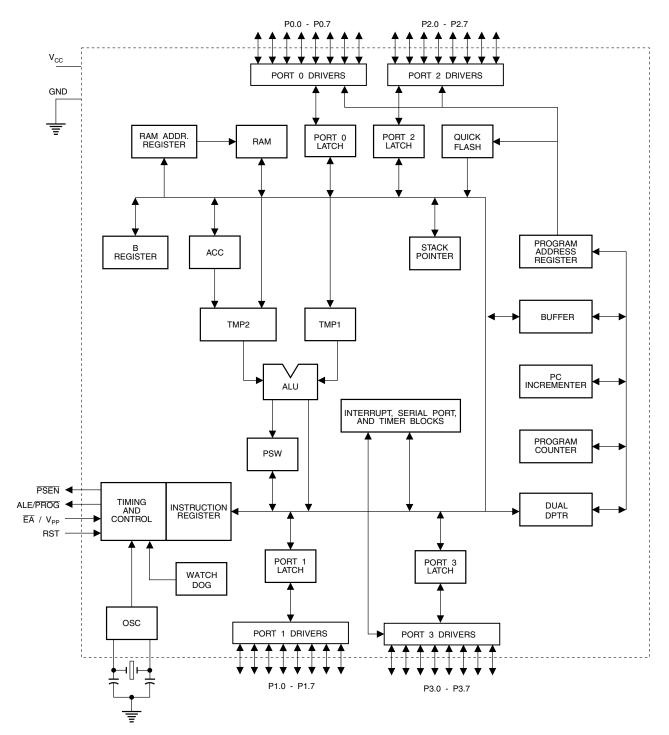


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	24MHz
Connectivity	UART/USART
Peripherals	WDT
Number of I/O	32
Program Memory Size	20KB (20K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c55wd-24pc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Diagram

Table 1. AT89C55WD SFR Map and Reset Values

		-							
0F8H									0FFH
0F0H	B 00000000								0F7H
0E8H									0EFH
0E0H	ACC 00000000								0E7H
0D8H									0DFH
0D0H	PSW 00000000								0D7H
0C8H	T2CON 00000000	T2MOD XXXXXX00	RCAP2L 00000000	RCAP2H 00000000	TL2 00000000	TH2 00000000			0CFH
0C0H									0C7H
0B8H	IP XX000000								0BFH
0B0H	P3 11111111								0B7H
0A8H	IE 0X000000								0AFH
0A0H	P2 11111111		AUXR1 XXXXXXX0				WDTRST XXXXXXXX		0A7H
98H	SCON 00000000	SBUF XXXXXXXX							9FH
90H	P1 11111111								97H
88H	TCON 00000000	TMOD 00000000	TL0 00000000	TL1 00000000	TH0 00000000	TH1 00000000	AUXR XXX00XX0		8FH
80H	P0 11111111	SP 00000111	DP0L 00000000	DP0H 00000000	DP1L 00000000	DP1H 00000000		PCON 0XXX0000	87H

Special Function Registers

A map of the on-chip memory area called the Special Function Register (SFR) space is shown in Table 1.

Note that not all of the addresses are occupied, and unoccupied addresses may not be implemented on the chip. Read accesses to these addresses will in general return random data, and write accesses will have an indeterminate effect.

User software should not write 1s to these unlisted locations, since they may be used in future products to invoke new features. In that case, the reset or inactive values of the new bits will always be 0.

Timer 2 Registers: Control and status bits are contained in registers T2CON (shown in Table 2) and T2MOD (shown in Table 2) for Timer 2. The register pair (RCAP2H, RCAP2L) are the Capture/Reload registers for Timer 2 in 16-bit capture mode or 16-bit auto-reload mode.

Interrupt Registers: The individual interrupt enable bits are in the IE register. Two priorities can be set for each of the six interrupt sources in the IP register.

