



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                   |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 20MHz                                                                    |
| Connectivity               | -                                                                        |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                    |
| Number of I/O              | 5                                                                        |
| Program Memory Size        | 1.75KB (1K × 14)                                                         |
| Program Memory Type        | FLASH                                                                    |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 64 × 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 5.5V                                                                |
| Data Converters            | A/D 4x10b; D/A 1x5b                                                      |
| Oscillator Type            | Internal                                                                 |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 8-VDFN Exposed Pad                                                       |
| Supplier Device Package    | 8-DFN (3x3)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic12f752-e-mf |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# TABLE 1: PIC12F752/HV752 FEATURE SUMMARY

| Device     | Flash Program<br>Memory (User)<br>(words) | Self Read/Write<br>Flash Memory | SRAM (bytes) | s0/I | 10-bit A/D (ch) | Comparators | Timers<br>8/16-bit | ССР | Complementary<br>Output Generator<br>(COG) | Shunt Regulator | ХГР |
|------------|-------------------------------------------|---------------------------------|--------------|------|-----------------|-------------|--------------------|-----|--------------------------------------------|-----------------|-----|
| PIC12F752  | 1024                                      | Y                               | 64           | 6    | 4               | 2           | 3/1                | 1   | Y                                          | Ν               | Y   |
| PIC12HV752 | 1024                                      | Y                               | 64           | 6    | 4               | 2           | 3/1                | 1   | Y                                          | Y               | Y   |

# FIGURE 1: 8-PIN PDIP, SOIC, DFN



#### 2.3.3 INTCON REGISTER

The INTCON register is a readable and writable register, which contains the various enable and flag bits for TMR0 register overflow, IOCIE change and external RA2/INT pin interrupts.

| Note: | Interrupt flag bits are set when an interrupt |  |  |  |  |  |  |  |
|-------|-----------------------------------------------|--|--|--|--|--|--|--|
|       | condition occurs, regardless of the state of  |  |  |  |  |  |  |  |
|       | its corresponding enable bit or the Global    |  |  |  |  |  |  |  |
|       | Enable bit, GIE of the INTCON register.       |  |  |  |  |  |  |  |
|       | User software should ensure the               |  |  |  |  |  |  |  |
|       | appropriate interrupt flag bits are clear     |  |  |  |  |  |  |  |
|       | prior to enabling an interrupt.               |  |  |  |  |  |  |  |

# REGISTER 2-3: INTCON: INTERRUPT CONTROL REGISTER

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| GIE   | PEIE  | TOIE  | INTE  | IOCIE | TOIF  | INTF  | IOCIF |
| bit 7 |       |       |       |       |       |       | bit 0 |

| Legend:       |                                                                |                                                                                         |                                                       |                              |
|---------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------|
| R = Reada     | able bit                                                       | W = Writable bit                                                                        | U = Unimplemented bit,                                | read as '0'                  |
| -n = Value    | at POR                                                         | '1' = Bit is set                                                                        | '0' = Bit is cleared                                  | x = Bit is unknown           |
|               |                                                                |                                                                                         |                                                       |                              |
| bit 7         | <b>GIE:</b> Global I<br>1 = Enables<br>0 = Disables            | nterrupt Enable bit<br>all unmasked interrupts<br>all interrupts                        |                                                       |                              |
| bit 6         | <b>PEIE:</b> Periph<br>1 = Enables<br>0 = Disables             | eral Interrupt Enable bit<br>all unmasked peripheral i<br>all peripheral interrupts     | nterrupts                                             |                              |
| bit 5         | <b>T0IE:</b> Timer0<br>1 = Enables<br>0 = Disables             | Overflow Interrupt Enable<br>the Timer0 interrupt<br>the Timer0 interrupt               | le bit                                                |                              |
| bit 4         | INTE: RA2/IN<br>1 = Enables<br>0 = Disables                    | IT External Interrupt Ena<br>the RA2/INT external inte<br>the RA2/INT external inte     | ble bit<br>rrupt<br>errupt                            |                              |
| bit 3         | <b>IOCIE:</b> Interr<br>1 = Enables<br>0 = Disables            | upt-on-Change Interrupt<br>the IOC change interrupt<br>the IOC change interrupt         | Enable bit <sup>(1)</sup>                             |                              |
| bit 2         | <b>T0IF:</b> Timer0<br>1 = Timer0 re<br>0 = Timer0 re          | Overflow Interrupt Flag b<br>egister has overflowed (m<br>egister did not overflow      | bit <sup>(2)</sup><br>hust be cleared in software)    |                              |
| bit 1         | INTF: RA2/IN<br>1 = The RA2<br>0 = The RA2                     | IT External Interrupt Flag<br>/INT external interrupt oc<br>/INT external interrupt dio | l bit<br>curred (must be cleared in so<br>d not occur | ftware)                      |
| bit 0         | IOCIF: Intern<br>1 = An IOC p<br>0 = No pin in                 | upt-on-Change Interrupt I<br>in has changed state and<br>terrupts have been gener       | Flag bit<br>d generated an interrupt<br>rated         |                              |
| Note 1:<br>2: | IOC register must<br>T0IF bit is set whe<br>clearing T0IF bit. | also be enabled.<br>n TMR0 rolls over. TMR0                                             | ) is unchanged on Reset and                           | should be initialized before |

# 2.3.8 PCON REGISTER

The Power Control (PCON) register (see Table 17-2) contains flag bits to differentiate between:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Watchdog Timer Reset (WDT)
- External MCLR Reset

The PCON register also controls the software enable of the BOR.

