



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                |
|----------------------------|-----------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                      |
| Core Size                  | 32-Bit Single-Core                                                    |
| Speed                      | 48MHz                                                                 |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, TSI, UART/USART                        |
| Peripherals                | Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT                       |
| Number of I/O              | 28                                                                    |
| Program Memory Size        | 64KB (64K x 8)                                                        |
| Program Memory Type        | FLASH                                                                 |
| EEPROM Size                | -                                                                     |
| RAM Size                   | 8K x 8                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                                          |
| Data Converters            | A/D 9x16b; D/A 1x12b                                                  |
| Oscillator Type            | Internal                                                              |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                    |
| Mounting Type              | Surface Mount, Wettable Flank                                         |
| Package / Case             | 32-VFQFN Exposed Pad                                                  |
| Supplier Device Package    | 32-HVQFN (5x5)                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl15z64vfm4r |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 Ordering parts

## 1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to www.freescale.com and perform a part number search for the following device numbers: PKL15 and MKL15

# 2 Part identification

## 2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

## 2.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

## 2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

| Field | Description               | Values                                                                                         |
|-------|---------------------------|------------------------------------------------------------------------------------------------|
| Q     | Qualification status      | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul>     |
| KL##  | Kinetis family            | • KL15                                                                                         |
| A     | Key attribute             | • Z = Cortex-M0+                                                                               |
| FFF   | Program flash memory size | <ul> <li>32 = 32 KB</li> <li>64 = 64 KB</li> <li>128 = 128 KB</li> <li>256 = 256 KB</li> </ul> |

Table continues on the next page ....

## 3.2 Definition: Operating behavior

An *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

### 3.2.1 Example

This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:

| Symbol          | Description                                  | Min. Max. |     | Unit |
|-----------------|----------------------------------------------|-----------|-----|------|
| I <sub>WP</sub> | Digital I/O weak pullup/<br>pulldown current | 10        | 130 | μA   |

## 3.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

## 3.3.1 Example

This is an example of an attribute:

| Symbol | Description                        | Min. | Max. | Unit |
|--------|------------------------------------|------|------|------|
| CIN_D  | Input capacitance:<br>digital pins | _    | 7    | pF   |

# 3.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

## 3.4.1 Example

This is an example of an operating rating:

| Symbol          | Description               | Min. | Max. | Unit |
|-----------------|---------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply voltage | -0.3 | 1.2  | V    |

## 3.5 Result of exceeding a rating



## 3.6 Relationship between ratings and operating requirements



## 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

## 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

### 3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10   | 70   | 130  | μΑ   |

### 3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

#### General

| Symbol             | Description                                                 | Min. | Тур. | Max. | Unit | Notes |
|--------------------|-------------------------------------------------------------|------|------|------|------|-------|
|                    | Low-voltage warning thresholds — low range                  |      |      |      |      | 1     |
| V <sub>LVW1L</sub> | Level 1 falling (LVWV=00)                                   | 1.74 | 1.80 | 1.86 | V    |       |
| V <sub>LVW2L</sub> | Level 2 falling (LVWV=01)                                   | 1.84 | 1.90 | 1.96 | V    |       |
| V <sub>LVW3L</sub> | <ul> <li>Level 3 falling (LVWV=10)</li> </ul>               | 1.94 | 2.00 | 2.06 | V    |       |
| V <sub>LVW4L</sub> | Level 4 falling (LVWV=11)                                   | 2.04 | 2.10 | 2.16 | V    |       |
| V <sub>HYSL</sub>  | Low-voltage inhibit reset/recover hysteresis —<br>low range | _    | ±40  |      | mV   |       |
| V <sub>BG</sub>    | Bandgap voltage reference                                   | 0.97 | 1.00 | 1.03 | V    |       |
| t <sub>LPO</sub>   | Internal low power oscillator period — factory trimmed      | 900  | 1000 | 1100 | μs   |       |

### Table 2. V<sub>DD</sub> supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

# 5.2.3 Voltage and current operating behaviors

| Symbol           | Description                                                                                            | Min.                  | Max.  | Unit | Notes |
|------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-------|------|-------|
| V <sub>OH</sub>  | Output high voltage — Normal drive pad                                                                 |                       |       |      | 1     |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -5 mA                                   | V <sub>DD</sub> – 0.5 | _     | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -1.5 \text{ mA}$ | V <sub>DD</sub> – 0.5 | _     | V    |       |
| V <sub>OH</sub>  | Output high voltage — High drive pad                                                                   |                       |       |      | 1     |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -18 mA                                  | V <sub>DD</sub> – 0.5 | _     | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OH</sub> = -6 mA                                  | V <sub>DD</sub> – 0.5 | _     | V    |       |
| I <sub>OHT</sub> | Output high current total for all ports                                                                | _                     | 100   | mA   |       |
| V <sub>OL</sub>  | Output low voltage — Normal drive pad                                                                  |                       |       |      | 1     |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 5 mA                                    | —                     | 0.5   | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OL</sub> = 1.5 mA                                 | —                     | 0.5   | V    |       |
| V <sub>OL</sub>  | Output low voltage — High drive pad                                                                    |                       |       |      | 1     |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 18 mA                                   | —                     | 0.5   | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 6 \text{ mA}$    | —                     | 0.5   | V    |       |
| I <sub>OLT</sub> | Output low current total for all ports                                                                 | _                     | 100   | mA   |       |
| I <sub>IN</sub>  | Input leakage current (per pin) for full temperature range                                             | _                     | 1     | μA   | 2     |
| l <sub>IN</sub>  | Input leakage current (per pin) at 25 °C                                                               | _                     | 0.025 | μA   | 2     |
| I <sub>IN</sub>  | Input leakage current (total all pins) for full temperature range                                      | —                     | 65    | μA   | 2     |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                                                             | —                     | 1     | μA   |       |

Table 3. Voltage and current operating behaviors

Table continues on the next page...

| Table 5. | Power | consumpti | ion opera | iting beha | viors ( | continued) |
|----------|-------|-----------|-----------|------------|---------|------------|
|          |       |           |           |            |         |            |

| Symbol                | Description                                                                                                                                                                | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|-------|
| I <sub>DD_VLPR</sub>  | Very low power run mode current - 4 MHz core /<br>0.8 MHz bus and flash, all peripheral clocks<br>enabled, code of while(1) loop executing from<br>flash<br>• at 3.0 V     |      | 300  | 745  | μA   | 5, 4  |
| I <sub>DD_VLPW</sub>  | Very low power wait mode current - core<br>disabled / 4 MHz system / 0.8 MHz bus / flash<br>disabled (flash doze enabled), all peripheral<br>clocks disabled<br>• at 3.0 V | _    | 135  | 496  | μA   | 5     |
| I <sub>DD_STOP</sub>  | Stop mode current at 3.0 V                                                                                                                                                 |      |      |      |      |       |
|                       | at 25 °C                                                                                                                                                                   | _    | 345  | 490  |      |       |
|                       | at 50 °C                                                                                                                                                                   | _    | 357  | 827  | μΑ   |       |
|                       | at 70 °C                                                                                                                                                                   | _    | 392  | 869  |      |       |
|                       | at 85 °C                                                                                                                                                                   | _    | 438  | 927  |      |       |
|                       | at 105 °C                                                                                                                                                                  | _    | 551  | 1065 |      |       |
| I <sub>DD_VLPS</sub>  | Very-low-power stop mode current at 3.0 V                                                                                                                                  |      |      |      |      |       |
|                       | at 25 °C                                                                                                                                                                   | _    | 4.4  | 16   |      |       |
|                       | at 50 °C                                                                                                                                                                   | _    | 10   | 35   | μA   |       |
|                       | at 70 °C                                                                                                                                                                   | _    | 20   | 50   |      |       |
|                       | at 85 °C                                                                                                                                                                   | _    | 37   | 112  |      |       |
|                       | at 105 °C                                                                                                                                                                  | _    | 81   | 201  |      |       |
| I <sub>DD_LLS</sub>   | Low leakage stop mode current at 3.0 V                                                                                                                                     |      |      |      | _    |       |
|                       | at 25 °C                                                                                                                                                                   | _    | 1.9  | 3.7  | μΑ   |       |
|                       | at 50 °C                                                                                                                                                                   | _    | 3.6  | 39   |      |       |
|                       | at 70 °C                                                                                                                                                                   | _    | 6.5  | 43   |      |       |
|                       | at 85 °C                                                                                                                                                                   | _    | 13   | 49   |      |       |
|                       | at 105 °C                                                                                                                                                                  | _    | 30   | 69   |      |       |
| I <sub>DD_VLLS3</sub> | Very low-leakage stop mode 3 current at 3.0 V                                                                                                                              |      |      |      |      |       |
|                       | at 25 °C                                                                                                                                                                   | _    | 1.4  | 3.2  | μΑ   |       |
|                       | at 50 °C                                                                                                                                                                   | _    | 2.5  | 19   |      |       |
|                       | at 70 °C                                                                                                                                                                   | —    | 5.1  | 21   |      |       |
|                       | at 85 °C                                                                                                                                                                   | _    | 9.2  | 26   |      |       |
|                       | at 105 °C                                                                                                                                                                  | _    | 21   | 38   |      |       |
| I <sub>DD_VLLS1</sub> | Very low-leakage stop mode 1 current at 3.0V                                                                                                                               |      |      |      |      |       |
|                       | at 25°C                                                                                                                                                                    | —    | 0.7  | 1.4  |      |       |
|                       | at 50°C                                                                                                                                                                    | —    | 1.3  | 13   | μΑ   |       |
|                       | at 70°C                                                                                                                                                                    | _    | 2.3  | 14   |      |       |
|                       | at 85°C                                                                                                                                                                    | —    | 5.1  | 17   |      |       |
|                       | at 105°C                                                                                                                                                                   | —    | 13   | 25   |      |       |

Table continues on the next page...

| Symbol            | Description                                                                                                                                                                                                                                                                                                 | Temperature (°C) |     |     |     | Unit |     |    |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----|-----|-----|------|-----|----|
|                   |                                                                                                                                                                                                                                                                                                             | -40              | 25  | 50  | 70  | 85   | 105 |    |
| IEREFSTEN32KHz    | External 32 kHz crystal clock adder by<br>means of the OSC0_CR[EREFSTEN                                                                                                                                                                                                                                     |                  |     |     |     |      |     |    |
|                   | entering all modes with the crystal                                                                                                                                                                                                                                                                         | 440              | 490 | 540 | 560 | 570  | 580 |    |
|                   | enabled.                                                                                                                                                                                                                                                                                                    | 440              | 490 | 540 | 560 | 570  | 580 |    |
|                   | VLLS1                                                                                                                                                                                                                                                                                                       | 490              | 490 | 540 | 560 | 570  | 680 | nA |
|                   | VLLS3                                                                                                                                                                                                                                                                                                       | 510              | 560 | 560 | 560 | 610  | 680 |    |
|                   | LLS                                                                                                                                                                                                                                                                                                         | 510              | 560 | 560 | 560 | 610  | 680 |    |
|                   | VLPS                                                                                                                                                                                                                                                                                                        |                  |     |     |     |      |     |    |
|                   | STOP                                                                                                                                                                                                                                                                                                        |                  |     |     |     |      |     |    |
| I <sub>CMP</sub>  | CMP peripheral adder measured by<br>placing the device in VLLS1 mode with<br>CMP enabled using the 6-bit DAC and a<br>single external input for compare.<br>Includes 6-bit DAC power consumption.                                                                                                           | 22               | 22  | 22  | 22  | 22   | 22  | μΑ |
| IRTC              | RTC peripheral adder measured by<br>placing the device in VLLS1 mode with<br>external 32 kHz crystal enabled by<br>means of the RTC_CR[OSCE] bit and<br>the RTC ALARM set for 1 minute.<br>Includes ERCLK32K (32 kHz external<br>crystal) power consumption.                                                | 432              | 357 | 388 | 475 | 532  | 810 | nA |
| I <sub>UART</sub> | UART peripheral adder measured by<br>placing the device in STOP or VLPS<br>mode with selected clock source waiting<br>for RX data at 115200 baud rate.<br>Includes selected clock source power<br>consumption.<br>MCGIRCLK (4MHz internal reference<br>clock)                                               | 66               | 66  | 66  | 66  | 66   | 66  | μΑ |
|                   | OSCERCLK (4MHz external crystal)                                                                                                                                                                                                                                                                            | 214              | 237 | 246 | 254 | 260  | 268 |    |
| ITPM              | I PM peripheral adder measured by<br>placing the device in STOP or VLPS<br>mode with selected clock source<br>configured for output compare<br>generating 100Hz clock signal. No load<br>is placed on the I/O generating the clock<br>signal. Includes selected clock source<br>and I/O switching currents. |                  |     |     |     |      |     | μΑ |
|                   | MCGIRCLK (4MHz internal reference clock)                                                                                                                                                                                                                                                                    | 86               | 86  | 86  | 86  | 86   | 86  |    |
|                   | OSCERCLK (4MHz external crystal)                                                                                                                                                                                                                                                                            | 235              | 256 | 265 | 274 | 280  | 287 |    |
| I <sub>BG</sub>   | Bandgap adder when BGEN bit is set<br>and device is placed in VLPx, LLS, or<br>VLLSx mode.                                                                                                                                                                                                                  | 45               | 45  | 45  | 45  | 45   | 45  | μA |

### Table 6. Low power mode peripheral adders — typical value (continued)

Table continues on the next page...



| Symbol           | Description                                                                                                                                                                                                             |     | Temperature (°C) |     |     |     |     | Unit |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-----|-----|-----|-----|------|
|                  |                                                                                                                                                                                                                         | -40 | 25               | 50  | 70  | 85  | 105 |      |
| I <sub>ADC</sub> | ADC peripheral adder combining the<br>measured values at VDD and VDDA by<br>placing the device in STOP or VLPS<br>mode. ADC is configured for low power<br>mode using the internal clock and<br>continuous conversions. | 366 | 366              | 366 | 366 | 366 | 366 | μA   |

 Table 6. Low power mode peripheral adders — typical value (continued)

### 5.2.5.1 Diagram: Typical IDD\_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

#### General



Figure 3. VLPR mode current vs. core frequency

### 5.2.6 EMC radiated emissions operating behaviors

# Table 7. EMC radiated emissions operating behaviors for 64-pin LQFP package

| Symbol              | Description                        | Frequency<br>band (MHz) | Тур. | Unit | Notes |
|---------------------|------------------------------------|-------------------------|------|------|-------|
| V <sub>RE1</sub>    | Radiated emissions voltage, band 1 | 0.15–50                 | 13   | dBµV | 1, 2  |
| V <sub>RE2</sub>    | Radiated emissions voltage, band 2 | 50–150                  | 15   | dBµV |       |
| V <sub>RE3</sub>    | Radiated emissions voltage, band 3 | 150–500                 | 12   | dBµV |       |
| V <sub>RE4</sub>    | Radiated emissions voltage, band 4 | 500-1000                | 7    | dBµV |       |
| V <sub>RE_IEC</sub> | IEC level                          | 0.15–1000               | М    |      | 2, 3  |

 Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

#### Peripheral operating requirements and behaviors

| Symbol                   | Description                                   |                                                                                         | Min.   | Тур.  | Max.                                                          | Unit | Notes |
|--------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------|------|-------|
| f <sub>dco_t_DMX32</sub> | DCO output                                    | Low range (DRS = 00)                                                                    | _      | 23.99 | —                                                             | MHz  | 5, 6  |
|                          | frequency                                     | $732 \times f_{fll\_ref}$                                                               |        |       |                                                               |      |       |
|                          |                                               | Mid range (DRS = 01)                                                                    | _      | 47.97 | —                                                             | MHz  |       |
|                          |                                               | $1464 \times f_{fll\_ref}$                                                              |        |       |                                                               |      |       |
| J <sub>cyc_fll</sub>     | FLL period jitter                             |                                                                                         | —      | 180   | —                                                             | ps   | 7     |
|                          | • f <sub>VCO</sub> = 48 M                     | Hz                                                                                      |        |       |                                                               |      |       |
| t <sub>fll_acquire</sub> | FLL target frequer                            | ncy acquisition time                                                                    | —      | —     | 1                                                             | ms   | 8     |
|                          |                                               | PI                                                                                      | L      |       |                                                               |      |       |
| f <sub>vco</sub>         | VCO operating fre                             | quency                                                                                  | 48.0   | —     | 100                                                           | MHz  |       |
| I <sub>pll</sub>         | PLL operating cur<br>PLL at 96 M<br>MHz, VDIV | rent<br>Hz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub> = 2<br>multiplier = 48) | _      | 1060  | _                                                             | μA   | 9     |
| I <sub>pll</sub>         | PLL operating cur<br>PLL at 48 M<br>MHz, VDIV | rent<br>Hz ( $f_{osc_hi_1} = 8 \text{ MHz}, f_{pll_ref} = 2$<br>multiplier = 24)        | _      | 600   | _                                                             | μΑ   | 9     |
| f <sub>pll_ref</sub>     | PLL reference free                            | quency range                                                                            | 2.0    | —     | 4.0                                                           | MHz  |       |
| J <sub>cyc_pll</sub>     | PLL period jitter (F                          | RMS)                                                                                    |        |       |                                                               |      | 10    |
|                          | • f <sub>vco</sub> = 48 MH                    | lz                                                                                      | —      | 120   | -                                                             | ps   |       |
|                          | • f <sub>vco</sub> = 100 M                    | Hz                                                                                      | —      | 50    | _                                                             | ps   |       |
| J <sub>acc_pll</sub>     | PLL accumulated                               | jitter over 1µs (RMS)                                                                   |        |       |                                                               |      | 10    |
|                          | • f <sub>vco</sub> = 48 MH                    | lz                                                                                      | —      | 1350  | _                                                             | ps   |       |
|                          | • f <sub>vco</sub> = 100 M                    | Hz                                                                                      | —      | 600   | _                                                             | ps   |       |
| D <sub>lock</sub>        | Lock entry frequer                            | ncy tolerance                                                                           | ± 1.49 | —     | ± 2.98                                                        | %    |       |
| D <sub>unl</sub>         | Lock exit frequence                           | y tolerance                                                                             | ± 4.47 | —     | ± 5.97                                                        | %    |       |
| t <sub>pll_lock</sub>    | Lock detector dete                            | ection time                                                                             |        |       | 150 × 10 <sup>-6</sup><br>+ 1075(1/<br>f <sub>pll_ref</sub> ) | S    | 11    |

### Table 12. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal  $V_{DD}$  and 25 °C,  $f_{ints_{t}}$ .
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco t</sub>) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

9. Excludes any oscillator currents that are also consuming power while PLL is in operation.

- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

Peripheral operating requirements and behaviors

### 6.4.1.2 Flash timing specifications — commands Table 16. Flash command timing specifications

| Symbol                | Description                                   | Min. | Тур. | Max. | Unit | Notes |
|-----------------------|-----------------------------------------------|------|------|------|------|-------|
| t <sub>rd1sec1k</sub> | Read 1s Section execution time (flash sector) | —    | —    | 60   | μs   | 1     |
| t <sub>pgmchk</sub>   | Program Check execution time                  | —    | —    | 45   | μs   | 1     |
| t <sub>rdrsrc</sub>   | Read Resource execution time                  | —    | —    | 30   | μs   | 1     |
| t <sub>pgm4</sub>     | Program Longword execution time               | _    | 65   | 145  | μs   |       |
| t <sub>ersscr</sub>   | Erase Flash Sector execution time             | —    | 14   | 114  | ms   | 2     |
| t <sub>rd1all</sub>   | Read 1s All Blocks execution time             | —    | —    | 1.8  | ms   |       |
| t <sub>rdonce</sub>   | Read Once execution time                      | _    | _    | 25   | μs   | 1     |
| t <sub>pgmonce</sub>  | Program Once execution time                   | —    | 65   | _    | μs   |       |
| t <sub>ersall</sub>   | Erase All Blocks execution time               | —    | 62   | 500  | ms   | 2     |
| t <sub>vfykey</sub>   | Verify Backdoor Access Key execution time     | _    | _    | 30   | μs   | 1     |

1. Assumes 25MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

### 6.4.1.3 Flash high voltage current behaviors Table 17. Flash high voltage current behaviors

| Symbol              | Description                                                           | Min. | Тур. | Max. | Unit |
|---------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>DD_PGM</sub> | Average current adder during high voltage flash programming operation | —    | 2.5  | 6.0  | mA   |
| I <sub>DD_ERS</sub> | Average current adder during high voltage flash erase operation       | —    | 1.5  | 4.0  | mA   |

## 6.4.1.4 Reliability specifications

### Table 18. NVM reliability specifications

| Symbol                  | Description                            | Min. | Typ. <sup>1</sup> | Max. | Unit   | Notes |  |
|-------------------------|----------------------------------------|------|-------------------|------|--------|-------|--|
| Program Flash           |                                        |      |                   |      |        |       |  |
| t <sub>nvmretp10k</sub> | Data retention after up to 10 K cycles | 5    | 50                | —    | years  |       |  |
| t <sub>nvmretp1k</sub>  | Data retention after up to 1 K cycles  | 20   | 100               | _    | years  |       |  |
| n <sub>nvmcycp</sub>    | Cycling endurance                      | 10 K | 50 K              | _    | cycles | 2     |  |

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C  $\leq$  T<sub>i</sub>  $\leq$  125°C.

| Symbol             | Description       | Conditions <sup>1</sup>              | Min.         | Typ. <sup>2</sup> | Max.         | Unit             | Notes                   |
|--------------------|-------------------|--------------------------------------|--------------|-------------------|--------------|------------------|-------------------------|
|                    | ADC               | • ADLPC = 1, ADHSC = 0               | 1.2          | 2.4               | 3.9          | MHz              | t <sub>ADACK</sub> = 1/ |
|                    | asynchronous      | • ADLPC = 1, ADHSC = 1               | 2.4          | 4.0               | 6.1          | MHz              | f <sub>ADACK</sub>      |
| f <sub>ADACK</sub> |                   | • ADLPC = 0, ADHSC = 0               | 3.0          | 5.2               | 7.3          | MHz              |                         |
|                    |                   | • ADLPC = 0, ADHSC = 1               | 4.4          | 6.2               | 9.5          | MHz              |                         |
|                    | Sample Time       | See Reference Manual chapter         | for sample t | imes              |              |                  |                         |
| TUE                | Total unadjusted  | 12-bit modes                         |              | ±4                | ±6.8         | LSB <sup>4</sup> | 5                       |
|                    | error             | <ul> <li>&lt;12-bit modes</li> </ul> | _            | ±1.4              | ±2.1         |                  |                         |
| DNL                | Differential non- | 12-bit modes                         | _            | ±0.7              | -1.1 to +1.9 | LSB <sup>4</sup> | 5                       |
|                    | linearity         |                                      |              |                   | -0.3 to 0.5  |                  |                         |
|                    |                   | <ul> <li>&lt;12-bit modes</li> </ul> |              | ±0.2              |              |                  |                         |
| INL                | Integral non-     | 12-bit modes                         | —            | ±1.0              | -2.7 to +1.9 | LSB <sup>4</sup> | 5                       |
|                    | linearity         |                                      |              |                   | -0.7 to +0.5 |                  |                         |
|                    |                   | <ul> <li>&lt;12-bit modes</li> </ul> | —            | ±0.5              |              |                  |                         |
| E <sub>FS</sub>    | Full-scale error  | 12-bit modes                         | —            | -4                | -5.4         | LSB <sup>4</sup> | V <sub>ADIN</sub> =     |
|                    |                   | <ul> <li>&lt;12-bit modes</li> </ul> |              | -1.4              | -1.8         |                  | V <sub>DDA</sub>        |
| Eq                 | Quantization      | 16-bit modes                         |              | -1 to 0           | _            | LSB <sup>4</sup> |                         |
|                    | error             | • ≤1312-bit modes                    | _            | _                 | ±0.5         |                  |                         |
| ENOB               | Effective number  | 16-bit differential mode             |              |                   |              |                  | 6                       |
|                    | of bits           | • Avg = 32                           | 12.8         | 14.5              | —            | bits             |                         |
|                    |                   | • Avg = 4                            | 11.9         | 13.8              | —            | bits             |                         |
|                    |                   | 16-bit single-ended mode             |              |                   |              |                  |                         |
|                    |                   | • Avg = 32                           | 12.2         | 13.0              |              | bite             |                         |
|                    |                   | • Avg = 4                            | 11 /         | 13.1              |              | bite             |                         |
|                    | Signal-to-noise   | See ENOB                             | 11.7         | 10.1              |              | 0113             |                         |
| SINAD              | plus distortion   |                                      | 6.02         | 2 × ENOB +        | 1.76         | dB               |                         |
| THD                | Total harmonic    | 16-bit differential mode             |              |                   |              |                  | 7                       |
|                    | distortion        | • Avg = 32                           | _            | -94               | —            | dB               |                         |
|                    |                   | 16-bit single-ended mode             |              | 05                |              | 10               |                         |
|                    |                   | • Avg = 32                           | _            | -85               | _            | aв               |                         |
| SFDR               | Spurious free     | 16-bit differential mode             |              |                   |              |                  | 7                       |
|                    | dynamic range     | • Avg = 32                           | 82           | 95                |              | dB               |                         |
|                    |                   | 16-bit single-ended mode             |              |                   |              |                  |                         |
|                    |                   |                                      | 78           | 90                | -            | dB               |                         |
|                    |                   | Avg = 32                             |              |                   |              |                  |                         |

| Table 20. | 16-bit ADC characteristics ( | $V_{\text{REFH}} = V_{\text{DDA}}$ | $V_{\text{REFL}} = V_{SSA}$ | (continued) |
|-----------|------------------------------|------------------------------------|-----------------------------|-------------|
|           |                              |                                    | * REFL - * 33A/             |             |

Table continues on the next page...



Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 8. Typical ENOB vs. ADC\_CLK for 16-bit single-ended mode

### 6.6.2 CMP and 6-bit DAC electrical specifications Table 21. Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                                            | Min.                  | Тур. | Max.            | Unit |
|--------------------|--------------------------------------------------------|-----------------------|------|-----------------|------|
| V <sub>DD</sub>    | Supply voltage                                         | 1.71                  | —    | 3.6             | V    |
| I <sub>DDHS</sub>  | Supply current, high-speed mode (EN = 1, PMODE = 1)    | _                     | _    | 200             | μA   |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN = 1, PMODE = 0)     | _                     | —    | 20              | μA   |
| V <sub>AIN</sub>   | Analog input voltage                                   | V <sub>SS</sub>       | —    | V <sub>DD</sub> | V    |
| V <sub>AIO</sub>   | Analog input offset voltage                            | _                     | —    | 20              | mV   |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>              |                       |      |                 |      |
|                    | • CR0[HYSTCTR] = 00                                    | —                     | 5    | —               | mV   |
|                    | <ul> <li>CR0[HYSTCTR] = 01</li> </ul>                  | —                     | 10   | —               | mV   |
|                    | • CR0[HYSTCTR] = 10                                    | —                     | 20   | —               | mV   |
|                    | <ul> <li>CR0[HYSTCTR] = 11</li> </ul>                  | —                     | 30   | —               | mV   |
| V <sub>CMPOh</sub> | Output high                                            | V <sub>DD</sub> – 0.5 | —    | _               | V    |
| V <sub>CMPOI</sub> | Output low                                             | _                     | —    | 0.5             | V    |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN = 1, PMODE = 1) | 20                    | 50   | 200             | ns   |
| t <sub>DLS</sub>   | Propagation delay, low-speed mode (EN = 1, PMODE = 0)  | 80                    | 250  | 600             | ns   |

Table continues on the next page ...

### 6.6.3.1 12-bit DAC operating requirements Table 22. 12-bit DAC operating requirements

| Symbol            | Desciption              | Min.                      | Max.                    | Unit | Notes |
|-------------------|-------------------------|---------------------------|-------------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage          | 1.71                      | 3.6                     | V    |       |
| V <sub>DACR</sub> | Reference voltage       | 1.13                      | 3.6                     | V    | 1     |
| T <sub>A</sub>    | Temperature             | Operating t<br>range of t | emperature<br>he device | °C   |       |
| CL                | Output load capacitance | _                         | 100                     | pF   | 2     |
| ١L                | Output load current     |                           | 1                       | mA   |       |

1. The DAC reference can be selected to be  $V_{DDA}$  or the voltage output of the VREF module (VREF\_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

### 6.6.3.2 12-bit DAC operating behaviors Table 23. 12-bit DAC operating behaviors

| Symbol                     | Description                                                                         | Min.                      | Тур.     | Max.              | Unit   | Notes |
|----------------------------|-------------------------------------------------------------------------------------|---------------------------|----------|-------------------|--------|-------|
| I <sub>DDA_DACL</sub>      | Supply current — low-power mode                                                     | _                         | _        | 250               | μΑ     |       |
| I <sub>DDA_DACH</sub><br>P | Supply current — high-speed mode                                                    | _                         | —        | 900               | μΑ     |       |
| tDACLP                     | Full-scale settling time (0x080 to 0xF7F) —<br>low-power mode                       |                           | 100      | 200               | μs     | 1     |
| t <sub>DACHP</sub>         | Full-scale settling time (0x080 to 0xF7F) — high-power mode                         | _                         | 15       | 30                | μs     | 1     |
| t <sub>CCDACLP</sub>       | Code-to-code settling time (0xBF8 to 0xC08)<br>— low-power mode and high-speed mode | _                         | 0.7      | 1                 | μs     | 1     |
| V <sub>dacoutl</sub>       | DAC output voltage range low — high-speed mode, no load, DAC set to 0x000           |                           | —        | 100               | mV     |       |
| V <sub>dacouth</sub>       | DAC output voltage range high — high-<br>speed mode, no load, DAC set to 0xFFF      | V <sub>DACR</sub><br>-100 | —        | V <sub>DACR</sub> | mV     |       |
| INL                        | Integral non-linearity error — high speed mode                                      | _                         | _        | ±8                | LSB    | 2     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> > 2<br>V                       | _                         | —        | ±1                | LSB    | 3     |
| DNL                        | Differential non-linearity error — V <sub>DACR</sub> = VREF_OUT                     | _                         | —        | ±1                | LSB    | 4     |
| VOFFSET                    | Offset error                                                                        | _                         | ±0.4     | ±0.8              | %FSR   | 5     |
| E <sub>G</sub>             | Gain error                                                                          | _                         | ±0.1     | ±0.6              | %FSR   | 5     |
| PSRR                       | Power supply rejection ratio, $V_{DDA} \ge 2.4 V$                                   | 60                        | —        | 90                | dB     |       |
| T <sub>CO</sub>            | Temperature coefficient offset voltage                                              | —                         | 3.7      | —                 | μV/C   | 6     |
| T <sub>GE</sub>            | Temperature coefficient gain error                                                  | —                         | 0.000421 | —                 | %FSR/C |       |
| Rop                        | Output resistance load = $3 \text{ k}\Omega$                                        | —                         | —        | 250               | Ω      |       |

Table continues on the next page ...

#### Peripheral operating requirements and behaviors

| Symbol | Description                                      | Min. | Тур. | Max. | Unit | Notes |
|--------|--------------------------------------------------|------|------|------|------|-------|
| SR     | Slew rate -80h→ F7Fh→ 80h                        |      |      |      | V/µs |       |
|        | <ul> <li>High power (SP<sub>HP</sub>)</li> </ul> | 1.2  | 1.7  | _    |      |       |
|        | Low power (SP <sub>LP</sub> )                    | 0.05 | 0.12 | _    |      |       |
| BW     | 3dB bandwidth                                    |      |      |      | kHz  |       |
|        | • High power (SP <sub>HP</sub> )                 | 550  | _    | _    |      |       |
|        | • Low power (SP <sub>LP</sub> )                  | 40   | _    | _    |      |       |

Table 23. 12-bit DAC operating behaviors (continued)

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV
- 3. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV
- 4. The DNL is measured for 0 + 100 mV to  $V_{DACR}$  –100 mV with  $V_{DDA}$  > 2.4 V
- 5. Calculated by a best fit curve from  $V_{SS}$  + 100 mV to  $V_{DACR}$  100 mV 6.  $V_{DDA}$  = 3.0 V, reference select set for  $V_{DDA}$  (DACx\_CO:DACRFS = 1), high power mode (DACx\_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device





Peripheral operating requirements and behaviors



NOTE: Not defined!









### 6.8.2 I<sup>2</sup>C

See General switching specifications.

## 6.8.3 UART

See General switching specifications.

KL15 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.

# 6.9 Human-machine interfaces (HMI)

### 6.9.1 TSI electrical specifications

### Table 28. TSI electrical specifications

| Symbol    | Description                                                                           | Min. | Туре | Мах  | Unit |
|-----------|---------------------------------------------------------------------------------------|------|------|------|------|
| TSI_RUNF  | Fixed power consumption in run mode                                                   | —    | 100  | —    | μA   |
| TSI_RUNV  | Variable power consumption in run mode<br>(depends on oscillator's current selection) | 1.0  | —    | 128  | μA   |
| TSI_EN    | Power consumption in enable mode                                                      |      | 100  |      | μA   |
| TSI_DIS   | Power consumption in disable mode                                                     |      | 1.2  | _    | μA   |
| TSI_TEN   | TSI analog enable time                                                                |      | 66   |      | μs   |
| TSI_CREF  | TSI reference capacitor                                                               | _    | 1.0  | _    | pF   |
| TSI_DVOLT | Voltage variation of VP & VM around nominal values                                    | 0.19 |      | 1.03 | V    |

## 7 Dimensions

## 7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

| If you want the drawing for this package | Then use this document number |
|------------------------------------------|-------------------------------|
| 32-pin QFN                               | 98ASA00473D                   |
| 48-pin QFN                               | 98ASA00466D                   |
| 64-pin LQFP                              | 98ASS23234W                   |
| 80-pin LQFP                              | 98ASS23174W                   |

# 8 Pinout

## 8.1 KL15 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

| 80<br>LQFP | 64<br>LQFP | 48<br>QFN | 32<br>QFN | Pin Name | Default                             | ALTO                                | ALT1  | ALT2      | ALT3     | ALT4       | ALT5      | ALT6            | ALT7    |
|------------|------------|-----------|-----------|----------|-------------------------------------|-------------------------------------|-------|-----------|----------|------------|-----------|-----------------|---------|
| 1          | 1          | _         | 1         | PTE0     | DISABLED                            |                                     | PTE0  |           | UART1_TX | RTC_CLKOUT | CMP0_OUT  | I2C1_SDA        |         |
| 2          | 2          | -         | 2         | PTE1     | DISABLED                            |                                     | PTE1  | SPI1_MOSI | UART1_RX |            | SPI1_MISO | I2C1_SCL        |         |
| 3          | _          | -         | _         | PTE2     | DISABLED                            |                                     | PTE2  | SPI1_SCK  |          |            |           |                 |         |
| 4          | _          | -         | _         | PTE3     | DISABLED                            |                                     | PTE3  | SPI1_MISO |          |            | SPI1_MOSI |                 |         |
| 5          | -          | -         | _         | PTE4     | DISABLED                            |                                     | PTE4  | SPI1_PCS0 |          |            |           |                 |         |
| 6          | -          | -         | _         | PTE5     | DISABLED                            |                                     | PTE5  |           |          |            |           |                 |         |
| 7          | 3          | 1         | -         | VDD      | VDD                                 | VDD                                 |       |           |          |            |           |                 |         |
| 8          | 4          | 2         | -         | VSS      | VSS                                 | VSS                                 |       |           |          |            |           |                 |         |
| 9          | 5          | 3         | 3         | PTE16    | ADC0_DP1/<br>ADC0_SE1               | ADC0_DP1/<br>ADC0_SE1               | PTE16 | SPI0_PCS0 | UART2_TX | TPM_CLKIN0 |           |                 |         |
| 10         | 6          | 4         | 4         | PTE17    | ADC0_DM1/<br>ADC0_SE5a              | ADC0_DM1/<br>ADC0_SE5a              | PTE17 | SPI0_SCK  | UART2_RX | TPM_CLKIN1 |           | LPTMR0_<br>ALT3 |         |
| 11         | 7          | 5         | 5         | PTE18    | ADC0_DP2/<br>ADC0_SE2               | ADC0_DP2/<br>ADC0_SE2               | PTE18 | SPI0_MOSI |          | I2C0_SDA   | SPI0_MISO |                 |         |
| 12         | 8          | 6         | 6         | PTE19    | ADC0_DM2/<br>ADC0_SE6a              | ADC0_DM2/<br>ADC0_SE6a              | PTE19 | SPI0_MISO |          | I2C0_SCL   | SPI0_MOSI |                 |         |
| 13         | 9          | 7         | _         | PTE20    | ADC0_DP0/<br>ADC0_SE0               | ADC0_DP0/<br>ADC0_SE0               | PTE20 |           | TPM1_CH0 | UART0_TX   |           |                 |         |
| 14         | 10         | 8         | -         | PTE21    | ADC0_DM0/<br>ADC0_SE4a              | ADC0_DM0/<br>ADC0_SE4a              | PTE21 |           | TPM1_CH1 | UART0_RX   |           |                 |         |
| 15         | 11         | -         | -         | PTE22    | ADC0_DP3/<br>ADC0_SE3               | ADC0_DP3/<br>ADC0_SE3               | PTE22 |           | TPM2_CH0 | UART2_TX   |           |                 |         |
| 16         | 12         | _         | -         | PTE23    | ADC0_DM3/<br>ADC0_SE7a              | ADC0_DM3/<br>ADC0_SE7a              | PTE23 |           | TPM2_CH1 | UART2_RX   |           |                 |         |
| 17         | 13         | 9         | 7         | VDDA     | VDDA                                | VDDA                                |       |           |          |            |           |                 |         |
| 18         | 14         | 10        | -         | VREFH    | VREFH                               | VREFH                               |       |           |          |            |           |                 |         |
| 19         | 15         | 11        | -         | VREFL    | VREFL                               | VREFL                               |       |           |          |            |           |                 |         |
| 20         | 16         | 12        | 8         | VSSA     | VSSA                                | VSSA                                |       |           |          |            |           |                 |         |
| 21         | 17         | 13        | -         | PTE29    | CMP0_IN5/<br>ADC0_SE4b              | CMP0_IN5/<br>ADC0_SE4b              | PTE29 |           | TPM0_CH2 | TPM_CLKIN0 |           |                 |         |
| 22         | 18         | 14        | 9         | PTE30    | DAC0_OUT/<br>ADC0_SE23/<br>CMP0_IN4 | DAC0_OUT/<br>ADC0_SE23/<br>CMP0_IN4 | PTE30 |           | TPM0_CH3 | TPM_CLKIN1 |           |                 |         |
| 23         | 19         | -         | _         | PTE31    | DISABLED                            |                                     | PTE31 |           | TPM0_CH4 |            |           |                 |         |
| 24         | 20         | 15        | -         | PTE24    | DISABLED                            |                                     | PTE24 |           | TPM0_CH0 |            | I2C0_SCL  |                 |         |
| 25         | 21         | 16        | _         | PTE25    | DISABLED                            |                                     | PTE25 |           | TPM0_CH1 |            | I2C0_SDA  |                 |         |
| 26         | 22         | 17        | 10        | PTA0     | SWD_CLK                             | TSI0_CH1                            | PTA0  |           | TPM0_CH5 |            |           |                 | SWD_CLK |
| 27         | 23         | 18        | 11        | PTA1     | DISABLED                            | TSI0_CH2                            | PTA1  | UART0_RX  | TPM2_CH0 |            |           |                 |         |
| 28         | 24         | 19        | 12        | PTA2     | DISABLED                            | TSI0_CH3                            | PTA2  | UART0_TX  | TPM2_CH1 |            |           |                 |         |

| 80<br>LQFP | 64<br>LQFP | 48<br>QFN | 32<br>QFN | Pin Name                       | Default                 | ALT0                    | ALT1                           | ALT2      | ALT3     | ALT4       | ALT5      | ALT6            | ALT7    |
|------------|------------|-----------|-----------|--------------------------------|-------------------------|-------------------------|--------------------------------|-----------|----------|------------|-----------|-----------------|---------|
| 29         | 25         | 20        | 13        | PTA3                           | SWD_DIO                 | TSI0_CH4                | PTA3                           | I2C1_SCL  | TPM0_CH0 |            |           |                 | SWD_DIO |
| 30         | 26         | 21        | 14        | PTA4                           | NMI_b                   | TSI0_CH5                | PTA4                           | I2C1_SDA  | TPM0_CH1 |            |           |                 | NMI_b   |
| 31         | 27         | -         | -         | PTA5                           | DISABLED                |                         | PTA5                           |           | TPM0_CH2 |            |           |                 |         |
| 32         | 28         | _         | -         | PTA12                          | DISABLED                |                         | PTA12                          |           | TPM1_CH0 |            |           |                 |         |
| 33         | 29         | _         | _         | PTA13                          | DISABLED                |                         | PTA13                          |           | TPM1_CH1 |            |           |                 |         |
| 34         | _          | _         | _         | PTA14                          | DISABLED                |                         | PTA14                          | SPI0_PCS0 | UART0_TX |            |           |                 |         |
| 35         | _          | _         | _         | PTA15                          | DISABLED                |                         | PTA15                          | SPI0_SCK  | UART0_RX |            |           |                 |         |
| 36         | _          | _         | _         | PTA16                          | DISABLED                |                         | PTA16                          | SPI0_MOSI |          |            | SPI0_MISO |                 |         |
| 37         | _          | -         | -         | PTA17                          | DISABLED                |                         | PTA17                          | SPI0_MISO |          |            | SPI0_MOSI |                 |         |
| 38         | 30         | 22        | 15        | VDD                            | VDD                     | VDD                     |                                |           |          |            |           |                 |         |
| 39         | 31         | 23        | 16        | VSS                            | VSS                     | VSS                     |                                |           |          |            |           |                 |         |
| 40         | 32         | 24        | 17        | PTA18                          | EXTALO                  | EXTALO                  | PTA18                          |           | UART1_RX | TPM_CLKIN0 |           |                 |         |
| 41         | 33         | 25        | 18        | PTA19                          | XTALO                   | XTALO                   | PTA19                          |           | UART1_TX | TPM_CLKIN1 |           | LPTMR0_<br>ALT1 |         |
| 42         | 34         | 26        | 19        | RESET_b                        | RESET_b                 |                         | PTA20                          |           |          |            |           |                 |         |
| 43         | 35         | 27        | 20        | PTB0/<br>LLWU_P5               | ADC0_SE8/<br>TSI0_CH0   | ADC0_SE8/<br>TSI0_CH0   | PTB0/<br>LLWU_P5               | I2C0_SCL  | TPM1_CH0 |            |           |                 |         |
| 44         | 36         | 28        | 21        | PTB1                           | ADC0_SE9/<br>TSI0_CH6   | ADC0_SE9/<br>TSI0_CH6   | PTB1                           | I2C0_SDA  | TPM1_CH1 |            |           |                 |         |
| 45         | 37         | 29        | -         | PTB2                           | ADC0_SE12/<br>TSI0_CH7  | ADC0_SE12/<br>TSI0_CH7  | PTB2                           | I2C0_SCL  | TPM2_CH0 |            |           |                 |         |
| 46         | 38         | 30        | _         | PTB3                           | ADC0_SE13/<br>TSI0_CH8  | ADC0_SE13/<br>TSI0_CH8  | PTB3                           | I2C0_SDA  | TPM2_CH1 |            |           |                 |         |
| 47         | —          | -         | Ι         | PTB8                           | DISABLED                |                         | PTB8                           |           | EXTRG_IN |            |           |                 |         |
| 48         | —          | —         | —         | PTB9                           | DISABLED                |                         | PTB9                           |           |          |            |           |                 |         |
| 49         | -          | -         | Ι         | PTB10                          | DISABLED                |                         | PTB10                          | SPI1_PCS0 |          |            |           |                 |         |
| 50         | —          | —         | —         | PTB11                          | DISABLED                |                         | PTB11                          | SPI1_SCK  |          |            |           |                 |         |
| 51         | 39         | 31        | Ι         | PTB16                          | TSI0_CH9                | TSI0_CH9                | PTB16                          | SPI1_MOSI | UART0_RX | TPM_CLKIN0 | SPI1_MISO |                 |         |
| 52         | 40         | 32        | —         | PTB17                          | TSI0_CH10               | TSI0_CH10               | PTB17                          | SPI1_MISO | UART0_TX | TPM_CLKIN1 | SPI1_MOSI |                 |         |
| 53         | 41         | -         | -         | PTB18                          | TSI0_CH11               | TSI0_CH11               | PTB18                          |           | TPM2_CH0 |            |           |                 |         |
| 54         | 42         | —         | —         | PTB19                          | TSI0_CH12               | TSI0_CH12               | PTB19                          |           | TPM2_CH1 |            |           |                 |         |
| 55         | 43         | 33        | -         | PTC0                           | ADC0_SE14/<br>TSI0_CH13 | ADC0_SE14/<br>TSI0_CH13 | PTC0                           |           | EXTRG_IN |            | CMP0_OUT  |                 |         |
| 56         | 44         | 34        | 22        | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | ADC0_SE15/<br>TSI0_CH14 | ADC0_SE15/<br>TSI0_CH14 | PTC1/<br>LLWU_P6/<br>RTC_CLKIN | I2C1_SCL  |          | TPM0_CH0   |           |                 |         |
| 57         | 45         | 35        | 23        | PTC2                           | ADC0_SE11/<br>TSI0_CH15 | ADC0_SE11/<br>TSI0_CH15 | PTC2                           | I2C1_SDA  |          | TPM0_CH1   |           |                 |         |
| 58         | 46         | 36        | 24        | PTC3/<br>LLWU_P7               | DISABLED                |                         | PTC3/<br>LLWU_P7               |           | UART1_RX | TPM0_CH2   | CLKOUT    |                 |         |
| 59         | 47         | -         | -         | VSS                            | VSS                     | VSS                     |                                |           |          |            |           |                 |         |
| 60         | 48         | -         | -         | VDD                            | VDD                     | VDD                     |                                |           |          |            |           |                 |         |
| 61         | 49         | 37        | 25        | PTC4/<br>LLWU_P8               | DISABLED                |                         | PTC4/<br>LLWU_P8               | SPI0_PCS0 | UART1_TX | TPM0_CH3   |           |                 |         |



Figure 17. KL15 80-pin LQFP pinout diagram