Table 2. T2CON—Timer/Counter 2 Control Register

T2CON	T2CON Address = 0C8H Reset Value = 0000 0000B										
Bit Addressable											
Bit	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2			
	7	6	5	4	3	2	1	0			

Table 3. AUXR: Auxiliary Register

AUXR	Address	Address = 8EH Reset Value = XXX00XX0B											
	Not Bit Addressable												
	– – – WDIDLE DISRTO – – DISALE												
	Bit	7	6	5	4	3	2	1	0				
-	Reserved for	Reserved for future expansion											
DISALE	Disable/Enal	ble ALE											
	DISALE	Operating	Mode										
	0	ALE is em	itted at a co	nstant rate	of 1/6 the os	cillator frequ	ency						
	1	ALE is act	ive only dur	ing a MOVX	or MOVC in	struction							
DISRTO	Disable/Enal	ble Reset ou	ıt										
	DISRTO	Operating	Mode										
	0	Reset pin	is driven Hig	gh after WD	T times out								
	1	Reset pin	is input only	1									
WDIDLE	Disable/Enal	ble WDT in I	DLE mode										
	WDIDLE	Operating	Mode										
	0	WDT cont	inues to cou	Int in IDLE I	mode								
	1	WDT halts	s counting ir	IDLE mode	е								

Dual Data Pointer Registers: To facilitate accessing both internal and external data memory, two banks of 16-bit Data Pointer Registers are provided: DP0 at SFR address locations 82H-83H and DP1 at 84H-85H. Bit DPS = 0 in SFR AUXR1 selects DP0 and DPS = 1 selects DP1. The user should always initialize the DPS bit to the appropriate value before accessing the respective Data Pointer Register.

Power Off Flag: The Power Off Flag (POF) is located at bit 4 (PCON.4) in the PCON SFR. POF is set to "1" during power up. It can be set and rest under software control and is not affected by reset.

Table 4. AUXR1: Auxiliary Register 1

AUXR1	Address	= A2H		Reset Value = XXXXXX0B							
	Not Bit Addressable										
		_	-	_	_	_	_	_	DPS		
	Bit	7	6	5	4	3	2	1	0		
– DPS	Reserved for future expansion Data Pointer Register Select										
	DPS										
	0	Selects D	PTR Regist	ers DP0L, D	P0H						
	1 Selects DPTR Registers DP1L, DP1H										

Memory Organization	MCS-51 devices have a separate address space for Program and Data Memory. Up to 64 Kbytes each of external Program and Data Memory can be addressed.
Program Memory	If the \overline{EA} pin is connected to GND, all program fetches are directed to external memory.
	On the AT89C55WD, if $\overline{\text{EA}}$ is connected to V _{CC} , program fetches to addresses 0000H through 4FFFH are directed to internal memory and fetches to addresses 5000H through FFFFH are to external memory.
Data Memory	The AT89C55WD implements 256 bytes of on-chip RAM. The upper 128 bytes occupy a par- allel address space to the Special Function Registers. That means the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space.
	When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions that use direct addressing access SFR space.
	For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2). MOV 0A0H, #data
	Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A0H).

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available as stack space.

E	
	(R)

Hardware Watchdog Timer (One-time Enabled with Reset-out)	The WDT is intended as a recovery method in situations where the CPU may be subjected to software upsets. The WDT consists of a 13-bit counter and the WatchDog Timer Reset (WDTRST) SFR. The WDT is defaulted to disable from exiting reset. To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, it will increment every machine cycle while the oscillator is running. The WDT time-out period is dependent on the external clock frequency. There is no way to disable the WDT except through reset (either hardware reset or WDT overflow reset). When WDT overflows, it will drive an output RESET HIGH pulse at the RST pin.
Using the WDT	To enable the WDT, a user must write 01EH and 0E1H in sequence to the WDTRST register (SFR location 0A6H). When the WDT is enabled, the user needs to service it by writing 01EH and 0E1H to WDTRST to avoid a WDT overflow. The 13-bit counter overflows when it reaches 8191 (1FFFH), and this will reset the device. When the WDT is enabled, it will increment every machine cycle while the oscillator is running. This means the user must reset the WDT at least every 8191 machine cycles. To reset the WDT the user must write 01EH and 0E1H to WDTRST. WDTRST is a write-only register. The WDT counter cannot be read or written. When WDT overflows, it will generate an output RESET pulse at the RST pin. The RESET pulse duration is 98xTOSC, where TOSC=1/FOSC. To make the best use of the WDT, it should be serviced in those sections of code that will periodically be executed within the time required to prevent a WDT reset.
WDT During Power-down and Idle	In Power-down mode the oscillator stops, which means the WDT also stops. While in Power- down mode, the user does not need to service the WDT. There are two methods of exiting Power-down mode: by a hardware reset or via a level-activated external interrupt which is enabled prior to entering Power-down mode. When Power-down is exited with hardware reset, servicing the WDT should occur as it normally does whenever the AT89C55WD is reset. Exit- ing Power-down with an interrupt is significantly different. The interrupt is held low long enough for the oscillator to stabilize. When the interrupt is brought high, the interrupt is ser- viced. To prevent the WDT from resetting the device while the interrupt pin is held low, the WDT is not started until the interrupt is pulled high. It is suggested that the WDT be reset dur- ing the interrupt service for the interrupt used to exit Power-down.
	To ensure that the WDT does not overflow within a few states of exiting Power-down, it is best to reset the WDT just before entering Power-down.
	Before going into the IDLE mode, the WDIDLE bit in SFR AUXR is used to determine whether the WDT continues to count if enabled. The WDT keeps counting during IDLE (WDIDLE bit = 0) as the default state. To prevent the WDT from resetting the AT89C55WD while in IDLE mode, the user should always set up a timer that will periodically exit IDLE, service the WDT, and reenter IDLE mode.
	With WDIDLE bit enabled, the WDT will stop to count in IDLE mode and resumes the count upon exit from IDLE.
UART	The UART in the AT89C55WD operates the same way as the UART in the AT89C51 and AT89C52. For further information, see the December 1997 Microcontroller Data Book, page 2-48, section titled, "Serial Interface".

Timer 0 and 1 Timer 0 and Timer 1 in the AT89C55WD operate the same way as Timer 0 and Timer 1 in the AT89C51 and AT89C52.

Timer 2Timer 2 is a 16-bit Timer/Counter that can operate as either a timer or an event counter. The
type of operation is selected by bit C/T2 in the SFR T2CON (shown in Table 2). Timer 2 has
three operating modes: capture, auto-reload (up or down counting), and baud rate generator.
The modes are selected by bits in T2CON, as shown in Table 2.

Timer 2 consists of two 8-bit registers, TH2 and TL2. In the Timer function, the TL2 register is incremented every machine cycle. Since a machine cycle consists of 12 oscillator periods, the count rate is 1/12 of the oscillator frequency.

RCLK +TCLK	RCLK +TCLK CP/RL2		MODE
0	0	1	16-bit Auto-Reload
0	1	1	16-bit Capture
1	х	1	Baud Rate Generator
Х	Х	0	(Off)

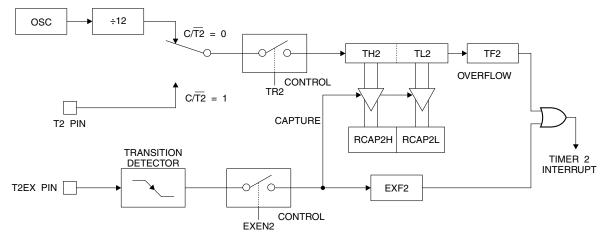
Table 5. Timer 2 Operating Modes

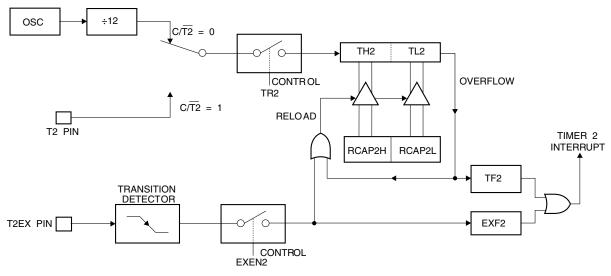
In the Counter function, the register is incremented in response to a 1-to-0 transition at its corresponding external input pin, T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since two machine cycles (24 oscillator periods) are required to recognize a 1-to-0 transition, the maximum count rate is 1/24 of the oscillator frequency. To ensure that a given level is sampled at least once before it changes, the level should be held for at least one full machine cycle.

Capture Mode In the capture mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 is a 16-bit timer or counter which upon overflow sets bit TF2 in T2CON. This bit can then be used to generate an interrupt. If EXEN2 = 1, Timer 2 performs the same operation, but a 1-to-0 transition at external input T2EX also causes the current value in TH2 and TL2 to be captured into RCAP2H and RCAP2L, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set. The EXF2 bit, like TF2, can generate an interrupt. The capture mode is illustrated in Figure 5.

Auto-reload (Up or Down Counter) Timer 2 can be programmed to count up or down when configured in its 16-bit auto-reload mode. This feature is invoked by the DCEN (Down Counter Enable) bit located in the SFR T2MOD (see Table 6). Upon reset, the DCEN bit is set to 0 so that timer 2 will default to count up. When DCEN is set, Timer 2 can count up or down, depending on the value of the T2EX pin.

Figure 5. Timer in Capture Mode




Figure 6 shows Timer 2 automatically counting up when DCEN=0. In this mode, two options are selected by bit EXEN2 in T2CON. If EXEN2 = 0, Timer 2 counts up to 0FFFFH and then sets the TF2 bit upon overflow. The overflow also causes the timer registers to be reloaded with the 16-bit value in RCAP2H and RCAP2L. The values in Timer in Capture ModeRCAP2H and RCAP2L are preset by software. If EXEN2 = 1, a 16-bit reload can be triggered either by an overflow or by a 1-to-0 transition at external input T2EX. This transition also sets the EXF2 bit. Both the TF2 and EXF2 bits can generate an interrupt if enabled.

Setting the DCEN bit enables Timer 2 to count up or down, as shown in Figure 6. In this mode, the T2EX pin controls the direction of the count. A logic 1 at T2EX makes Timer 2 count up. The timer will overflow at 0FFFFH and set the TF2 bit. This overflow also causes the 16-bit value in RCAP2H and RCAP2L to be reloaded into the timer registers, TH2 and TL2, respectively.

A logic 0 at T2EX makes Timer 2 count down. The timer underflows when TH2 and TL2 equal the values stored in RCAP2H and RCAP2L. The underflow sets the TF2 bit and causes 0FFFFH to be reloaded into the timer registers.

The EXF2 bit toggles whenever Timer 2 overflows or underflows and can be used as a 17th bit of resolution. In this operating mode, EXF2 does not flag an interrupt.

Figure 6. Timer 2 Auto Reload Mode (DCEN = 0)

Table 6. T2MOD – Timer 2 Mode Control Register

T2MOE	Address = 0	C9H		Reset Value = XXXX XX00B								
Not Bit	Addressable											
	_	_	_	_	_	_	T2OE	DCEN				
Bit	7	6	5	4	3	2	1	0				

Symbol	Function
_	Not implemented, reserved for future
T2OE	Timer 2 Output Enable bit
DCEN	When set, this bit allows Timer 2 to be configured as an up/down counter

Baud Rate Generator

Timer 2 is selected as the baud rate generator by setting TCLK and/or RCLK in T2CON (Table 2). Note that the baud rates for transmit and receive can be different if Timer 2 is used for the receiver or transmitter and Timer 1 is used for the other function. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode, as shown in Figure 8.

The baud rate generator mode is similar to the auto-reload mode, in that a rollover in TH2 causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2H and RCAP2L, which are preset by software.

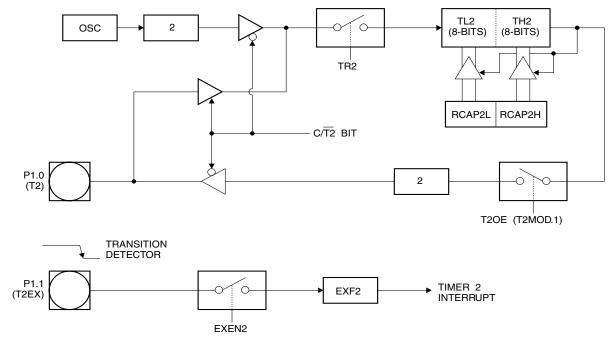
The baud rates in Modes 1 and 3 are determined by Timer 2's overflow rate according to the following equation.

Modes 1 and 3 Baud Rates = $\frac{\text{Timer 2 Overflow Rate}}{16}$

The Timer can be configured for either timer or counter operation. In most applications, it is configured for timer operation (CP/T2 = 0). The timer operation is different for Timer 2 when it is used as a baud rate generator. Normally, as a timer, it increments every machine cycle (at 1/12 the oscillator frequency). As a baud rate generator, however, it increments every state time (at 1/2 the oscillator frequency). The baud rate formula is given below.

 $\frac{\text{Modes 1 and 3}}{\text{Baud Rate}} = \frac{\text{Oscillator Frequency}}{32 \text{ x [65536-RCAP2H,RCAP2L)]}}$

where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.


Timer 2 as a baud rate generator is shown in Figure 8. This figure is valid only if RCLK or TCLK = 1 in T2CON. Note that a rollover in TH2 does not set TF2 and will not generate an interrupt. Note too, that if EXEN2 is set, a 1-to-0 transition in T2EX will set EXF2 but will not cause a reload from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in use as a baud rate generator, T2EX can be used as an extra external interrupt.

Note that when Timer 2 is running (TR2 = 1) as a timer in the baud rate generator mode, TH2 or TL2 should not be read from or written to. Under these conditions, the Timer is incremented every state time, and the results of a read or write may not be accurate. The RCAP2 registers may be read but should not be written to, because a write might overlap a reload and cause write and/or reload errors. The timer should be turned off (clear TR2) before accessing the Timer 2 or RCAP2 registers.

Figure 9. Timer 2 in Clock-Out Mode

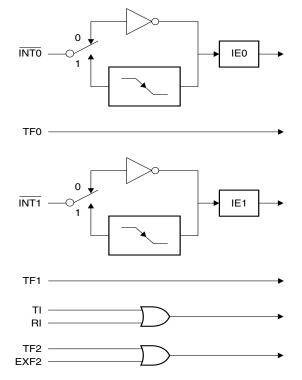


Table 7. Interrupt Enable (IE) Register

(M	SB)			(LSB)	(LSB)						
	EA	-	ET2	ES	ET1	EX1	ET0	EX0			
E	Enable Bit = 1 enables the interrupt.										
E	nable Bit = 0	disables the i	nterrupt.								

Symbol	Position	Function		
EA	IE.7	Disables all interrupts. If EA = 0, no interrupt is acknowledged. If EA = 1, each interrupt source is individually enabled or disabled by setting or clearing its enable bit.		
-	IE.6	Reserved.		
ET2	IE.5	Timer 2 interrupt enable bit.		
ES	IE.4	Serial Port interrupt enable bit.		
ET1	IE.3	Timer 1 interrupt enable bit.		
EX1	IE.2	External interrupt 1 enable bit.		
ET0	IE.1	Timer 0 interrupt enable bit.		
EX0	IE.0	External interrupt 0 enable bit.		
User software should never write 1s to reserved bits, because they may be used in future AT89 products.				

Figure 10. Interrupt Sources

18 **AT89C55WD**

Figure 12. External Clock Drive Configuration

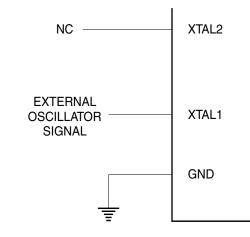


Table 8. Status of External Pins During Idle and Power-down Modes

Mode	Program Memory	ALE	PSEN	PORT0	PORT1	PORT2	PORT3
Idle	Internal	1	1	Data	Data	Data	Data
Idle	External	1	1	Float	Data	Address	Data
Power-down	Internal	0	0	Data	Data	Data	Data
Power-down	External	0	0	Float	Data	Data	Data

puts, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated.

Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.0 is pulled low after ALE goes high during programming to indicate BUSY. P3.0 is pulled high again when programming is done to indicate READY.

Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The status of the individual lock bits can be directly verified by reading them back.

Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 000H, 100H, and 200H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows:

(000H) = 1EH indicates manufactured by Atmel

(100H) = 55H

(200H) = 06H indicates 89C55WD

Programming Interface

Every code byte in the Flash array can be programmed by using the appropriate combination of control signals. The write operation cycle is self-timed and once initiated, will automatically time itself to completion.

Most worldwide major programming vendors offer support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision.

				ALE/	ĒĀ/						P0.7-0	P3.4	P2.5-0	P1.7-0
Mode	V _{cc}	RST	PSEN	PROG	V _{PP}	P2.6	P2.7	P3.3	P3.6	P3.7			Address	
Write Code Data	5V	н	L	(1)	12V	L	н	н	н	н	D _{IN}	A14	A13-8	A7-0
Read Code Data	5V	н	L	н	H/12V	L	L	L	н	н	D _{OUT}	A14	A13-8	A7-0
Write Lock Bit 1	6.5V	н	L	(2)	12V	н	н	н	н	н	х	х	х	х
Write Lock Bit 2	6.5V	н	L	(2)	12V	н	н	н	L	L	х	х	х	х
Write Lock Bit 3	6.5V	Н	L	(2)	12V	н	L	н	н	L	х	х	х	х
Read Lock Bits 1, 2, 3	5V	н	L	н	н	н	н	L	н	L	P0.2, P0.3, P0.4	x	x	х
Chip Erase	6.5V	н	L	(3)	12V	н	L	н	L	L	х	х	х	х
Read Atmel ID	5V	Н	L	н	н	L	L	L	L	L	1EH	Х	XX 0000	00H
Read Device ID	5V	Н	L	н	н	L	L	L	L	L	55H	Х	XX 0001	00H
Read Device ID	5V	н	L	Н	Н	L	L	L	L	L	06H	х	XX 0010	00H

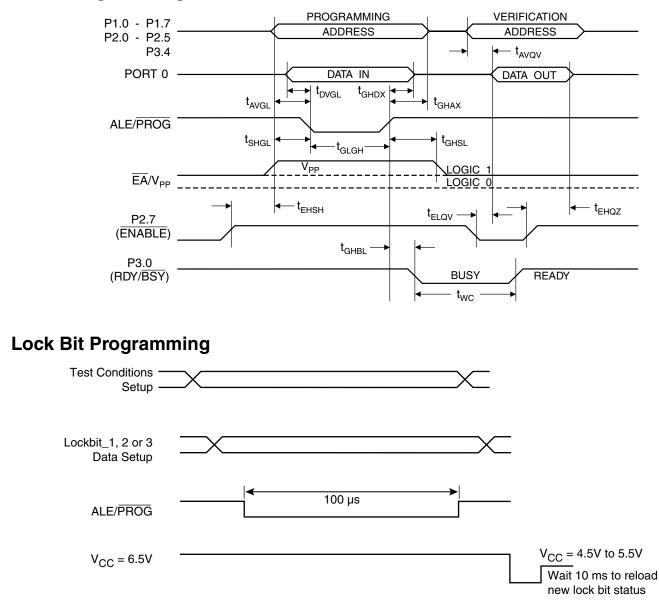
Table 10. Flash Programming Modes

Notes: 1. Write Code Data requires a 200 ns PROG pulse.

2. Write Lock Bits requires a 100 μ s PROG pulse.

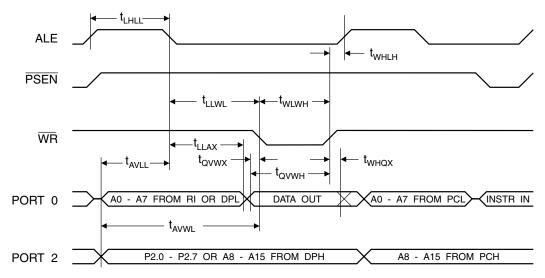
3. Chip Erase requires a 200 ns - 500 ns PROG pulse.

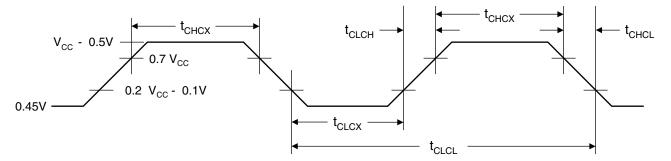
4. RDY/BSY signal is output on P3.0 during programming.


Flash Programming and Verification Characteristics

T_{A} = 20°C to 30°C, V_{CC} = 4.5V to 5.5V

Symbol	Parameter	Min	Max	Units	
V _{PP}	Programming Supply Voltage	11.5	12.5	V	
I _{PP}	Programming Supply Current		10	mA	
I _{CC}	V _{CC} Supply Current		30	mA	
1/t _{CLCL}	Oscillator Frequency	3	33	MHz	
t _{AVGL}	Address Setup to PROG Low	48t _{CLCL}			
t _{GHAX}	Address Hold After PROG	48t _{CLCL}			
t _{DVGL}	Data Setup to PROG Low	48t _{CLCL}			
t _{GHDX}	Data Hold After PROG	48t _{CLCL}			
t _{EHSH}	P2.7 (ENABLE) High to V _{PP}	48t _{CLCL}			
t _{SHGL}	V _{PP} Setup to PROG Low	10		μs	
t _{GHSL}	V _{PP} Hold After PROG	10		μs	
t _{GLGH}	PROG Width	0.2	1	μs	
t _{AVQV}	Address to Data Valid		48t _{CLCL}		
t _{ELQV}	ENABLE Low to Data Valid		48t _{CLCL}		
t _{EHQZ}	Data Float After ENABLE	0	48t _{CLCL}		
t _{GHBL}	PROG High to BUSY Low		1.0	μs	
t _{wc}	Byte Write Cycle Time		80	μs	





Flash Programming and Verification Waveforms

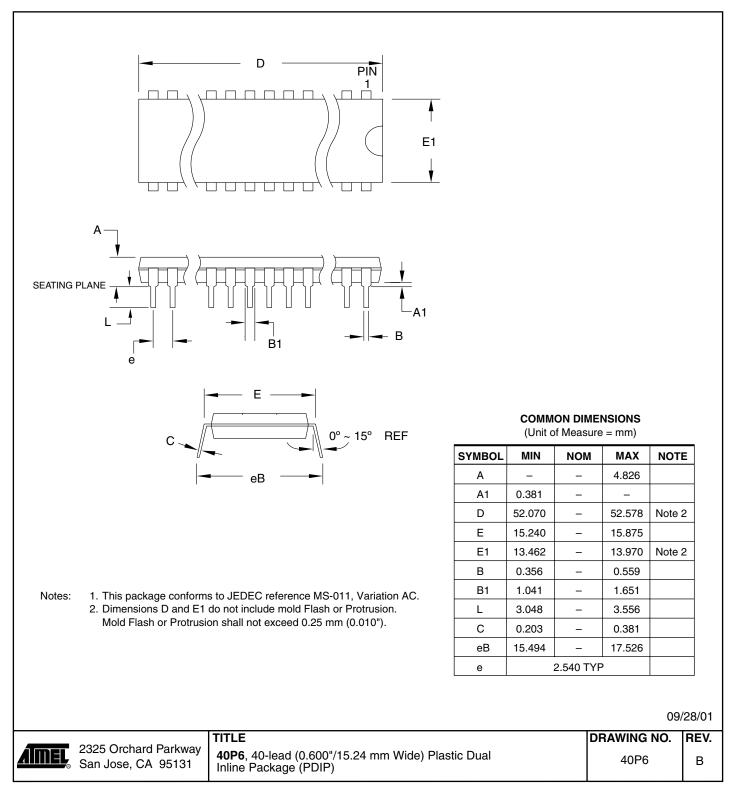
External Data Memory Write Cycle

External Clock Drive Waveforms

External Clock Drive

Symbol	Parameter	Min	Мах	Units
1/t _{CLCL}	Oscillator Frequency	0	33	MHz
t _{CLCL}	Clock Period	30		ns
t _{CHCX}	High Time	12		ns
t _{CLCX}	Low Time	12		ns
t _{CLCH}	Rise Time		5	ns
t _{CHCL}	Fall Time		5	ns

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
24	4.0V to 5.5V	AT89C55WD-24AC	44A	Commercial
		AT89C55WD-24JC	44J	(0°C to 70°C)
		AT89C55WD-24PC	40P6	
		AT89C55WD-24AI	44A	Industrial
		AT89C55WD-24JI	44J	(-40°C to 85°C)
		AT89C55WD-24PI	40P6	
33	4.5V to 5.5V	AT89C55WD-33AC	44A	Commercial
		AT89C55WD-33JC	44J	(0°C to 70°C)
		AT89C55WD-33PC	40P6	


Ordering Information

	Package Type
44 A	44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP)
44J	44-lead, Plastic J-leaded Chip Carrier (PLCC)
40P6	40-pin, 0.600" Wide, Plastic Dual Inline Package (PDIP)

40P6 - PDIP