#### The PCON register bits are shown in Register 2-8.

# REGISTER 2-8: PCON: POWER CONTROL REGISTER

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R/W-q/u | R/W-q/u |
|-------|-----|-----|-----|-----|-----|---------|---------|
| —     | —   | —   | —   | —   | —   | POR     | BOR     |
| bit 7 |     |     |     |     |     |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared | q = Value depends on condition                        |
|                      |                      |                                                       |

| bit 7-2 | Unimplemented: Read as '0'                                                                                                                           |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| bit 1   | POR: Power-on Reset Status bit                                                                                                                       |
|         | <ul> <li>1 = No Power-on Reset occurred</li> <li>0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)</li> </ul>    |
| bit 0   | BOR: Brown-out Reset Status bit                                                                                                                      |
|         | <ul> <li>1 = No Brown-out Reset occurred</li> <li>0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)</li> </ul> |

# 2.4 PCL and PCLATH

The Program Counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 2-2 shows the two situations for the loading of the PC. The upper example in Figure 2-2 shows how the PC is loaded on a write to PCL (PCLATH<4:0>  $\rightarrow$  PCH). The lower example in Figure 2-2 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3>  $\rightarrow$  PCH).

#### FIGURE 2-2: LOADING OF PC IN DIFFERENT SITUATIONS



# 2.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<12:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper five bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 13 bits of the program counter will change to the values contained in the PCLATH register.

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). Care should be exercised when jumping into a look-up table or program branch table (computed GOTO) by modifying the PCL register. Assuming that PCLATH is set to the table start address, if the table length is greater than 255 instructions or if the lower eight bits of the memory address rolls over from 0xFF to 0x00 in the middle of the table, then PCLATH must be incremented for each address rollover that occurs between the table beginning and the target location within the table.

For more information refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

# 2.4.2 STACK

The PIC12F752/HV752 Family has an 8-level x 13-bit wide hardware stack (see Figure 2-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

| Note 1: | There are no Status bits to indicate Stack<br>Overflow or Stack Underflow conditions.                                                                                                                |  |  |  |  |  |  |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 2:      | There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address. |  |  |  |  |  |  |

# 2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR and the IRP bit of the STATUS register, as shown in Figure 2-3.

A simple program to clear RAM location 40h-7Fh using indirect addressing is shown in Example 2-1.

| EXAMPLE 2-1: | INDIRECT ADDRESSING |
|--------------|---------------------|
|--------------|---------------------|

|          | MOVLW | 0x40  | ;initialize pointer  |
|----------|-------|-------|----------------------|
|          | MOVWF | FSR   | ;to RAM              |
| NEXT     | CLRF  | INDF  | ;clear INDF register |
|          | INCF  | FSR   | ;inc pointer         |
|          | BTFSS | FSR,7 | ;all done?           |
|          | GOTO  | NEXT  | ;no clear next       |
| CONTINUE |       |       | ;yes continue        |
|          |       |       |                      |



# 4.2 Clock Source Modes

Clock Source modes can be classified as external or internal:

- The External Clock mode relies on an external clock for the clock source, such as a clock module or clock output from another circuit.
- Internal clock sources are contained internally within the oscillator module. The oscillator module has four selectable clock frequencies:
  - 8 MHz
  - 4 MHz
  - 1 MHz
  - 31 kHz

The system clock can be selected between external or internal clock sources via the FOSC0 bit of the Configuration Word register (CONFIG).

# 4.2.1 EC MODE

The External Clock (EC) mode allows an externally generated logic as the system clock source. The EC clock mode is selected when the FOSC0 bit of the Configuration Word is set.

When operating in this mode, an external clock source must be connected to the CLKIN input. The CLKOUT is available for either general purpose I/O or system clock output. Figure 4-3 shows the pin connections for EC mode.

Because the PIC<sup>®</sup> MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

#### FIGURE 4-3: EXTERNAL CLOCK (EC) MODE OPERATION



#### 4.2.2 INTERNAL CLOCK MODE

Internal Clock mode configures the internal oscillators as the system clock source. The Internal Clock mode is selected when the FOSC0 bit of the Configuration Word is cleared. The source and frequency are selected with the IRCF<1:0> bits of the OSCCON register.

When one of the HFINTOSC frequencies is selected, the frequency of the internal oscillator can be trimmed by adjusting the TUN<4:0> bits of the OSCTUNE register.

