




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                      |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 48MHz                                                                 |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, TSI, UART/USART                        |
| Peripherals                | Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT                       |
| Number of I/O              | 28                                                                    |
| Program Memory Size        | 32KB (32K x 8)                                                        |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | -                                                                     |
| RAM Size                   | 4K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                          |
| Data Converters            | A/D 9x16b; D/A 1x12b                                                  |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                    |
| Mounting Type              | Surface Mount, Wettable Flank                                         |
| Package / Case             | 32-VFQFN Exposed Pad                                                  |
| Supplier Device Package    | 32-HVQFN (5x5)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl15z32vfm4r |
|                            |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 Ordering parts

# 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PKL15 and MKL15

# 2 Part identification

## 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

# 2.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

# 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description               | Values                                                                                         |
|-------|---------------------------|------------------------------------------------------------------------------------------------|
| Q     | Qualification status      | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul>     |
| KL##  | Kinetis family            | • KL15                                                                                         |
| A     | Key attribute             | • Z = Cortex-M0+                                                                               |
| FFF   | Program flash memory size | <ul> <li>32 = 32 KB</li> <li>64 = 64 KB</li> <li>128 = 128 KB</li> <li>256 = 256 KB</li> </ul> |

Table continues on the next page ....

# 3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

## 3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

| Symbol          | Description                                  | Min. | Max. | Unit |
|-----------------|----------------------------------------------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak pullup/<br>pulldown current | 10   | 130  | μΑ   |

# 3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

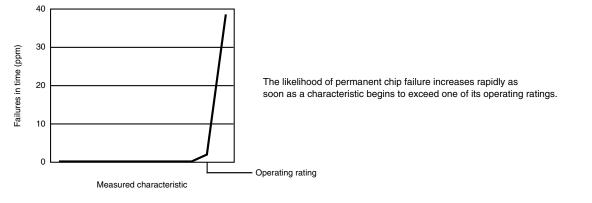
## 3.3.1 Example

This is an example of an attribute:

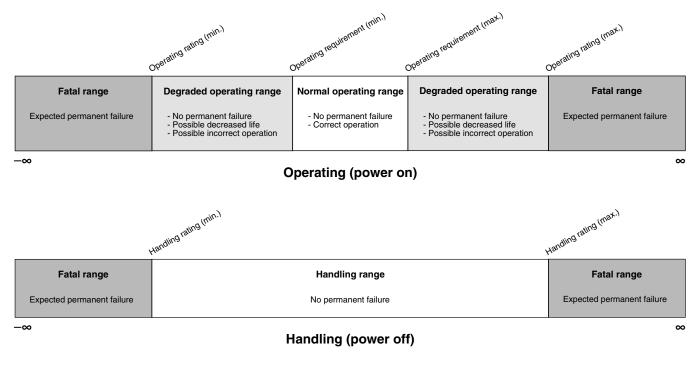
| Symbol | Description                        | Min. | Max. | Unit |
|--------|------------------------------------|------|------|------|
| CIN_D  | Input capacitance:<br>digital pins | —    | 7    | pF   |

# 3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

## 3.4.1 Example


This is an example of an operating rating:

| Symbol          | Description               | Min. | Max. | Unit |
|-----------------|---------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply voltage | -0.3 | 1.2  | V    |

# 3.5 Result of exceeding a rating



# 3.6 Relationship between ratings and operating requirements



## 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

## 3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10   | 70   | 130  | μΑ   |

## 3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

| Symbol              | Description                                                                                                                                                                                                                                              | Min.     | Max.    | Unit | Notes |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|------|-------|
| I <sub>ICDIO</sub>  | Digital pin negative DC injection current — single pin<br>• V <sub>IN</sub> < V <sub>SS</sub> -0.3V                                                                                                                                                      | -5       | _       | mA   | 1     |
| I <sub>ICAIO</sub>  | <ul> <li>Analog<sup>2</sup> pin DC injection current — single pin</li> <li>V<sub>IN</sub> &lt; V<sub>SS</sub>-0.3V (Negative current injection)</li> <li>V<sub>IN</sub> &gt; V<sub>DD</sub>+0.3V (Positive current injection)</li> </ul>                 | -5       | <br>+5  | mA   | 3     |
| I <sub>ICcont</sub> | <ul> <li>Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins</li> <li>Negative current injection</li> <li>Positive current injection</li> </ul> | -25<br>— | <br>+25 | mA   |       |
| V <sub>RAM</sub>    | V <sub>DD</sub> voltage required to retain RAM                                                                                                                                                                                                           | 1.2      | —       | V    |       |

#### Table 1. Voltage and current operating requirements (continued)

- All digital I/O pins are internally clamped to V<sub>SS</sub> through a ESD protection diode. There is no diode connection to V<sub>DD</sub>. If V<sub>IN</sub> greater than V<sub>DIO\_MIN</sub> (=V<sub>SS</sub>-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V<sub>DIO\_MIN</sub>-V<sub>IN</sub>)/|I<sub>IC</sub>|.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 3. All analog pins are internally clamped to  $V_{SS}$  and  $V_{DD}$  through ESD protection diodes. If  $V_{IN}$  is greater than  $V_{AIO\_MIN}$  (= $V_{SS}$ -0.3V) and  $V_{IN}$  is less than  $V_{AIO\_MAX}$ (= $V_{DD}$ +0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=( $V_{AIO\_MIN}$ - $V_{IN}$ )/II<sub>IC</sub>I. The positive injection current limiting resistor is calculated as R=( $V_{AIO\_MIN}$ - $V_{IN}$ )/II<sub>IC</sub>I. The positive injection current limiting resistor is calculated as R=( $V_{IN}$ - $V_{AIO\_MAX}$ )/II<sub>IC</sub>I. Select the larger of these two calculated resistances.

