
E·XFL

onsemi - LC87F2708AUMD-AH Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	10MHz
Connectivity	SIO, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 7x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-LSOP (0.173", 4.40mm Width)
Supplier Device Package	14-SOIC/MFPS
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f2708aumd-ah

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ports

- I/O ports
- Ports whose I/O direction can be designated in 1 bit units: 11 (P10 to P16, P30 to P33)
- Reset pins:
- Power pins:

1 (RES#) 2 (VSS1, VDD1)

- Timers
 - Timer 0:16-bit timer/counter with a capture register
 - Mode 0: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with an 8-bit capture register) + 8-bit counter (with an 8-bit capture register)
 - Mode 2: 16-bit timer with an 8-bit programmable prescaler (with a 16-bit capture register)
 - Mode 3:16-bit counter (with a 16-bit capture register)
 - Timer 1:16-bit timer/counter that can provide with PWM/toggle output
 - Mode 0: 8-bit timer with an 8-bit prescaler (with toggle output) + 8-bit timer/counter with an 8-bit prescaler (with toggle output)
 - Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
 - Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle output) (Toggle output also possible from lower-order 8 bits)
 - Mode 3: 16-bit timer with an 8-bit prescaler (with toggle output)
 - (Lower-order 8 bits may be used as PWM.)

Serial Interface

- SIO7: 8-bit synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Built-in 8-bit baudrate generator (maximum transfer clock cycle = 4/3 tCYC)
- High-speed 12-bit PWM
 - System clock/high-speed RC oscillation clock (20MHz or 40MHz) operation selectable
 - Duty/period programmable
 - Continuous PWM output/specific count PWM output (automatic stop) selectable
- High-speed Pulse Width/Period Counter
 - HCT1: High-speed pulse width/period counter 1
 - 1) System clock/high-speed RC oscillation clock (20MHz or 40MHz) operation selectable
 - 2) H-level width/L-level width/period measurement modes selectable
 - 3) Input triggering noise filter
 - HCT2: High-speed pulse width/period counter 2
 - 1) System clock/high-speed RC oscillation clock (20MHz or 40MHz) operation selectable
 - 2) Can measure both L-level width and period simultaneously.
 - 3) Input triggering noise filter
 - 4) Input trigger selectable
 - (from 3 signals, i.e., P11/HCT2IN, P31/HCT2IN, and analog comparator output)
- AD converter: 12 bits \times 7 channels
 - 12-/8-bit AD converter resolution selectable

Analog Comparator

- Sends output to the P32/CMPO port (polarity selectable).
- Edge detection function (shared with INTC and also allows the selection of the noise filter function)
- Watchdog Timer
 - Can generate the internal reset signal on a timer overflow monitored by the WDT-dedicated low-speed RC oscillation clock (30kHz).
 - Allows selection of continue, stop, or hold mode operation of the counter on entry into the HALT/ HOLD mode.
- Interrupt Source Flags
 - 16 sources, 10 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INTA
2	0000BH	X or L	INTB
3	00013H	H or L	INTC/T0L/INTE
4	0001BH	H or L	INTD/INTF
5	00023H	H or L	T0H/SIO7
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	HCT1
8	0003BH	H or L	HCT2
9	00043H	H or L	ADC/HPWM automatic stop/HPWM cycle
10	0004BH	H or L	None

- Priority levels X > H > L

- Of interrupts of the same level, the one with the smallest vector address takes precedence.

- Subroutine Stack Levels: 256 levels maximum (The stack is allocated in RAM.)
- High-speed Multiplication/Division Instructions
 - 16 bits \times 8 bits (5 tCYC execution time)
 - 24 bits \times 16 bits (12 tCYC execution time)
 - 16 bits \div 8 bits (8 tCYC execution time)
 - 24 bits \div 16 bits (12 tCYC execution time)
- Oscillation Circuits
 - Medium speed RC oscillation circuit (internal): For system clock (1MHz)
 - Low speed RC oscillation circuit (internal): Fo

al): For watchdog timer (30kHz) hal): For system clock (20MHz or

- High speed RC oscillation circuit (internal): For system clock (20MHz or 40MHz)
 1) 2 source oscillation frequencies (20MHz or 40MHz) selectable for the high-speed RC oscillation circuit by optional configuration.
- System Clock Divider Function
 - Can run on low current.
 - The minimum instruction cycle selectable from 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs, 38.4µs, and 76.8µs (when high speed RC oscillation is selected for system clock.).

Internal Reset Circuit

- Power-on reset (POR) function
- 1) POR reset is generated only at power-on time.
- 2) The POR release level can be selected from 3 levels (2.87V, 3.86V, and 4.35V) by optional configuration.
- Low-voltage detection reset (LVD) function
- 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
- 2) The use or disuse of the LVD function and the low voltage threshold level (3 levels: 2.81V, 3.79V, and 4.28V) can be selected by optional configuration.

■ Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
- 1) Oscillation is not halted automatically.
- 2) There are the following three ways of resetting the HALT mode.
 - <1> Setting the Reset pin to the low level
 - <2> Generating a reset signal via the watchdog timer or brown-out detector
 - <3> Having an interrupt generated
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
- 1) The medium- and high-speed RC oscillation circuits automatically stop operation.
- 2) There are the following four ways of resetting the HOLD mode.
 - <1> Setting the Reset pin to the low level
 - <2> Generating a reset signal via the watchdog timer or brown-out detector
 - <3> Setting at least one of the INTA, INTB, INTC, INTD, INTE, and INTF pins to the specified level (INTA and INTB HOLD mode reset is available only when level detection is set.)
 - <4> Applying input signals to the IN+ and IN- pins so that the analog comparator output is set to the specified level (when the analog comparator output is assigned to the INTC input)
- On-chip Debugger Function
 - Supports software debugging with the IC mounted on the target board (LC87D2708A).
 - LC87F2708A has an On-chip debugger but its function is limited.
 - 3 channels of on-chip debugger pins are available.

■ Data Security Function ^{Note3}

- Protects the program data stored in flash memory from unauthorized read or copy.

Note3: This data security function does not necessarily provide absolute data security.

Development Tools

- On-chip debugger: 1) TCB87-Type B + LC87D2708A

- 2) TCB87-Type B + LC87F2708A
 - 3) TCB87-Type C (3 wire version) + LC87D2708A
 - 4) TCB87-Type C (3 wire version) + LC87F2708A

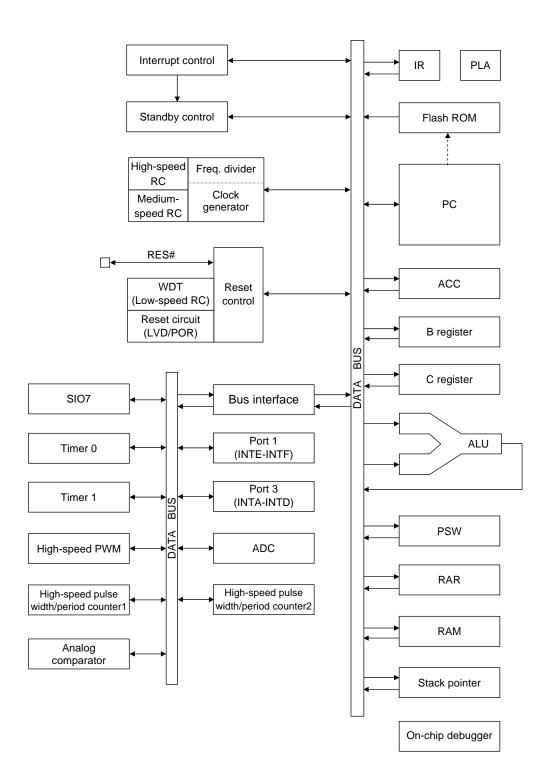
Programming Board

	Package	Programming Board
	MFP14S	W87F27M-DBG

■ Flash ROM Programming Board

Maker		Model	Version	Device
Flash Support Group, Inc. (FSG)	In-circuit	AF9101/AF9103 (Main body) (FSG models)	(Nata 5)	1 09753709 4
ON Semiconductor (Note 4)	Programmer	SIB87 (Inter Face Driver) (ON Semiconductor model)	(Note 5)	LC87F2708A
ON Semiconductor	Single/Gang Programmer In-circuit/ Gang Programmer	SKK-DBG Type B (SanyoFWS)	Application Version 1.04 or later Chip Data Version 2.10 or later	LC87F2708A

For information about AF-series:


Flash Support Group, Inc.

TEL: +81-53-459-1050

E-mail: sales@j-fsg.co.jp

- Note4: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from ON Semiconductor (SIB87) together can give a PC-less, standalone on-board-programming capabilities.
- Note5: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or ON Semiconductor for the information.

System Block Diagram

Pin Description

Pin Name	I/O	Description	Option
VSS1	-	– power supply pin	No
VDD1	-	+ power supply pin	No
PORT1 P10 to P16	I/O	 7-bit I/O port I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units Multiplexed pins P10: SIO7 data output P11: SIO7 data input/bus I/O /high-speed pulse width/period counter 2 input P12: SIO7 clock I/O P13: Timer 1 PWML output P14: Timer 1 PWMH output P10, P11, P14, P15: INTE input/HOLD release input/timer 1 event input /timer 0L capture input/timer 0H capture input P12, P13, P16: INTF input/HOLD release input/timer 1 event input /timer 0L capture input/timer 0H capture input AD converter input port: AN0 to AN6(P10 to P16) Analog comparator input port 0: IN0+, IN0-(P11, P12) Analog comparator input port 1: IN1+, IN1-(P15, P16) On-chip debugger pin 1: DBGP02 (P10) On-chip debugger pin 3: DBGP20 to DBGP22 (P13 to P15) - Interrupt acknowledge type 	Yes
		Rising Rising Pralling × INTE O O × ×	
PORT3 P30 to P33	I/O	 - 4-bit I/O port - I/O specifiable in 1-bit units - Pull-up resistors can be turned on and off in 1-bit units - Multiplexed pins P30: INTA input/HOLD release input/timer 0L capture input /high-speed pulse width/period counter 1 input P31: INTB input/HOLD release input/timer 0H capture input /high-speed pulse width/period counter 2 input P32: INTC input/HOLD release input/timer 0 event input /timer 0L capture input/analog comparator output P33: INTD input/HOLD release input/timer 0 event input /timer 0H capture input/high-speed PWM output On-chip debugger pin 1: DBGPX0 to DBGP01(P30 to P31) On-chip debugger pin 2: DBGPX0 to DBGP12(P30, P32 to P33) - Interrupt acknowledge type 	Yes
		L level H level Falling Rising	
		INTA O O × O O INTB O O × O O INTC O O O × × INTD O O O × ×	
RES	I/O	External reset input/internal reset output	No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.

Port Name	Option Selected in Units of	Option Type	Output Type	Pull-up Resistor
P10 to P16	11.4	1	CMOS	Programmable
P10 to P10	1 bit	2	N-channel open drain	Programmable
P30 to P33	11.4	1	CMOS	Programmable
150 10 155	1 bit	2	N-channel open drain	Programmable

On-chip Debugger Pin Processing

For the processing of the on-chip debugger pins, refer to the separately available documents entitled "RD87 On-chip Debugger Installation" and "LC872000 Series On-chip Debugger Pin Processing."

Recommended Unused Pin Connections

Pin Name	Recommended Unused Pin Connections				
Pin Name	Board	Software			
P10 to P16	OPEN	Set output low			
P30 to P33	OPEN	Set output low			

User Options

Option Name	Option Type	Flash Version	Option Switched in Unit of	Description
	P10 to P16	0	11.5	CMOS
Port output type	P10 t0 P10	0	1bit	N-channel open drain
Port output type	P30 to P33	0	1bit	CMOS
	F 50 10 F 55	0	TOIL	N-channel open drain
Program start address		0		00000Н
Program start address	_		-	01E00H
	Brown-out detector	0		Enable: Used
Brown-out detector reset	function	0	—	Disable: Not used
function	Brown-out trip level	0	-	3 levels
Power-on-reset function	Power-on-reset level	0	_	3 levels
High-speed RC oscillator	Oscillation	0		20 MHz
circuit	frequency	0	_	40 MHz

	Parameter	Symbol	Din/Domorlya	Pin/Remarks Conditions			Specif	ication	
	Parameter	Symbol	Pin/Keinarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
	aximum supply ltage	V _{DD} MAX	VDD1			-0.3	to	+6.5	V
In	put voltage	VI	RES#			-0.3	to	V _{DD} +0.3	
	put/output ltage	VIO	Port 1 Port 3			-0.3	to	V _{DD} +0.3	
	Peak output current	IOPH(1)	Port 1	CMOS output selected Per applicable pin		-7.5			mA
Hig		IOPH(2)	Port 3	 CMOS output selected Per applicable pin 		-10			
ligh le	Mean output current	IOMH(1)	Port 1	CMOS output selected Per applicable pin		-5			
vel out	(Note 1-1)	IOMH(2)	Port 3	CMOS output selected Per applicable pin		-7.5			
current	Total output current	$\Sigma IOAH(1)$	Ports 10, 15, 16 Ports 30, 31	Total of currents at all applicable pins		-20			
		$\Sigma IOAH(2)$	 Ports 11 to 14 Ports 32, 33 	Total of currents at all applicable pins		-20			
		$\Sigma IOAH(3)$	• Port 1 • Port 3	Total of currents at all applicable pins		-35			
	Peak output	IOPL(1)	Port 1	Per applicable pin				15	
	current	IOPL(2)	Port 3	Per applicable pin				10	
Low 1	Mean output current	IOML(1)	Port 1	Per applicable pin				10	
evel c	(Note 1-1)	IOML(2)	Port 3	Per applicable pin				7.5	
output	Total output current	$\Sigma IOAL(1)$	• Port 10 • Ports 30, 31	Total of currents at all applicable pins				25	
Low level output current		$\Sigma IOAL(2)$	Ports 11 to 16 Ports 32, 33	Total of currents at all applicable pins				35	
It		$\Sigma IOAL(3)$	Port 1 Port 3	Total of currents at all applicable pins				55	
Pc	ower dissipation	Pdmax(1)	MFP14S	 Ta=-40 to +85°C Independent package 				113	mW
		Pdmax(2)		Ta=-40 to +85°C Mounted on thermal test board (Note 1-2)				260	
tei	perating ambient	Topr				-40	to	+85	°C
	orage ambient mperature	Tstg				-55	to	+125	

1. Absolute Maximum Ratings at Ta=25°C, V_{SS}1=0V

Note 1-1: Mean output current refers to the average of output currents measured for a period of 100ms.