Operation after a Power-on Reset (POR) or wake-up from Sleep is delayed by the oscillator start-up time. Delays are typically longer for the LFINTOSC than HFINTOSC because of the very low-power operation and relatively narrow bandwidth of the LF internal oscillator. However, when another peripheral keeps the oscillator running during Sleep, the start-up time is delayed to allow the memory bias to stabilize.





# 4.2.2.1 Oscillator Ready Bits

The HTS and LTS bits of the OSCCON register indicate the status of the HFINTOSC and LFINTOSC, respectively. When either bit is set, it indicates that the corresponding oscillator is running and stable.

| FIGURE 7-6:              | TIMER1 GATE SINGLE-PULSE AND TOGGLE COMBINED MODE                                                    |  |
|--------------------------|------------------------------------------------------------------------------------------------------|--|
| TMR1 <u>GE</u><br>T1GPOL |                                                                                                      |  |
| T1GSPM                   |                                                                                                      |  |
| T1GTM                    |                                                                                                      |  |
| T1GG <u>O/</u><br>DONE   | Set by software Cleared by hardware on falling edge of T1GVAL Counting enabled on rising edge of T1G |  |
| T1G_IN                   |                                                                                                      |  |
| т1СКІ                    |                                                                                                      |  |
| T1GVAL                   |                                                                                                      |  |
| TIMER1                   | N $N+1$ $N+2$ $N+3$ $N+4$<br>Set by bardware on Cleared by                                           |  |
| TMR1GIF                  | Cleared by software     falling edge of T1GVAL     software                                          |  |
| L                        |                                                                                                      |  |

# 8.2 Timer2 Control Registers

# REGISTER 8-1: T2CON: TIMER 2 CONTROL REGISTER

| U-0           | R/W-0                      | R/W-0                                           | R/W-0         | R/W-0                              | R/W-0  | R/W-0              | R/W-0   |  |  |  |
|---------------|----------------------------|-------------------------------------------------|---------------|------------------------------------|--------|--------------------|---------|--|--|--|
|               |                            | TOUTPS<3:0>                                     |               |                                    | TMR2ON | T2CKF              | °S<1:0> |  |  |  |
| bit 7         |                            |                                                 |               |                                    |        |                    | bit C   |  |  |  |
|               |                            |                                                 |               |                                    |        |                    |         |  |  |  |
| Legend:       |                            |                                                 |               |                                    |        |                    |         |  |  |  |
| R = Readabl   | le bit                     | W = Writable bit                                |               | U = Unimplemented bit, read as '0' |        |                    |         |  |  |  |
| -n = Value at | t POR                      | '1' = Bit is set                                |               | '0' = Bit is cle                   | eared  | x = Bit is unknown |         |  |  |  |
| bit 7         | Unimpleme                  | ented: Read as '(                               | ז'            |                                    |        |                    |         |  |  |  |
| bit 6-3       |                            | • <b>0</b> >• Timer? Outr                       | Nut Postecala | r Salact hits                      |        |                    |         |  |  |  |
| bit 0-5       | 0000 - 1:1                 | Postecolor                                      |               | l Gelect bits                      |        |                    |         |  |  |  |
|               | 0000 = 1.1<br>0001 = 1.2   | Postscaler                                      |               |                                    |        |                    |         |  |  |  |
|               | 0001 = 1:2<br>0010 = 1:3   | 0001 = 1.2  Postscaler $0010 = 1.3  Postscaler$ |               |                                    |        |                    |         |  |  |  |
|               | 0011 = 1:4                 | Postscaler                                      |               |                                    |        |                    |         |  |  |  |
|               | 0100 = 1:5                 | 0100 = 1.5 Postscaler                           |               |                                    |        |                    |         |  |  |  |
|               | 0101 <b>= 1</b> :6         | 0101 = 1:6 Postscaler                           |               |                                    |        |                    |         |  |  |  |
|               | 0110 = 1:7 Postscaler      |                                                 |               |                                    |        |                    |         |  |  |  |
|               | 0111 = 1:8                 | 0111 = 1:8 Postscaler                           |               |                                    |        |                    |         |  |  |  |
|               | 1000 = 1:9                 | 1000 = 1:9 Postscaler                           |               |                                    |        |                    |         |  |  |  |
|               | 1001 = 1:10 Postscaler     |                                                 |               |                                    |        |                    |         |  |  |  |
|               | 1010 = 1:11                | 1010 = 1:11 Postscaler                          |               |                                    |        |                    |         |  |  |  |
|               | 1011 = 1:12 Postscaler     |                                                 |               |                                    |        |                    |         |  |  |  |
|               | 1100 = 1.13                | 1100 = 1:13 Postscaler                          |               |                                    |        |                    |         |  |  |  |
|               | 1101 = 1.12                | 1101 = 1.14  Postscaler                         |               |                                    |        |                    |         |  |  |  |
|               | 1110 = 1.10<br>1111 = 1.10 | 6 Postscaler                                    |               |                                    |        |                    |         |  |  |  |
| bit 2         | TMR2ON: 1                  | