

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, TSI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 15x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mkl15z32vft4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PKL15 and MKL15

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL15
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB

Table continues on the next page

3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{DIO}	Digital pin input voltage (except RESET)	-0.3	3.6	V
V _{AIO}	Analog pins ¹ and RESET pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	$V_{DD} - 0.3$	V _{DD} + 0.3	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

Table 3.	 Voltage and current operating behaviors (con 	itinued)
----------	--	----------

Symbol	Description	Min.	Max.	Unit	Notes
R _{PU}	Internal pullup resistors	20	50	kΩ	3
R _{PD}	Internal pulldown resistors	20	50	kΩ	4

^{1.} PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2. Measured at $V_{DD} = 3.6 V$

- 3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 4. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- FEI clock mode

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.		—	300	μs	
	• VLLS0 \rightarrow RUN	_	95	115	μs	
	• VLLS1 \rightarrow RUN	_	93	115	μs	
	• VLLS3 \rightarrow RUN		42	53	μs	
	• LLS → RUN	_	4	4.6	μs	
	• VLPS → RUN		4	4.4	μs	
	• STOP \rightarrow RUN	_	4	4.4	μs	

 Table 4. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS0}	Very low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) at 3.0 V		381	043	nA	
	at 25 °C	_	956	11760		
	at 50 °C	_	2370	13260		
	at 70 °C	_	4800	15700		
	at 85 °C	_	12410	23480		
	at 105 °C					
I _{DD_VLLS0}	Very low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) at 3.0 V	_	176	860		6
	at 25 °C	_	760	3577	nA	
	at 50 °C	_	2120	11660		
	at 70 °C	_	4500	18450		
	at 85 °C	_	12130	22441		
	at 105 °C					

Table 5. Power consumption operating behaviors (continued)

1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.

- 2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for time.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode.
- 6. No brownout

Table 6. Low power mode peripheral adders — typical value

Symbol	Description		Temperature (°C)				Unit	
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
IIREFSTEN32KHz	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
IEREFSTEN4MHz	External 4MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA

Table continues on the next page ...

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 8 \text{ MHz}$ (crystal), $f_{SYS} = 48 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mod	le	•		
f _{SYS}	System and core clock	_	48	MHz	
f _{BUS}	Bus clock	_	24	MHz	
f _{FLASH}	Flash clock	—	24	MHz	
f _{LPTMR}	LPTMR clock	_	24	MHz	
	VLPR mode ¹				•
f _{SYS}	System and core clock	—	4	MHz	
f _{BUS}	Bus clock	_	1	MHz	
f _{FLASH}	Flash clock	_	1	MHz	
f _{LPTMR}	LPTMR clock	—	24	MHz	
f _{ERCLK}	External reference clock	_	16	MHz	
f _{LPTMR_pin}	LPTMR clock	_	24	MHz	
f _{LPTMR_ERCL}	LPTMR external reference clock	_	16	MHz	
к					

Table continues on the next page ...

5.4.2 Thermal attributes

Board type	Symbol	Description	80 LQFP	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	70	71	84	92	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	52	28	33	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	59	69	75	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	_	46	22	27	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	34	34	10	12	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	15	20	2.0	1.8	°C/W	3
	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	0.6	5	5.0	8	°C/W	4

Table 10. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air).

6 Peripheral operating requirements and behaviors

6.1 Core modules

6.1.1 SWD Electricals

Table 11. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page...

6.2 System modules

There are no specifications necessary for the device's system modules.

6.3 Clock modules

6.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — nominal V _{DD} and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference trimmed	frequency (slow clock) — user	31.25	—	39.0625	kHz	
Δ _{fdco_res_t}	Resolution of trimr frequency at fixed using SCTRIM and	ned average DCO output voltage and temperature — d SCFTRIM	_	± 0.3	± 0.6	%f _{dco}	1
∆f _{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature		—	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf _{dco_t}	Total deviation of t frequency over fixe range of 0 - 70 °C	_	± 0.4	± 1.5	%f _{dco}	1, 2	
f _{intf_ft}	Internal reference factory trimmed at	_	4	_	MHz		
∆f _{intf_ft}	Frequency deviation of internal reference clock (fast clock) over temperature and voltage factory trimmed at nominal V _{DD} and 25 °C		_	+1/-2	± 3	%f _{intf_ft}	2
f _{intf_t}	Internal reference trimmed at nomina	frequency (fast clock) — user al V _{DD} and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external cl RANGE = 00	ock minimum frequency —	(3/5) x f _{ints_t}	_	_	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	ock minimum frequency — or 11	(16/5) x f _{ints_t}	_		kHz	
		FI	L	•			•
f _{fll_ref}	FLL reference free	luency range	31.25		39.0625	kHz	
f _{dco}	DCO output	Low range (DRS = 00)	20	20.97	25	MHz	3, 4
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS = 01)	40	41.94	48	MHz	
		$1280 \times f_{fll_ref}$					

Table 12. MCG specifications

Table continues on the next page...

KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{dco_t_DMX32}	DCO output	Low range (DRS = 00)	_	23.99	—	MHz	5, 6
	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		—	180	—	ps	7
	• f _{VCO} = 48 M	Hz					
t _{fll_acquire}	FLL target frequer	ncy acquisition time	_	—	1	ms	8
		PI	L				
f _{vco}	VCO operating fre	quency	48.0	—	100	MHz	
I _{pll}	PLL operating cur PLL at 96 M MHz, VDIV	_	1060	_	μA	9	
I _{pll}	 PLL operating current PLL at 48 MHz (f_{osc_hi_1} = 8 MHz, f_{pll_ref} = 2 MHz, VDIV multiplier = 24) 		_	600	_	μΑ	9
f _{pll_ref}	PLL reference frequency range		2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					10
	• f _{vco} = 48 MH	lz	—	120	_	ps	
	• f _{vco} = 100 M	Hz	—	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MH	lz	—	1350	_	ps	
	• f _{vco} = 100 M	Hz	—	600	_	ps	
D _{lock}	Lock entry frequer	ncy tolerance	± 1.49	—	± 2.98	%	
D _{unl}	Lock exit frequence	y tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector dete	ection time			150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

Table 12. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{t}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

9. Excludes any oscillator currents that are also consuming power while PLL is in operation.

- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	—	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	—	—	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)		V _{DD}		V	

Table 13. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications Table 14. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	

Table continues on the next page...

6.4.1.2 Flash timing specifications — commands Table 16. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time——30		μs	1		
t _{pgm4}	Program Longword execution time	_	65	145	μs	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	—	1.8	ms	
t _{rdonce}	Read Once execution time	_	_	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	_	μs	
t _{ersall}	Erase All Blocks execution time	—	62	500	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	30	μs	1

1. Assumes 25MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

6.4.1.3 Flash high voltage current behaviors Table 17. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	—	1.5	4.0	mA

6.4.1.4 Reliability specifications

Table 18. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes				
	Program Flash									
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years					
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years					
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2				

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging	37.037	_	461.467	Ksps	6
		Continuous conversions enabled, subsequent conversion time					

 Table 19.
 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference.
- 3. For packages without dedicated VREFH and VREFL pins, V_{REFH} is internally tied to V_{DDA} , and V_{REFL} is internally tied to V_{SSA} .
- 4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1ns.</p>
- 5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
- 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool

Figure 6. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics Table 20. 16-bit ADC characteristics (V_{REFH} = V_{DDA}, V_{REFL} = V_{SSA})

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3

Table continues on the next page...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	ADC	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	asynchronous	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample t	imes			
TUE	Total unadjusted	12-bit modes		±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non-	12-bit modes		±0.7	-1.1 to +1.9	LSB ⁴	5
	linearity				-0.3 to 0.5		
		 <12-bit modes 	_	±0.2			
INL	Integral non-	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
	linearity				-0.7 to +0.5		
		 <12-bit modes 	_	±0.5			
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} 5
Eq	Quantization	16-bit modes		-1 to 0	_	LSB ⁴	
	error	• ≤1312-bit modes	_	_	±0.5		
ENOB	Effective number	16-bit differential mode					6
	of bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	—	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	hits	
		• Avg = 4	11 /	13.1	_	bite	
	Signal-to-noise	See ENOB	11.7	10.1		5115	
SINAD	plus distortion		6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	_	-94	—	dB	
		16-bit single-ended mode		05		5	
		• Avg = 32	_	-85	_	aв	
SFDR	Spurious free	16-bit differential mode					7
	dynamic range	• Avg = 32	82	95	_	dB	
		16-bit single-ended mode					
		• Avg = 32	78	90	-	dB	

Table 20.	16-bit ADC characteristics ($V_{\text{REFH}} = V_{\text{DDA}}$	$V_{\text{REFL}} = V_{SSA}$	(continued)
			* REFL - * 33A/	(001101000)

Table continues on the next page...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
E _{IL}	Input leakage error			I _{In} × R _{AS}		mV	I _{In} = leakage current (refer to the MCU's voltage and current operating ratinge)
	Temp sensor slope	Across the full temperature range of the device		1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719	—	mV	

Table 20. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	Low power (SP _{LP})	0.05	0.12	_		
BW	3dB bandwidth				kHz	
	• High power (SP _{HP})	550	_	_		
	• Low power (SP _{LP})	40	_	_		

Table 23. 12-bit DAC operating behaviors (continued)

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV 6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Figure 12. Offset at half scale vs. temperature

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

Num.	Symbol	Description	Min.	Max.	Unit	Note
6	t _{SU}	Data setup time (inputs)	2	—	ns	—
7	t _{HI}	Data hold time (inputs)	7	—	ns	_
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	22	ns	
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	
	t _{FO}	Fall time output				

Table 26. SPI slave mode timing on slew rate disabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Table 27. SPI slave mode timing on slew rate enabled pads

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	
4	t _{Lag}	Enable lag time	1		t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2	—	ns	
7	t _{HI}	Data hold time (inputs)	7		ns	
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	122	ns	
11	t _{HO}	Data hold time (outputs)	0	—	ns	
12	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	_
	t _{FO}	Fall time output]			

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 28. TSI electrical specifications

Symbol	Description	Min.	Туре	Мах	Unit
TSI_RUNF	Fixed power consumption in run mode	—	100	—	μA
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	—	128	μA
TSI_EN	Power consumption in enable mode		100		μA
TSI_DIS	Power consumption in disable mode		1.2		μA
TSI_TEN	TSI analog enable time		66		μs
TSI_CREF	TSI reference capacitor	_	1.0	_	pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19		1.03	V

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
32-pin QFN	98ASA00473D
48-pin QFN	98ASA00466D
64-pin LQFP	98ASS23234W
80-pin LQFP	98ASS23174W

8 Pinout

Figure 20. KL15 32-pin QFN pinout diagram

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	7/2012	Initial NDA release.
2	9/2012	Completed all the TBDs, initial public release.
3	9/2012	Updated Signal Multiplexing and Pin Assignments table to add UART2 signals.

Table 29. Revision History

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

 $\label{eq:FreescaleTM} Freescale TM and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.$

© 2012 Freescale Semiconductor, Inc.

Document Number: KL15P80M48SF0 Rev. 3, 9/19/2012