Note 1-2: Thermal test board used conforms to SEMI (size : $76.1 \times 114.3 \times 1.6$ tmm, glass epoxy board).

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Demonster	Samah a l	Pin/Remarks	Conditions			Specification		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
Operating supply voltage (Note 2-1)	V _{DD}	VDD1	$0.272 \mu s \leq tCYC \leq 100 \mu s$		2.7		5.5	V
Memory sustaining supply voltage	VHD	VDD1	RAM and register contents sustained in HOLD mode		2.0		5.5	
High level input voltage	VIH(1)	Port 1 Port 3	Output disabled	2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	
	VIH(2)	RES#		2.7 to 5.5	$0.75 V_{\text{DD}}$		V _{DD}	
Low level input voltage	VIL(1)	Port 1 Port 3	Output disabled	4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
				2.7 to 4.0	V _{SS}		0.2V _{DD}	
	VIL(2)	RES#		2.7 to 5.5	V _{SS}		0.25V _{DD}	
Instruction cycle time (Note 2-2)	tCYC			2.7 to 5.5	0.272		100	μs
Oscillation frequency range	FmHRC(1)		 High-speed RC oscillation 40MHz selected as option Ta=-20 to +85°C 	4.5 to 5.5	38	40	42	MHz
	FmHRC(2)		High-speed RC oscillation	4.5 to 5.5	37.6	40	42.4	
	FmHRC(3)		 40MHz selected as option Ta=-40 to +85°C 	3.5 to 5.5	36.8	40	43.2	
	FmHRC(4)			2.7 to 5.5	32	40	43.2	
	FmHRC(5)		 High-speed RC oscillation 20MHz selected as option Ta=-20 to +85°C 	3.0 to 5.5	19	20	21	
	FmHRC(6)		 High-speed RC oscillation 20MHz selected as option Ta=-40 to +85°C 	2.7 to 5.5	18.7	20	21.3	
	FmRC		Medium-speed RC oscillation	2.7 to 5.5	0.5	1.0	2.0	
	FmSLRC		Low-speed RC oscillation	2.7 to 5.5	15	30	60	kHz
Oscillation stabilization time	tmsHRC		When high-speed RC oscillation state is switched from stopped to enabled. See Fig. 2.	2.7 to 5.5			100	μs

2. Allowable Operating Conditions at Ta=-40 to +85°C, VSS1=0V

Note 2-1: Use this product in a voltage range of 3.0 to 5.5V because the minimum release voltage (PORRL) of the power-on reset (POR) circuit is 2.87V±0.12V.

Note 2-2: Relationship between tCYC and oscillation frequency is as follows:

- When system clock source is set to medium-speed RC oscillation

3/FmRC at a division ratio of 1/1, 6/FmRC at a division ratio of 1/2, 12/FmRC a division ratio of 1/4, and so forth

- When system clock source is set to high-speed RC oscillation (40MHz selected by optional configuration) 12/FmHRC at a division ratio of 1/1, 24/FmHRC at a division ratio of 1/2, 48/FmHRC a division ratio of 1/4, and so forth

- When system clock source is set to high-speed RC oscillation (20MHz selected by optional configuration) 6/FmHRC at a division ratio of 1/1, 12/FmHRC at a division ratio of 1/2, 24/FmHRC a division ratio of 1/4, and so forth

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Demonstern	Course a 1	Pin/Remarks	Conditions			Specific	cation	
Parameter	Symbol		Conditions	V _{DD} [V]	min.	typ.	max.	unit
High level input current	IIH(1)	• Port 1 • Port 3	Output disabled Pull-up resistor off VIN=VDD (including output Tr. off leakage current)	2.7 to 5.5			1	μΑ
	IIH(2)	RES#	V _{IN} =V _{DD}	2.7 to 5.5			1	
Low level input current	IIL	• Port 1 • Port 3	Output disabled Pull-up resistor off VIN=VSS (including output Tr. off leakage current)	2.7 to 5.5	-1			
High level output	VOH(1)	CMOS output type port 1	IOH=-1mA	4.5 to 5.5	V _{DD} -1			V
voltage	VOH(2)		IOH=-0.35mA	2.7 to 5.5	V _{DD} -0.4			
	VOH(3)	CMOS output type port 3	IOH=-5mA	4.5 to 5.5	V _{DD} -1.5			-
	VOH(4)		IOH=-0.7mA	2.7 to 5.5	V _{DD} -0.4			
Low level output	VOL(1)	Port 1	IOL=10mA	4.5 to 5.5			1.5	
voltage	VOL(2)		IOL=1.4mA	2.7 to 5.5			0.4	
	VOL(3)	Port 3	IOL=5mA	4.5 to 5.5			1.5	
	VOL(4)		IOL=0.7mA	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	• Port 1	VOH=0.9V _{DD}	4.5 to 5.5	15	35	80	kΩ
	Rpu(2)	• Port 3		2.7 to 4.5	18	50	150	
	Rpu(3)	RES#		2.7 to 5.5	216	360	504	
Hysteresis voltage	VHYS	• Port 1 • Port 3 • RES#		2.7 to 5.5		0.1V _{DD}		V
Pin capacitance	СР	All pins	• V _{IN} =V _{SS} for pins other than that under test • f=1MHz • Ta=25°C	2.7 to 5.5		10		pF

3. Electrical Characteristics at Ta=-40 to +85°C, VSS1=0V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

4. Serial I/O Characteristics at Ta=-40 to +85°C, VSS1=0V

	D		0 1 1	D' (D 1	C IV			Specif	ication	
	Pa	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
	Ι	Frequency	tSCK(1)	SCK7(P12)	• See Fig. 4.	2.7 to 5.5	2			tCYC
	Input clock	Low level pulse width	tSCKL(1)		(Note 4-1-2)		1			
Serial clock	ock	High level pulse width	tSCKH(1)				1			
cloc	Q	Frequency	tSCK(2)	SCK7(P12)	CMOS output	2.7 to 5.5	4/3			
¥	Output clock	Low level pulse width	tSCKL(2)		selected • See Fig. 4.			1/2		tSCK
	lock	High level pulse width	tSCKH(2)					1/2		
Seria	Da	ta setup time	tsDI(1)	SB7(P11), SI7(P11)	• Must be specified with respect to rising edge of SIOCLK.	2.7 to 5.5	0.03			μs
Serial input	Da	ta hold time	thDI(1)		• See Fig. 4.		0.03			
Seria	Input clock	Output delay time	tdDO(1)	SO7(P10), SB7(P11)	 Must be specified with respect to rising edge of SIOCLK. Must be specified as the time to the 	2.7 to 5.5			1tCYC +0.05	
Serial output	Output clock		tdDO(2)		beginning of output state change in open drain output mode. • See Fig. 4.				(1/3)tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use. Note 4-1-2: To use serial-clock-input in transmission/reception mode, the time from SI7RUN being set when serial clock is "H" to the first falling edge of the serial clock must be longer than 1tCYC.

	0 1 1	D. /D 1	C IV			Spe	ecification	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
High/low level pulse width	tPIH(1) tPIL(1)	INTA(P30), INTB(P31), INTD(P33), INTE (P10, P11, P14, P15), INTF (P12, P13, P16)	 Interrupt source flag can be set. Event inputs for timers 0 and 1 are enabled. 	2.7 to 5.5	1			tCYC
	tPIH(2) tPIL(2)	INTC(P32) when noise filter time constant is "none"	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	1			
	tPIH(3) tPIL(3)	INTC(P32) when noise filter time constant is "1/16"	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	64			
	tPIH(4) tPIL(4)	INTC(P32) when noise filter time constant is "1/32"	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	128			
	tPIH(5) tPIL(5)	INTC(P32) when noise filter time constant is "1/64"	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	256			
	tPIH(6) tPIL(6)	HCT1IN(P30)	Pulses can be recognized as signals by the high-speed pulse width/period counter 1.	2.7 to 5.5	3			H1CK (Note 5-1)
	tPIH(7) tPIL(7)	HCT2IN(P11, P31)	Pulses can be recognized as signals by the high-speed pulse width/period counter 2.	2.7 to 5.5	6			H2CK (Note 5-2)
	tPIL(8)	RES#	Resetting is enabled.	2.7 to 5.5	200			μs

5. Pulse Input Conditions at Ta=-40 to +85°C, VSS1=0V

Note 5-1: H1CK denotes the period of the base clock (1 to 8 × high-speed RC oscillation clock or system clock) for the high-speed pulse width/period counter 1.

Note 5-2: H2CK denotes the period of the base clock (2 to 16 × high-speed RC oscillation clock or system clock) for the high-speed pulse width/period counter 2.

6. Comparator Characteristics at Ta=-40 to +85°C, V_{SS} 1=0V

D. (0.1.1	P: (P 1				Spe	ecification	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	Unit
Common mode input voltage range	VCMIN	IN0+(P11), IN0-(P12), IN1+(P15),		2.7 to 5.5	V _{SS}		V _{DD} -1.5	V
Offset voltage	VOFF	IN1-(P16)	Within common mode input voltage range	2.7 to 5.5		±10	±30	mV
Response time	tRT		 Within common mode input voltage range Input amplitude=100mV Overdrive=50mV 	2.7 to 5.5		200	600	ns
Operation stabilization time (Note 6-1)	tCMW			2.7 to 5.5			1.0	μs

Note 6-1: The interval after CMPON is set till the operation gets stabilized.

7. AD Converter Characteristics at $V_{SS}1=0V$

< 12-bit AD conversion mode at Ta=-40 to $+85^{\circ}C$ >

Demonstern	Course had	Pin/Remarks	Conditions			Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
Resolution	Ν	AN0(P10)		3.0 to 5.5		12		bit
Absolute accuracy	ET	to AN6(P16)	(Note7-1)	3.0 to 5.5			±16	LSB
Conversion time	tCAD		• See "Conversion time	4.0 to 5.5	38		104.3	μs
			calculation method." • (Note7-2)	3.0 to 5.5	75.8		104.3	
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port input	IAINH		VAIN=VDD	3.0 to 5.5			1	μΑ
current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			

< 8-bit AD conversion mode at Ta=-40 to $+85^{\circ}C$ >

D (Symbol Pin/Remarks Conditions				Specific	cation		
Parameter	Symbol	Pin/Kemarks	Conditions	V _{DD} [V]	min.	typ.	max.	unit
Resolution	Ν	AN0(P10)		3.0 to 5.5		8		bit
Absolute accuracy	ET	to AN6(P16)	(Note7-1)	3.0 to 5.5			±1.5	LSB
Conversion time	tCAD		• See "Conversion time	4.0 to 5.5	23.4		64.3	μs
			calculation method." • (Note7-2)	3.0 to 5.5	46.7		64.3	
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V _{DD}	V
Analog port input	IAINH		VAIN=V _{DD}	3.0 to 5.5			1	μΑ
current	IAINL		VAIN=V _{SS}	3.0 to 5.5	-1			

< Conversion time calculation method >

12-bit AD conversion mode: tCAD (conversion time) = $((52/(\text{division ratio})) + 2) \times (1/3) \times \text{tCYC}$ 8-bit AD conversion mode: tCAD (conversion time) = $((32/(\text{division ratio})) + 2) \times (1/3) \times \text{tCYC}$

< Recommended Operating Conditions >

High-speed RC	Supply Voltage	System Clock	Cycle Time	AD Division	Conversion Time (tCAD)		
Oscillation (FmHRC)	Range (V _{DD})	Division Ratio (SYSDIV)	(tCYC)	Ratio (ADDIV)	12-bit AD	8-bit AD	
40101-/201011-	4.0V to 5.5V	1/1	300ns	1/8	41.8µs	25.8µs	
40MHz/20MHz	3.0V to 5.5V	1/1	300ns	1/16	83.4µs	51.4µs	

Note 7-1: The quantization error (±1/2LSB) is excluded from the absolute accuracy. The absolute accuracy is measured when no change occurs in the I/O state of the pins that are adjacent to the analog input channel during AD conversion processing.

Note 7-2: The conversion time refers to the interval from the time a conversion starting instruction is issued till the time the complete digital conversion value against the analog input value is loaded in the result register.

* The conversion time is twice the normal value when one of the following conditions occurs:

- The first AD conversion executed in the 12-bit AD conversion mode after a system reset.

- The first AD conversion executed after the AD conversion mode is switched from 8-bit to 12-bit AD conversion mode.

						Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option Selecting Voltage	min.	typ.	max.	unit
POR release	PORRL		• Option selected	2.87V	2.75	2.87	2.99	V
voltage			• See Fig. 6. (Note 8-1)	3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	
Unknown voltage area	POUKS		• See Fig. 6. (Note 8-2)			0.7	0.95	
Power startup time	PORIS		Power startup time from VDD=0V to 2.8V				100	ms

8. Power-on Reset (POR) Characteristics at Ta=-40 to +85°C, VSS1=0V

Note 8-1: The POR release voltage can be selected from three levels when the low-voltage detection feature is deselected. Note 8-2: There is an unpredictable period before the power-on reset transistor starts to turn on.

9. Low-voltage Detection (LVD) Characteristics at Ta=-40 to +85°C, VSS1=0V

						66		
						Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option Selecting Voltage	min.	typ.	max.	unit
LVD reset voltage	LVDET		• Option selected	2.81V	2.71	2.81	2.91	V
(Note 9-2)			• See Fig. 7. (Note 9-1)	3.79V	3.69	3.79	3.89	
			(Note 9-3)	4.28V	4.18	4.28	4.38	
LVD voltage	LVHYS			2.81V		60		mV
hysteresis				3.79V		65		
				4.28V		65		
Unknown voltage area	LVUKS		• See Fig. 7. (Note 9-4)			0.7	0.95	V
Minimum low voltage detection width (response sensitivity)	tLVDW		• LVDET-0.5V • See Fig. 8.		0.2			ms

Note 9-1: The LVD reset voltage can be selected from three levels when the low-voltage detection feature is selected.

Note 9-2: The hysteresis voltage is not included in the LVD reset voltage value.

Note 9-3: There are cases when the LVD reset voltage value is exceeded when a greater change in the output level or large current is applied to the port.

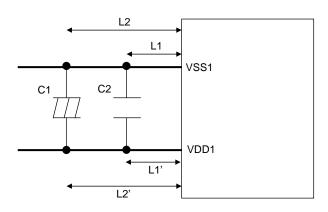
Note 9-4: There is an unpredictable period before the low-voltage detection resetting transistor starts to run.

LC87F2708A

10. Consumption Current Characteristics at Ta=-40 to +85°C, $V_{SS}1=0V$

Parameter	Symbol	Pin/Remarks	Conditions			Specif	ication	
	_	in romans		V _{DD} [V]	min.	typ.	max.	unit
Normal mode consumption current	IDDOP(1)	VDD1	 FmHRC=40MHz oscillation mode System clock set to high-speed RC, 10MHz (1/4 of 40MHz) 	4.5 to 5.5		7.8	14	mA
(Note 10-1)	IDDOP(2)		 Medium-speed RC oscillation stopped System clock frequency division ratio set to 1/1 	2.7 to 3.6		4.9	9.4	
	IDDOP(3)		 FmHRC=20MHz oscillation mode System clock set to high-speed RC, 10MHz (1/2 of 20MHz) 	4.5 to 5.5		7.1	12.8	
	IDDOP(4)		 Medium-speed RC oscillation stopped System clock frequency division ratio set to 1/1 	2.7 to 3.6		4.5	8.6	
	IDDOP(5)		 High-speed RC oscillation stopped System clock set to medium-speed RC 	4.5 to 5.5		0.60	1.9	
	IDDOP(6)		oscillation mode • System clock frequency division ratio set to 1/2	2.7 to 3.6		0.38	1.3	
HALT mode consumption current (Note 10-1)	IDDHALT(1)		HALT mode • FmHRC=40MHz oscillation mode • System clock set to high-speed RC, 10MHz(1/4 of 40MHz)	4.5 to 5.5		3.2	5.0	
(Note 10-1)	IDDHALT(2)		 Medium-speed RC oscillation stopped System clock frequency division ratio set to 1/1 	2.7 to 3.6		2.0	3.1	
	IDDHALT(3)		HALT mode • FmHRC=20MHz oscillation mode • System clock set to high-speed RC,	4.5 to 5.5		2.5	3.9	
	IDDHALT(4)		 Medium-speed RC oscillation stopped System clock frequency division ratio set to 1/1 	2.7 to 3.6		1.6	2.5	
	IDDHALT(5)		HALT mode • High-speed RC oscillation stopped • System clock set to medium-speed RC	4.5 to 5.5		0.32	1.0	
	IDDHALT(6)		oscillation mode • System clock frequency division ratio set to 1/2	2.7 to 3.6		0.16	0.55	
HOLD mode	IDDHOLD(1)		HOLD mode	4.5 to 5.5		0.04	3.0	μΑ
consumption current	IDDHOLD(2)		• Ta=-10 to +50°C	2.7 to 3.6		0.02	1.8	
(Note 10-1)	IDDHOLD(3)		HOLD mode	4.5 to 5.5		0.04	34	
	IDDHOLD(4)		• Ta= -40 to $+85^{\circ}$ C	2.7 to 3.6		0.02	22	
	IDDHOLD(5)	1	HOLD mode	4.5 to 5.5		3.1	6.8	
	IDDHOLD(6)]	• LVD option selected • Ta=-10 to +50°C	2.7 to 3.6		2.4	4.2	
	IDDHOLD(7)		HOLD mode	4.5 to 5.5		3.1	39	
	IDDHOLD(8)		• LVD option selected • Ta=-40 to +85°C	2.7 to 3.6		2.4	25	
	IDDHOLD(9)	1	HOLD mode	4.5 to 5.5		3.4	10	
	IDDHOLD(10)]	 Watchdog timer active Ta=-10 to +50°C 	2.7 to 3.6		1.7	6.0	
	IDDHOLD(11)		HOLD mode	4.5 to 5.5		3.4	42	
	IDDHOLD(12)]	 Watchdog timer active Ta=-40 to +85°C 	2.7 to 3.6		1.7	27	
	IDDHOLD(13)	1	HOLD mode	4.5 to 5.5		110	160	1
	IDDHOLD(14)	1	• Comparator active (IN+=VDD, IN-=VSS)	2.7 to 3.6		65	100	

Note 10-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.


Demonstern	Course had	Din /Dama alaa			S			
Parameter	Symbol	Pin/Remarks	Conditions	VDD[V]	min.	typ.	max.	unit
Onboard programming current	IDDFW	VDD1	 Microcontroller consumption current is excluded. 	3.0 to 5.5		5	10	mA
Programming	tFW(1)		Erase operation	3.0 to 5.5		20	30	ms
time	tFW(2)		 Programming operation 			40	60	μs

11. F-ROM Programming Characteristics at Ta=+10 to +55°C, V_{SS}1=0V

12. Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the VDD1 and VSS1 pins:

- Connect among the VDD1 and VSS1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as equal as possible (L1=L1', L2=L2').
- Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should be approximately $0.1 \mu F$.

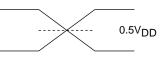
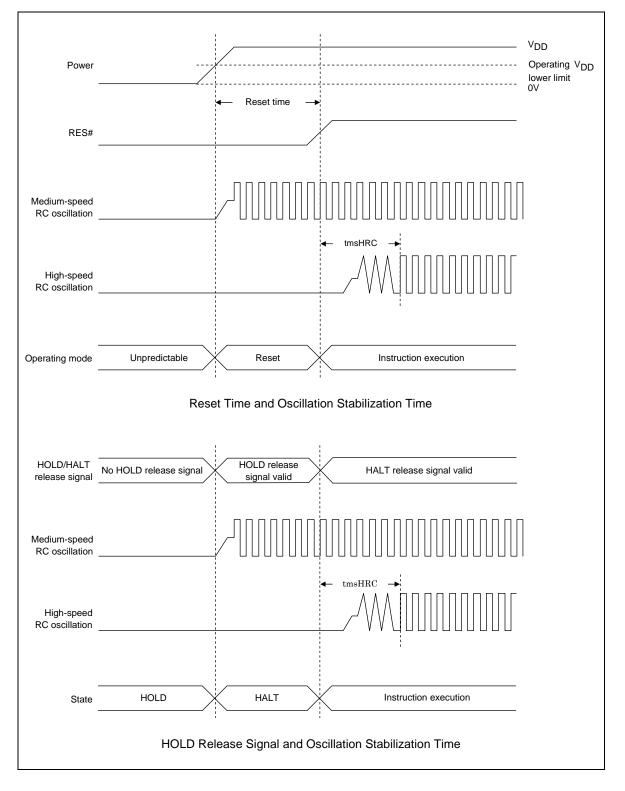
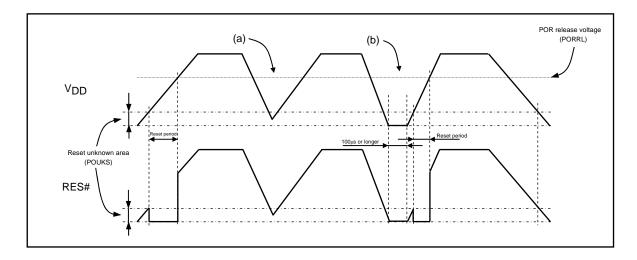


Figure 1 AC Timing Measurement Point

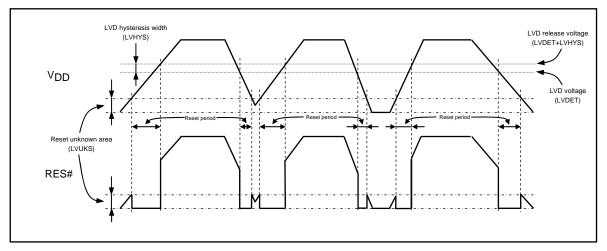


Figure 2 Oscillation Stabilization Times

- The POR circuit generates a reset signal only when the power voltage is raised from the VSS level.
- <u>No stable reset signal is generated if power is turned on again when the power voltage does not go</u> down to the VSS level as shown in (a). If this case is anticipated, use the LVD function as explained below or configure an external reset circuit.
- <u>A reset is effected only when power is turned on again after the power voltage goes down to and remains at the VSS level for 100µs or longer as shown in (b).</u>

• A reset is effected both when power is turned on and when it goes down.

• The hysteresis width (LVHYS) is introduced in the LVD circuit to prevent the iterations of the IC entering and exiting the reset state near the detection threshold level.

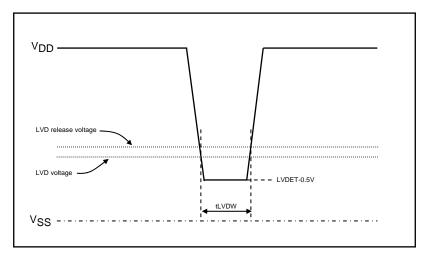


Figure 8 Minimum Low Voltage Detection Width (Example of Short Interruption of Power/ Power Fluctuation Waveform)

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC87F2708AUMD-AH	MFP14S(225mil) (Pb-Free / Halogen Free)	1000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright