCDC2	LCDC1	LCDC0	LCD clock (LCDCL) selection
0	0	0	fLCD/2 ⁴
0	0	1	fLCD/2 ⁵
0	1	0	fLCD/2 ⁶
0	1	1	flcd/2 ⁷
1	0	0	fLCD/2 ⁸
1	0	1	fLCD/2º
Other than abo	ove		Setting prohibited

Caution Bits 3 and 7 must be set to 0.

- Remarks 1. fxT: XT1 clock oscillation frequency
 - 2. fPRS: Peripheral hardware clock frequency
 - 3. fr.L: Internal low-speed oscillation clock frequency

18.4 Operation of Remote Controller Receiver

The following remote controller reception mode is used for this remote controller receiver.

• Type A reception mode with guide pulse (half clock)

18.4.1 Format of type A reception mode

Figure 18-6 shows the data format for type A.

0.6 ms 1.8 ms 2.4 ms 2 ms RIN Data Data Data Data Data Data Data Data Data Guide pulse "0' "0' "0" "0 "0" "0" "O INTRIN INTGP INTDFULL INTREND RMDLL RMER

Figure 18-6. Example of Type A Data Format

18.4.2 Operation flow of type A reception mode

Figure 18-7 shows the operation flow.

- Cautions 1. When INTRERR is generated, RMSR and RMSCR are automatically cleared immediately.
 - 2. When data has been set to all the bits of RMSR, the following processing is automatically performed.
 - The value of RMSR is transferred to RMDR.
 - INTDFULL is generated.
 - RMSR is cleared.

RMDR must then be read before the next data is set to all the bits of RMSR.

- 3. When INTREND has been generated, read RMSCR first followed by RMSR. When RMSR has been read, RMSCR and RMSR are automatically cleared. If INTREND is generated, the next data cannot be received until RMSR is read.
- 4. RMSR, RMSCR, and RMDR are cleared simultaneously to operation termination (RMEN = 0).

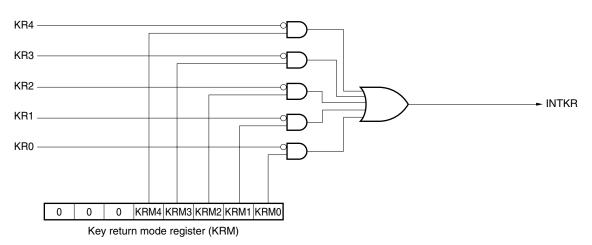
CHAPTER 20 KEY INTERRUPT FUNCTION

20.1 Functions of Key Interrupt

A key interrupt (INTKR) can be generated by setting the key return mode register (KRM) and inputting a falling edge to the key interrupt input pins (KR0 to KR4).

Flag	Description
KRM0	Controls KR0 signal in 1-bit units.
KRM1	Controls KR1 signal in 1-bit units.
KRM2	Controls KR2 signal in 1-bit units.
KRM3	Controls KR3 signal in 1-bit units.
KRM4	Controls KR4 signal in 1-bit units.

Table 20-1. Assignment of Key Interrupt Detection Pins


20.2 Configuration of Key Interrupt

The key interrupt includes the following hardware.

Table 20-2. Configuration of Key Interrupt

Item	Configuration
Control register	Key return mode register (KRM)

Release Source	MK××	PR××	IE	ISP	Operation
Maskable interrupt request	0	0	0	×	Next address instruction execution
	0	0	1	×	Interrupt servicing execution
	0	1	0	1	Next address
	0	1	×	0	instruction execution
	0	1	1	1	Interrupt servicing execution
	1	×	×	×	HALT mode held
Reset	-	_	×	×	Reset processing

Table 21-2. Operation in Response to Interrupt Request in HALT Mode

×: don't care

21.2.2 STOP mode

(1) STOP mode setting and operating statuses

The STOP mode is set by executing the STOP instruction, and it can be set only when the CPU clock before the setting was the main system clock.

Caution Because the interrupt request signal is used to clear the standby mode, if there is an interrupt source with the interrupt request flag set and the interrupt mask flag reset, the standby mode is immediately cleared if set. Thus, the STOP mode is reset to the HALT mode immediately after execution of the STOP instruction and the system returns to the operating mode as soon as the wait time set using the oscillation stabilization time select register (OSTS) has elapsed.

The operating statuses in the STOP mode are shown below.