## 5.2.2 LVD and POR operating requirements

| Symbol             | Description                                                 | Min. | Тур. | Max. | Unit | Notes |
|--------------------|-------------------------------------------------------------|------|------|------|------|-------|
| V <sub>POR</sub>   | Falling VDD POR detect voltage                              | 0.8  | 1.1  | 1.5  | V    |       |
| V <sub>LVDH</sub>  | Falling low-voltage detect threshold — high range (LVDV=01) | 2.48 | 2.56 | 2.64 | V    |       |
|                    | Low-voltage warning thresholds — high range                 |      |      |      |      | 1     |
| V <sub>LVW1H</sub> | Level 1 falling (LVWV=00)                                   | 2.62 | 2.70 | 2.78 | V    |       |
| V <sub>LVW2H</sub> | Level 2 falling (LVWV=01)                                   | 2.72 | 2.80 | 2.88 | V    |       |
| V <sub>LVW3H</sub> | Level 3 falling (LVWV=10)                                   | 2.82 | 2.90 | 2.98 | V    |       |
| V <sub>LVW4H</sub> | Level 4 falling (LVWV=11)                                   | 2.92 | 3.00 | 3.08 | V    |       |
| V <sub>HYSH</sub>  | Low-voltage inhibit reset/recover hysteresis — high range   | _    | ±60  | _    | mV   |       |
| V <sub>LVDL</sub>  | Falling low-voltage detect threshold — low range (LVDV=00)  | 1.54 | 1.60 | 1.66 | V    |       |

Table continues on the next page...

## 5.2.5 Power consumption operating behaviors

Table 5. Power consumption operating behaviors

| Symbol                    | Description                                                                                                                                                                                                  | Min. | Тур. | Max.     | Unit | Notes |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|------|-------|
| I <sub>DDA</sub>          | Analog supply current                                                                                                                                                                                        | _    | —    | See note | mA   | 1     |
| I <sub>DD_RUNCO_</sub> CM | Run mode current in compute operation - 48<br>MHz core / 24 MHz flash/ bus disabled, LPTMR<br>running using 4MHz internal reference clock,<br>CoreMark® benchmark code executing from<br>flash<br>• at 3.0 V | _    | 6.4  | _        | mA   | 2     |
| I <sub>DD_RUNCO</sub>     | Run mode current in compute operation - 48<br>MHz core / 24 MHz flash / bus clock disabled,<br>code of while(1) loop executing from flash<br>• at 3.0 V                                                      |      | 4.1  | 5.2      | mA   | 3     |
|                           |                                                                                                                                                                                                              |      |      |          |      |       |
| I <sub>DD_RUN</sub>       | Run mode current - 48 MHz core / 24 MHz bus<br>and flash, all peripheral clocks disabled, code of<br>while(1) loop executing from flash<br>• at 3.0 V                                                        | _    | 5.1  | 6.3      | mA   | 3     |
|                           |                                                                                                                                                                                                              |      |      |          |      |       |
| I <sub>DD_RUN</sub>       | Run mode current - 48 MHz core / 24 MHz bus<br>and flash, all peripheral clocks enabled, code of<br>while(1) loop executing from flash                                                                       |      |      |          |      | 3, 4, |
|                           | • at 3.0 V                                                                                                                                                                                                   |      |      |          |      |       |
|                           | • at 25 °C                                                                                                                                                                                                   | —    | 6.4  | 7.8      | mA   |       |
|                           | • at 125 °C                                                                                                                                                                                                  | _    | 6.8  | 8.3      | mA   |       |
| I <sub>DD_WAIT</sub>      | Wait mode current - core disabled / 48 MHz<br>system / 24 MHz bus / flash disabled (flash doze<br>enabled), all peripheral clocks disabled<br>• at 3.0 V                                                     |      | 3.7  | 5.0      | mA   | 3     |
| I <sub>DD_WAIT</sub>      | Wait mode current - core disabled / 24 MHz<br>system / 24 MHz bus / flash disabled (flash doze<br>enabled), all peripheral clocks disabled<br>• at 3.0 V                                                     |      | 2.9  | 4.2      | mA   | 3     |
| I <sub>DD_PSTOP2</sub>    | Stop mode current with partial stop 2 clocking<br>option - core and system disabled / 10.5 MHz<br>bus<br>• at 3.0 V                                                                                          | _    | 2.5  | 3.7      | mA   | 3     |
| I <sub>DD_VLPRCO</sub>    | Very low power run mode current in compute<br>operation - 4 MHz core / 0.8 MHz flash / bus<br>clock disabled, code of while(1) loop executing<br>from flash<br>• at 3.0 V                                    |      | 188  | 570      | μA   | 5     |
| I <sub>DD_VLPR</sub>      | Very low power run mode current - 4 MHz core /<br>0.8 MHz bus and flash, all peripheral clocks<br>disabled, code of while(1) loop executing from<br>flash<br>• at 3.0 V                                      |      | 224  | 613      | μA   | 5     |

Table continues on the next page ...

#### Peripheral operating requirements and behaviors

| Symbol                   | Description                                                                                                                                        |                                                    | Min.   | Тур.      | Max.                                                          | Unit     | Notes |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------|-----------|---------------------------------------------------------------|----------|-------|
| f <sub>dco_t_DMX32</sub> | DCO output<br>frequency                                                                                                                            | Low range (DRS = 00)<br>732 × f <sub>fll_ref</sub> | —      | 23.99     | -                                                             | MHz      | 5, 6  |
|                          |                                                                                                                                                    | Mid range (DRS = 01)<br>1464 $\times f_{fll ref}$  | _      | 47.97     | -                                                             | MHz      | -     |
| J <sub>cyc_fll</sub>     | FLL period jitter<br>• f <sub>VCO</sub> = 48 M                                                                                                     |                                                    | _      | 180       | -                                                             | ps       | 7     |
| t <sub>fll_acquire</sub> | FLL target frequency acquisition time                                                                                                              |                                                    | _      | _         | 1                                                             | ms       | 8     |
|                          |                                                                                                                                                    | PL                                                 | L      |           |                                                               |          |       |
| f <sub>vco</sub>         | VCO operating fre                                                                                                                                  | 48.0                                               | _      | 100       | MHz                                                           |          |       |
| I <sub>pll</sub>         | PLL operating cur<br>PLL at 96 M<br>MHz, VDIV                                                                                                      | _                                                  | 1060   | -         | μΑ                                                            | 9        |       |
| I <sub>pll</sub>         | <ul> <li>PLL operating current</li> <li>PLL at 48 MHz (f<sub>osc_hi_1</sub> = 8 MHz, f<sub>pll_ref</sub> = 2 MHz, VDIV multiplier = 24)</li> </ul> |                                                    | _      | 600       | -                                                             | μΑ       | 9     |
| f <sub>pll_ref</sub>     | PLL reference free                                                                                                                                 | quency range                                       | 2.0    | _         | 4.0                                                           | MHz      |       |
| J <sub>cyc_pll</sub>     | PLL period jitter (F<br>• f <sub>vco</sub> = 48 MH<br>• f <sub>vco</sub> = 100 M                                                                   | lz                                                 | _      | 120<br>50 | _                                                             | ps<br>ps | 10    |
| J <sub>acc_pll</sub>     | PLL accumulated<br>• f <sub>vco</sub> = 48 MH                                                                                                      | jitter over 1µs (RMS)<br>Iz                        |        | 1350      | _                                                             | ps       | 10    |
|                          | • f <sub>vco</sub> = 100 M                                                                                                                         | Hz                                                 | _      | 600       | _                                                             | ps       |       |
| D <sub>lock</sub>        | Lock entry frequer                                                                                                                                 | ncy tolerance                                      | ± 1.49 | —         | ± 2.98                                                        | %        |       |
| D <sub>unl</sub>         | Lock exit frequence                                                                                                                                | y tolerance                                        | ± 4.47 | —         | ± 5.97                                                        | %        |       |
| t <sub>pll_lock</sub>    | Lock detector dete                                                                                                                                 | ection time                                        | _      | —         | 150 × 10 <sup>-6</sup><br>+ 1075(1/<br>f <sub>pll_ref</sub> ) | S        | 11    |

#### Table 12. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal  $V_{DD}$  and 25 °C,  $f_{ints_{-}ft}$ .
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco t</sub>) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

9. Excludes any oscillator currents that are also consuming power while PLL is in operation.

- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

| Symbol                       | Description                                                                                            | Min. | Тур.            | Max. | Unit | Notes |
|------------------------------|--------------------------------------------------------------------------------------------------------|------|-----------------|------|------|-------|
| R <sub>S</sub>               | Series resistor — low-frequency, low-power mode (HGO=0)                                                | —    | _               | _    | kΩ   |       |
|                              | Series resistor — low-frequency, high-gain mode (HGO=1)                                                | —    | 200             | _    | kΩ   |       |
|                              | Series resistor — high-frequency, low-power mode (HGO=0)                                               | —    |                 |      | kΩ   |       |
|                              | Series resistor — high-frequency, high-gain<br>mode (HGO=1)                                            |      |                 |      |      |       |
|                              |                                                                                                        | —    | 0               | _    | kΩ   |       |
| V <sub>pp</sub> <sup>5</sup> | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, low-power mode<br>(HGO=0)  | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — low-frequency, high-gain mode<br>(HGO=1)  | _    | V <sub>DD</sub> | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, low-power mode<br>(HGO=0) | _    | 0.6             | _    | V    |       |
|                              | Peak-to-peak amplitude of oscillation (oscillator<br>mode) — high-frequency, high-gain mode<br>(HGO=1) |      | V <sub>DD</sub> | _    | V    |       |

### Table 13. Oscillator DC electrical specifications (continued)

- 1.  $V_{DD}$ =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C<sub>x</sub>,C<sub>y</sub> can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected,  $R_F$  is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

### 6.3.2.2 Oscillator frequency specifications Table 14. Oscillator frequency specifications

| Symbol                | Description                                                                                           | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| f <sub>osc_lo</sub>   | Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)                     | 32   | _    | 40   | kHz  |       |
| f <sub>osc_hi_1</sub> | Oscillator crystal or resonator frequency — high<br>frequency mode (low range)<br>(MCG_C2[RANGE]=01)  | 3    | _    | 8    | MHz  |       |
| f <sub>osc_hi_2</sub> | Oscillator crystal or resonator frequency — high<br>frequency mode (high range)<br>(MCG_C2[RANGE]=1x) | 8    | _    | 32   | MHz  |       |
| f <sub>ec_extal</sub> | Input clock frequency (external clock mode)                                                           | —    | _    | 48   | MHz  | 1, 2  |
| t <sub>dc_extal</sub> | Input clock duty cycle (external clock mode)                                                          | 40   | 50   | 60   | %    |       |

Table continues on the next page...

| Symbol           | Description                                                                                  | Min. | Тур. | Max. | Unit | Notes |
|------------------|----------------------------------------------------------------------------------------------|------|------|------|------|-------|
| t <sub>cst</sub> | Crystal startup time — 32 kHz low-frequency,<br>low-power mode (HGO=0)                       | _    | 750  | _    | ms   | 3, 4  |
|                  | Crystal startup time — 32 kHz low-frequency,<br>high-gain mode (HGO=1)                       | _    | 250  |      | ms   |       |
|                  | Crystal startup time — 8 MHz high-frequency<br>(MCG_C2[RANGE]=01), low-power mode<br>(HGO=0) | _    | 0.6  | _    | ms   |       |
|                  | Crystal startup time — 8 MHz high-frequency<br>(MCG_C2[RANGE]=01), high-gain mode<br>(HGO=1) | _    | 1    | _    | ms   |       |

Table 14. Oscillator frequency specifications (continued)

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG\_S register being set.

## 6.4 Memories and memory interfaces

### 6.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

### 6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

| Symbol                | Description                        | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|------------------------------------|------|------|------|------|-------|
| t <sub>hvpgm4</sub>   | Longword Program high-voltage time | —    | 7.5  | 18   | μs   |       |
| t <sub>hversscr</sub> | Sector Erase high-voltage time     | _    | 13   | 113  | ms   | 1     |
| t <sub>hversall</sub> | Erase All high-voltage time        | —    | 52   | 452  | ms   | 1     |

Table 15. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

Peripheral operating requirements and behaviors

### 6.4.1.2 Flash timing specifications — commands Table 16. Flash command timing specifications

| Symbol                | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------|------|------|------|------|-------|
| t <sub>rd1sec1k</sub> | Read 1s Section execution time (flash sector) | _    | —    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>   | Program Check execution time                  | _    | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>   | Read Resource execution time                  | _    | —    | 30   | μs   | 1     |
| t <sub>pgm4</sub>     | Program Longword execution time               | _    | 65   | 145  | μs   |       |
| t <sub>ersscr</sub>   | Erase Flash Sector execution time             | _    | 14   | 114  | ms   | 2     |
| t <sub>rd1all</sub>   | Read 1s All Blocks execution time             | _    | —    | 1.8  | ms   |       |
| t <sub>rdonce</sub>   | Read Once execution time                      | _    | —    | 25   | μs   | 1     |
| t <sub>pgmonce</sub>  | Program Once execution time                   | _    | 65   | _    | μs   |       |
| t <sub>ersall</sub>   | Erase All Blocks execution time               | _    | 62   | 500  | ms   | 2     |
| t <sub>vfykey</sub>   | Verify Backdoor Access Key execution time     | _    | —    | 30   | μs   | 1     |

1. Assumes 25MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

### 6.4.1.3 Flash high voltage current behaviors Table 17. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation | —    | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       |      | 1.5  | 4.0  | mA   |

## 6.4.1.4 Reliability specifications

### Table 18. NVM reliability specifications

| Symbol                  | Description                            | Min. | Typ. <sup>1</sup> | Max. | Unit   | Notes |  |  |  |  |  |
|-------------------------|----------------------------------------|------|-------------------|------|--------|-------|--|--|--|--|--|
|                         | Program Flash                          |      |                   |      |        |       |  |  |  |  |  |
| t <sub>nvmretp10k</sub> | Data retention after up to 10 K cycles | 5    | 50                | _    | years  |       |  |  |  |  |  |
| t <sub>nvmretp1k</sub>  | Data retention after up to 1 K cycles  | 20   | 100               | _    | years  |       |  |  |  |  |  |
| n <sub>nvmcycp</sub>    | Cycling endurance                      | 10 K | 50 K              |      | cycles | 2     |  |  |  |  |  |

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C  $\leq$  T<sub>i</sub>  $\leq$  125°C.

# 6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

# 6.6 Analog

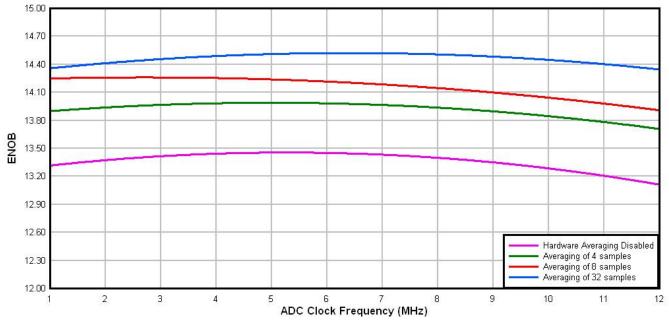
## 6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 19 and Table 20 are achievable on the differential pins ADCx\_DP0, ADCx\_DM0.

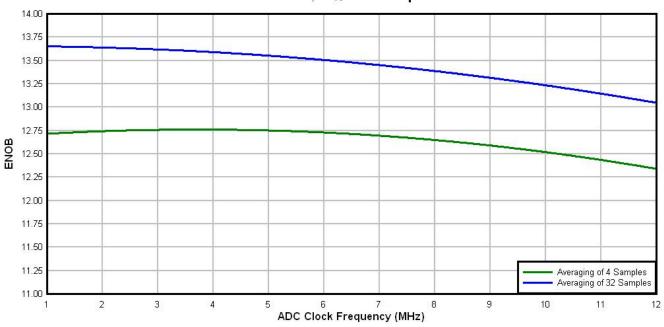
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

| Symbol                          | Description                       | Conditions                                                                                                        | Min.              | Typ. <sup>1</sup> | Max.              | Unit | Notes |  |
|---------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|------|-------|--|
| V <sub>DDA</sub>                | Supply voltage                    | Absolute                                                                                                          | 1.71              | _                 | 3.6               | V    |       |  |
| $\Delta V_{DDA}$                | Supply voltage                    | Delta to V <sub>DD</sub> (V <sub>DD</sub> -V <sub>DDA</sub> )                                                     | -100              | 0                 | +100              | mV   | 2     |  |
| $\Delta V_{SSA}$                | Ground voltage                    | Delta to V <sub>SS</sub> (V <sub>SS</sub> - V <sub>SSA</sub> )                                                    | -100              | 0                 | +100              | mV   | 2     |  |
| V <sub>REFH</sub>               | ADC reference voltage high        |                                                                                                                   | 1.13              | V <sub>DDA</sub>  | V <sub>DDA</sub>  | V    | 3     |  |
| V <sub>REFL</sub>               | ADC reference<br>voltage low      |                                                                                                                   | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V <sub>SSA</sub>  | V    | 3     |  |
| V <sub>ADIN</sub> Input voltage |                                   |                                                                                                                   | V <sub>REFL</sub> | _                 | V <sub>REFH</sub> | V    |       |  |
| C <sub>ADIN</sub>               | Input capacitance                 | 16-bit mode                                                                                                       | _                 | 8                 | 10                | pF   |       |  |
|                                 |                                   | • 8-/10-/12-bit modes                                                                                             | _                 | 4                 | 5                 |      |       |  |
| R <sub>ADIN</sub>               | Input resistance                  |                                                                                                                   | _                 | 2                 | 5                 | kΩ   |       |  |
| R <sub>AS</sub>                 | Analog source<br>resistance       | 13-/12-bit modes<br>f <sub>ADCK</sub> < 4 MHz                                                                     | _                 | _                 | 5                 | kΩ   | 4     |  |
| f <sub>ADCK</sub>               | ADC conversion<br>clock frequency | ≤ 1312-bit mode                                                                                                   | 1.0               |                   | 18.0              | MHz  | 5     |  |
| f <sub>ADCK</sub>               | ADC conversion<br>clock frequency | 16-bit mode                                                                                                       | 2.0               | _                 | 12.0              | MHz  | 5     |  |
| C <sub>rate</sub>               | ADC conversion<br>rate            | ≤ 1312 bit modes<br>No ADC hardware averaging<br>Continuous conversions<br>enabled, subsequent<br>conversion time | 20.000            |                   | 818.330           | Ksps | 6     |  |

### 6.6.1.1 16-bit ADC operating conditions Table 19. 16-bit ADC operating conditions


Table continues on the next page...

| Symbol              | Description            | Conditions <sup>1</sup>                         | Min. | Typ. <sup>2</sup>                 | Max. | Unit  | Notes                                                                                                                |
|---------------------|------------------------|-------------------------------------------------|------|-----------------------------------|------|-------|----------------------------------------------------------------------------------------------------------------------|
| E <sub>IL</sub>     | Input leakage<br>error |                                                 |      | I <sub>In</sub> × R <sub>AS</sub> |      | mV    | I <sub>In</sub> =<br>leakage<br>current<br>(refer to<br>the MCU's<br>voltage<br>and current<br>operating<br>ratings) |
|                     | Temp sensor<br>slope   | Across the full temperature range of the device | _    | 1.715                             | _    | mV/°C |                                                                                                                      |
| V <sub>TEMP25</sub> | Temp sensor<br>voltage | 25 °C                                           | —    | 719                               | —    | mV    |                                                                                                                      |


### Table 20. 16-bit ADC characteristics ( $V_{REFH} = V_{DDA}$ , $V_{REFL} = V_{SSA}$ ) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with  $V_{\mathsf{REFH}}$  =  $V_{\mathsf{DDA}}$
- Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25°C, f<sub>ADCK</sub> = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB =  $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

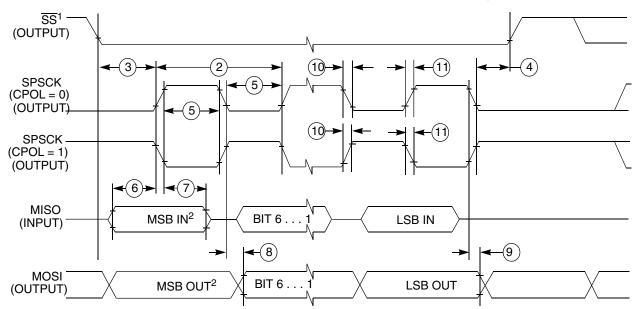






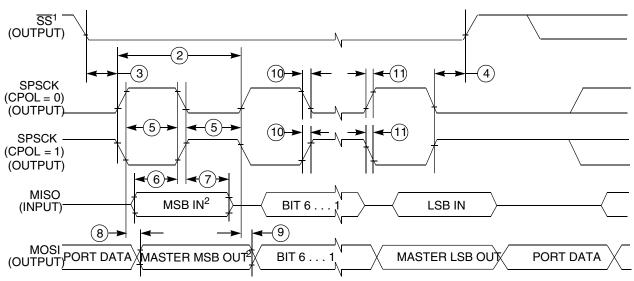


Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input


Figure 8. Typical ENOB vs. ADC\_CLK for 16-bit single-ended mode

### 6.6.2 CMP and 6-bit DAC electrical specifications Table 21. Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                                            | Min.                  | Тур. | Max.            | Unit |
|--------------------|--------------------------------------------------------|-----------------------|------|-----------------|------|
| V <sub>DD</sub>    | Supply voltage                                         | 1.71                  |      | 3.6             | V    |
| I <sub>DDHS</sub>  | Supply current, high-speed mode (EN = 1, PMODE = 1)    | _                     | _    | 200             | μA   |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN = 1, PMODE = 0)     |                       | _    | 20              | μA   |
| V <sub>AIN</sub>   | Analog input voltage                                   | V <sub>SS</sub>       | _    | V <sub>DD</sub> | V    |
| V <sub>AIO</sub>   | Analog input offset voltage                            |                       | _    | 20              | mV   |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>              |                       |      |                 |      |
|                    | • CR0[HYSTCTR] = 00                                    | _                     | 5    | _               | mV   |
|                    | • CR0[HYSTCTR] = 01                                    | _                     | 10   | _               | mV   |
|                    | • CR0[HYSTCTR] = 10                                    | _                     | 20   | _               | mV   |
|                    | • CR0[HYSTCTR] = 11                                    | _                     | 30   | _               | mV   |
| V <sub>CMPOh</sub> | Output high                                            | V <sub>DD</sub> - 0.5 |      |                 | V    |
| V <sub>CMPOI</sub> | Output low                                             | _                     | _    | 0.5             | V    |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN = 1, PMODE = 1) | 20                    | 50   | 200             | ns   |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN = 1, PMODE = 0)  | 80                    | 250  | 600             | ns   |


Table continues on the next page ...

Peripheral operating requirements and behaviors



1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.





1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

### Figure 14. SPI master mode timing (CPHA = 1)

| Num. | Symbol              | Description                    | Min.                     | Max.                   | Unit                | Note |
|------|---------------------|--------------------------------|--------------------------|------------------------|---------------------|------|
| 1    | f <sub>op</sub>     | Frequency of operation         | 0                        | f <sub>periph</sub> /4 | Hz                  | 1    |
| 2    | t <sub>SPSCK</sub>  | SPSCK period                   | 4 x t <sub>periph</sub>  | _                      | ns                  | 2    |
| 3    | t <sub>Lead</sub>   | Enable lead time               | 1                        | _                      | t <sub>periph</sub> | —    |
| 4    | t <sub>Lag</sub>    | Enable lag time                | 1                        | _                      | t <sub>periph</sub> | —    |
| 5    | t <sub>WSPSCK</sub> | Clock (SPSCK) high or low time | t <sub>periph</sub> - 30 |                        | ns                  |      |

Table continues on the next page...

# 8.1 KL15 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

| 80<br>LQFP | 64<br>LQFP | 48<br>QFN | 32<br>QFN | Pin Name | Default                             | ALTO                                | ALT1  | ALT2      | ALT3     | ALT4       | ALT5      | ALT6            | ALT7    |
|------------|------------|-----------|-----------|----------|-------------------------------------|-------------------------------------|-------|-----------|----------|------------|-----------|-----------------|---------|
| 1          | 1          | -         | 1         | PTE0     | DISABLED                            |                                     | PTE0  |           | UART1_TX | RTC_CLKOUT | CMP0_OUT  | I2C1_SDA        |         |
| 2          | 2          | -         | 2         | PTE1     | DISABLED                            |                                     | PTE1  | SPI1_MOSI | UART1_RX |            | SPI1_MISO | I2C1_SCL        |         |
| 3          | -          | _         | _         | PTE2     | DISABLED                            |                                     | PTE2  | SPI1_SCK  |          |            |           |                 |         |
| 4          | -          | -         | _         | PTE3     | DISABLED                            |                                     | PTE3  | SPI1_MISO |          |            | SPI1_MOSI |                 |         |
| 5          | -          | -         | _         | PTE4     | DISABLED                            |                                     | PTE4  | SPI1_PCS0 |          |            |           |                 |         |
| 6          | -          | -         | _         | PTE5     | DISABLED                            |                                     | PTE5  |           |          |            |           |                 |         |
| 7          | 3          | 1         | _         | VDD      | VDD                                 | VDD                                 |       |           |          |            |           |                 |         |
| 8          | 4          | 2         | _         | VSS      | VSS                                 | VSS                                 |       |           |          |            |           |                 |         |
| 9          | 5          | 3         | 3         | PTE16    | ADC0_DP1/<br>ADC0_SE1               | ADC0_DP1/<br>ADC0_SE1               | PTE16 | SPI0_PCS0 | UART2_TX | TPM_CLKIN0 |           |                 |         |
| 10         | 6          | 4         | 4         | PTE17    | ADC0_DM1/<br>ADC0_SE5a              | ADC0_DM1/<br>ADC0_SE5a              | PTE17 | SPI0_SCK  | UART2_RX | TPM_CLKIN1 |           | LPTMR0_<br>ALT3 |         |
| 11         | 7          | 5         | 5         | PTE18    | ADC0_DP2/<br>ADC0_SE2               | ADC0_DP2/<br>ADC0_SE2               | PTE18 | SPI0_MOSI |          | I2C0_SDA   | SPI0_MISO |                 |         |
| 12         | 8          | 6         | 6         | PTE19    | ADC0_DM2/<br>ADC0_SE6a              | ADC0_DM2/<br>ADC0_SE6a              | PTE19 | SPI0_MISO |          | I2C0_SCL   | SPI0_MOSI |                 |         |
| 13         | 9          | 7         | —         | PTE20    | ADC0_DP0/<br>ADC0_SE0               | ADC0_DP0/<br>ADC0_SE0               | PTE20 |           | TPM1_CH0 | UART0_TX   |           |                 |         |
| 14         | 10         | 8         | _         | PTE21    | ADC0_DM0/<br>ADC0_SE4a              | ADC0_DM0/<br>ADC0_SE4a              | PTE21 |           | TPM1_CH1 | UART0_RX   |           |                 |         |
| 15         | 11         | _         | _         | PTE22    | ADC0_DP3/<br>ADC0_SE3               | ADC0_DP3/<br>ADC0_SE3               | PTE22 |           | TPM2_CH0 | UART2_TX   |           |                 |         |
| 16         | 12         | -         | _         | PTE23    | ADC0_DM3/<br>ADC0_SE7a              | ADC0_DM3/<br>ADC0_SE7a              | PTE23 |           | TPM2_CH1 | UART2_RX   |           |                 |         |
| 17         | 13         | 9         | 7         | VDDA     | VDDA                                | VDDA                                |       |           |          |            |           |                 |         |
| 18         | 14         | 10        | —         | VREFH    | VREFH                               | VREFH                               |       |           |          |            |           |                 |         |
| 19         | 15         | 11        | —         | VREFL    | VREFL                               | VREFL                               |       |           |          |            |           |                 |         |
| 20         | 16         | 12        | 8         | VSSA     | VSSA                                | VSSA                                |       |           |          |            |           |                 |         |
| 21         | 17         | 13        | _         | PTE29    | CMP0_IN5/<br>ADC0_SE4b              | CMP0_IN5/<br>ADC0_SE4b              | PTE29 |           | TPM0_CH2 | TPM_CLKIN0 |           |                 |         |
| 22         | 18         | 14        | 9         | PTE30    | DAC0_OUT/<br>ADC0_SE23/<br>CMP0_IN4 | DAC0_OUT/<br>ADC0_SE23/<br>CMP0_IN4 | PTE30 |           | TPM0_CH3 | TPM_CLKIN1 |           |                 |         |
| 23         | 19         | -         | _         | PTE31    | DISABLED                            |                                     | PTE31 |           | TPM0_CH4 |            |           |                 |         |
| 24         | 20         | 15        | _         | PTE24    | DISABLED                            |                                     | PTE24 |           | TPM0_CH0 |            | I2C0_SCL  |                 |         |
| 25         | 21         | 16        | _         | PTE25    | DISABLED                            |                                     | PTE25 |           | TPM0_CH1 |            | I2C0_SDA  |                 |         |
| 26         | 22         | 17        | 10        | PTA0     | SWD_CLK                             | TSI0_CH1                            | PTA0  |           | TPM0_CH5 |            |           |                 | SWD_CLK |
| 27         | 23         | 18        | 11        | PTA1     | DISABLED                            | TSI0_CH2                            | PTA1  | UART0_RX  | TPM2_CH0 |            |           |                 |         |
| 28         | 24         | 19        | 12        | PTA2     | DISABLED                            | TSI0_CH3                            | PTA2  | UART0_TX  | TPM2_CH1 |            |           |                 |         |

| 80<br>LQFP | 64<br>LQFP | 48<br>QFN | 32<br>QFN | Pin Name                       | Default                 | ALTO                    | ALT1                           | ALT2      | ALT3     | ALT4       | ALT5      | ALT6            | ALT7    |
|------------|------------|-----------|-----------|--------------------------------|-------------------------|-------------------------|--------------------------------|-----------|----------|------------|-----------|-----------------|---------|
| 29         | 25         | 20        | 13        | PTA3                           | SWD_DIO                 | TSI0_CH4                | PTA3                           | I2C1_SCL  | TPM0_CH0 |            |           |                 | SWD_DIO |
| 30         | 26         | 21        | 14        | PTA4                           | NMI_b                   | TSI0_CH5                | PTA4                           | I2C1_SDA  | TPM0_CH1 |            |           |                 | NMI_b   |
| 31         | 27         | -         | -         | PTA5                           | DISABLED                |                         | PTA5                           |           | TPM0_CH2 |            |           |                 |         |
| 32         | 28         | -         | _         | PTA12                          | DISABLED                |                         | PTA12                          |           | TPM1_CH0 |            |           |                 |         |
| 33         | 29         | _         | _         | PTA13                          | DISABLED                |                         | PTA13                          |           | TPM1_CH1 |            |           |                 |         |
| 34         | _          | -         | _         | PTA14                          | DISABLED                |                         | PTA14                          | SPI0_PCS0 | UART0_TX |            |           |                 |         |
| 35         | _          | _         | _         | PTA15                          | DISABLED                |                         | PTA15                          | SPI0_SCK  | UART0_RX |            |           |                 |         |
| 36         | _          | -         | _         | PTA16                          | DISABLED                |                         | PTA16                          | SPI0_MOSI |          |            | SPI0_MISO |                 |         |
| 37         | _          | _         | _         | PTA17                          | DISABLED                |                         | PTA17                          | SPI0_MISO |          |            | SPI0_MOSI |                 |         |
| 38         | 30         | 22        | 15        | VDD                            | VDD                     | VDD                     |                                |           |          |            |           |                 |         |
| 39         | 31         | 23        | 16        | VSS                            | VSS                     | VSS                     |                                |           |          |            |           |                 |         |
| 40         | 32         | 24        | 17        | PTA18                          | EXTALO                  | EXTALO                  | PTA18                          |           | UART1_RX | TPM_CLKIN0 |           |                 |         |
| 41         | 33         | 25        | 18        | PTA19                          | XTAL0                   | XTAL0                   | PTA19                          |           | UART1_TX | TPM_CLKIN1 |           | LPTMR0_<br>ALT1 |         |
| 42         | 34         | 26        | 19        | RESET_b                        | RESET_b                 |                         | PTA20                          |           |          |            |           |                 |         |
| 43         | 35         | 27        | 20        | PTB0/<br>LLWU_P5               | ADC0_SE8/<br>TSI0_CH0   | ADC0_SE8/<br>TSI0_CH0   | PTB0/<br>LLWU_P5               | I2C0_SCL  | TPM1_CH0 |            |           |                 |         |
| 44         | 36         | 28        | 21        | PTB1                           | ADC0_SE9/<br>TSI0_CH6   | ADC0_SE9/<br>TSI0_CH6   | PTB1                           | I2C0_SDA  | TPM1_CH1 |            |           |                 |         |
| 45         | 37         | 29        | -         | PTB2                           | ADC0_SE12/<br>TSI0_CH7  | ADC0_SE12/<br>TSI0_CH7  | PTB2                           | I2C0_SCL  | TPM2_CH0 |            |           |                 |         |
| 46         | 38         | 30        | _         | PTB3                           | ADC0_SE13/<br>TSI0_CH8  | ADC0_SE13/<br>TSI0_CH8  | PTB3                           | I2C0_SDA  | TPM2_CH1 |            |           |                 |         |
| 47         | _          | -         | _         | PTB8                           | DISABLED                |                         | PTB8                           |           | EXTRG_IN |            |           |                 |         |
| 48         | _          | -         | _         | PTB9                           | DISABLED                |                         | PTB9                           |           |          |            |           |                 |         |
| 49         | _          | -         | _         | PTB10                          | DISABLED                |                         | PTB10                          | SPI1_PCS0 |          |            |           |                 |         |
| 50         | _          | -         | _         | PTB11                          | DISABLED                |                         | PTB11                          | SPI1_SCK  |          |            |           |                 |         |
| 51         | 39         | 31        | _         | PTB16                          | TSI0_CH9                | TSI0_CH9                | PTB16                          | SPI1_MOSI | UART0_RX | TPM_CLKIN0 | SPI1_MISO |                 |         |
| 52         | 40         | 32        | _         | PTB17                          | TSI0_CH10               | TSI0_CH10               | PTB17                          | SPI1_MISO | UART0_TX | TPM_CLKIN1 | SPI1_MOSI |                 |         |
| 53         | 41         | _         | _         | PTB18                          | TSI0_CH11               | TSI0_CH11               | PTB18                          |           | TPM2_CH0 |            |           |                 |         |
| 54         | 42         | -         | -         | PTB19                          | TSI0_CH12               | TSI0_CH12               | PTB19                          |           | TPM2_CH1 |            |           | 1               |         |
| 55         | 43         | 33        | -         | PTC0                           | ADC0_SE14/<br>TSI0_CH13 | ADC0_SE14/<br>TSI0_CH13 | PTC0                           |           | EXTRG_IN |            | CMP0_OUT  |                 |         |
| 56         | 44         | 34        | 22        | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | ADC0_SE15/<br>TSI0_CH14 | ADC0_SE15/<br>TSI0_CH14 | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | I2C1_SCL  |          | TPM0_CH0   |           |                 |         |
| 57         | 45         | 35        | 23        | PTC2                           | ADC0_SE11/<br>TSI0_CH15 | ADC0_SE11/<br>TSI0_CH15 | PTC2                           | I2C1_SDA  |          | TPM0_CH1   |           |                 |         |
| 58         | 46         | 36        | 24        | PTC3/<br>LLWU_P7               | DISABLED                |                         | PTC3/<br>LLWU_P7               |           | UART1_RX | TPM0_CH2   | CLKOUT    |                 |         |
| 59         | 47         | -         | -         | VSS                            | VSS                     | VSS                     |                                |           |          |            |           |                 |         |
| 60         | 48         | -         | -         | VDD                            | VDD                     | VDD                     |                                |           |          |            |           |                 |         |
| 61         | 49         | 37        | 25        | PTC4/<br>LLWU_P8               | DISABLED                |                         | PTC4/<br>LLWU_P8               | SPI0_PCS0 | UART1_TX | TPM0_CH3   |           |                 |         |

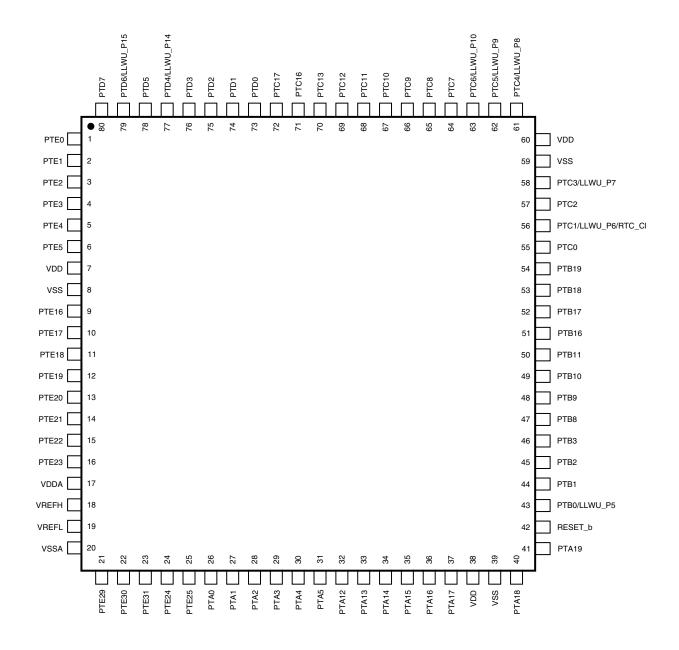



Figure 17. KL15 80-pin LQFP pinout diagram

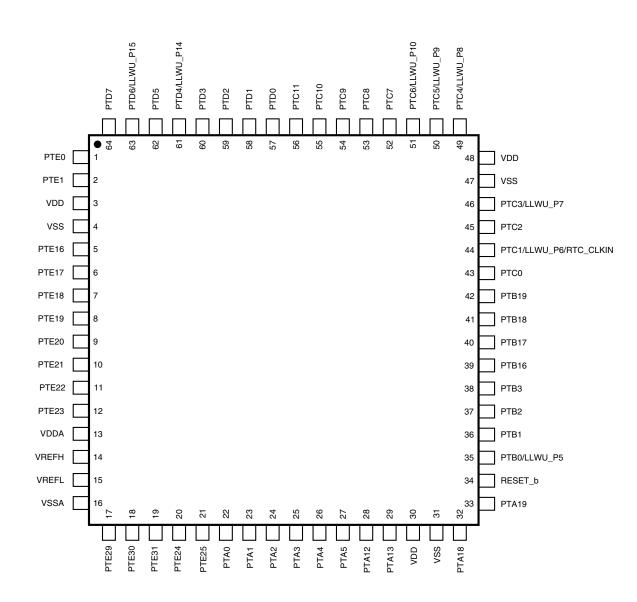



Figure 18. KL15 64-pin LQFP pinout diagram

Pinout

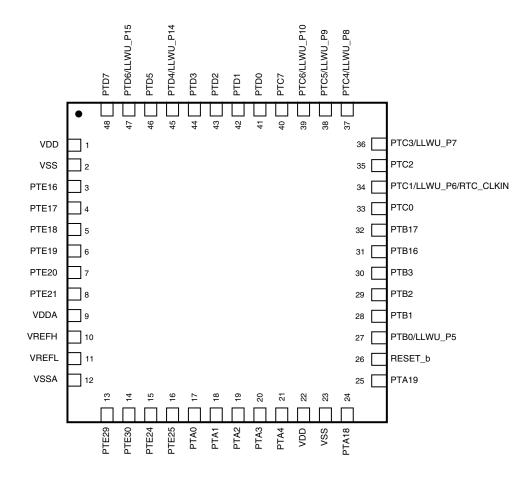



Figure 19. KL15 48-pin QFN pinout diagram

#### How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

#### **USA/Europe or Locations Not Listed:**

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$ 

© 2012 Freescale Semiconductor, Inc.





Document Number: KL15P80M48SF0 Rev. 3, 9/19/2012