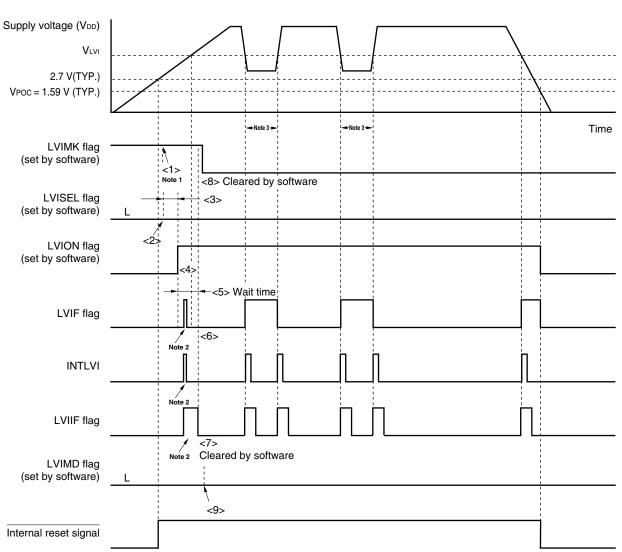


Figure 24-7. Timing of Low-Voltage Detector Interrupt Signal Generation (Detects Level of Supply Voltage (VDD)) (2/2)

Notes 1. The LVIMK flag is set to "1" by reset signal generation.

- 2. The interrupt request signal (INTLVI) is generated and the LVIF and LVIIF flags may be set (1).
- **3.** If LVION is cleared (0) in a state below the LVI detection voltage, an INTLVI signal is generated and LVIIF becomes 1.
- **Remark** <1> to <9> in Figure 24-7 above correspond to <1> to <9> in the description of "When starting operation" in **24.4.2 (1) When detecting level of supply voltage (V**_{DD}).

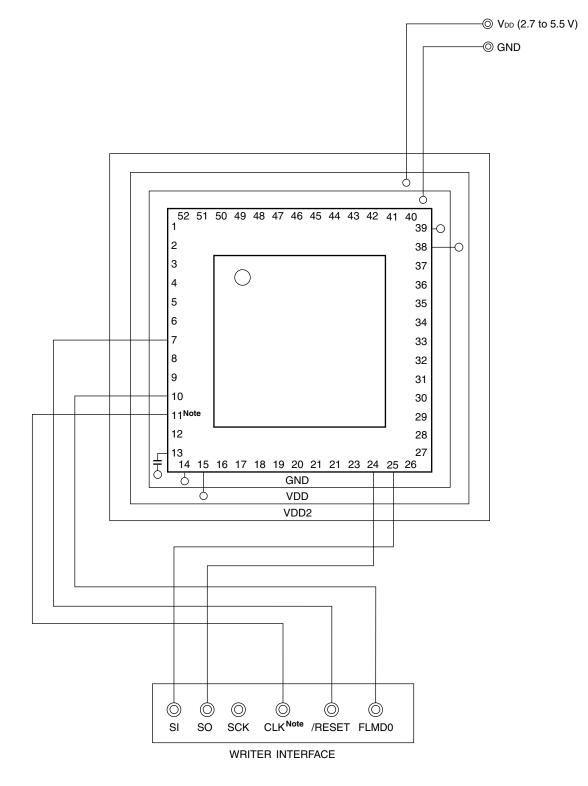


Figure 26-3. Example of Wiring Adapter for Flash Memory Writing in UART (UART6) Mode

Note The above figure illustrates an example of wiring when using the clock output from the PG-FP4 or FL-PR4. When using the clock output from the PG-FPL3 or FP-LITE3, connect CLK to X1/P121 (pin 12), and connect its inverted signal to X2/EXCLK/P122 (pin 11).

28.3 Instructions Listed by Addressing Type

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second Operand First Operand	#byte	A	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte] [HL + B] [HL + C]	\$addr16	1	None
A	ADD ADDC SUB SUBC AND OR XOR CMP		MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV	MOV XCH	MOV XCH ADD SUB SUBC AND OR XOR CMP	MOV XCH ADD SUB SUBC AND OR XOR CMP		ROR ROL RORC ROLC	
r	MOV	MOV ADD ADDC SUB SUBC AND OR XOR CMP											INC DEC
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV ADD ADDC SUB SUBC AND OR XOR CMP	MOV									DBNZ		INC DEC
!addr16		MOV											
PSW	MOV	MOV											PUSH POP
[DE]		MOV											
[HL]		MOV											ROR4 ROL4
[HL + byte] [HL + B] [HL + C]		MOV											
х													MULU
С													DIVUW

Standard products

X1 Oscillator Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Resonator	Recommended Circuit	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		X1 clock oscillation frequency (fx) ^{Note}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2.0		10.0	MHz
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2.0		5.0	
Crystal resonator		X1 clock oscillation frequency (fx) ^{Note}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	2.0		10.0	MHz
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	2.0		5.0	

Note Indicates only oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Cautions 1. When using the X1 oscillator, wire as follows in the area enclosed by the broken lines in the above figures to avoid an adverse effect from wiring capacitance.

- Keep the wiring length as short as possible.
- Do not cross the wiring with the other signal lines.
- Do not route the wiring near a signal line through which a high fluctuating current flows.
- Always make the ground point of the oscillator capacitor the same potential as Vss.
- Do not ground the capacitor to a ground pattern through which a high current flows.
- Do not fetch signals from the oscillator.
- 2. Since the CPU is started by the internal high-speed oscillation clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- **Remark** For the resonator selection and oscillator constant, customers are requested to either evaluate the oscillation themselves or apply to the resonator manufacturer for evaluation.

Standard products

(c) CSI10 (Master mode, SCK10... internal clock output)

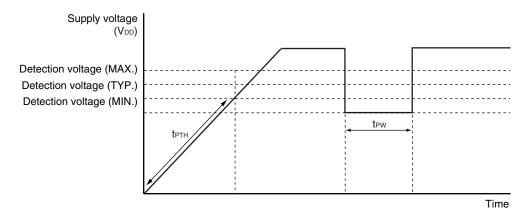
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tkcy1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	250			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	500			ns
SCK10 high-/low-level width	tкнı, tк∟ı	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	tkcy1/2 – 25 ^{Note 1}			ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$	tkCY1/2 - 50 ^{Note 1}			ns
SI10 setup time (to SCK10↑)	tsik1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	80			ns
		$1.8~V \leq V_{\text{DD}} < 2.7~V$	170			ns
SI10 hold time (from $\overline{\text{SCK10}}$)	tksi1		30			ns
Delay time from SCK10↓ to SO10 output	tkso1	$C = 50 \text{ pF}^{Note 2}$			40	ns

Notes 1. This value is when high-speed system clock (fxH) is used.

2. C is the load capacitance of the $\overline{SCK10}$ and SO10 output lines.

(d) CSI10 (Slave mode, SCK10... external clock input)

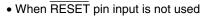
Parameter	Symbol	C	onditions	MIN.	TYP.	MAX.	Unit
SCK10 cycle time	tKCY2			400			ns
SCK10 high-/low-level width	tкн2,			tксү2/2			ns
	tĸ∟2						
SI10 setup time (to $\overline{\text{SCK10}}$)	tsik2			80			ns
SI10 hold time (from SCK10↑)	tksi2			50			ns
Delay time from $\overline{\text{SCK10}}\downarrow$ to	tĸso2	C = 50 pF	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			120	ns
SO10 output		Note	$1.8~V \leq V_{\text{DD}} < 2.7~V$			165	ns

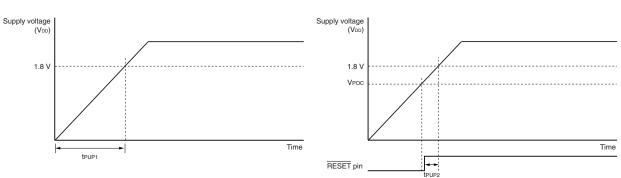

Note C is the load capacitance of the SO10 output line.

Standard products

1.59 V POC Circuit Characteristics (T_A = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOC		1.44	1.59	1.74	V
Power supply voltage rise inclination	tртн	$V_{\text{DD}}\text{: }0V\rightarrow \text{change inclination of }V_{\text{POC}}$	0.5			V/ms
Minimum pulse width	tew		200			μs


POC Circuit Timing



Supply Voltage Rise Time (T_A = -40 to +85°C, V_{SS} = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Maximum time to rise to 1.8 V (V_{DD} (MIN.)) (V_{DD}: 0 V \rightarrow 1.8 V)	t pup1	POCMODE (option byte) = 0, when RESET input is not used			3.6	ms
$\begin{array}{l} \mbox{Maximum time to rise to 1.8 V (V_{DD} (MIN.))} \\ \mbox{(releasing $\overline{\mbox{RESET}}$ input \rightarrow V_{DD}$: 1.8 V)} \end{array}$	tpup2	POCMODE (option byte) = 0, when $\overrightarrow{\text{RESET}}$ input is used			1.9	ms

Supply Voltage Rise Time Timing

• When RESET pin input is used

2.7 V POC Circuit Characteristics (TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage on application of supply voltage	VDDPOC	POCMODE (option bye) = 1	2.50	2.70	2.90	V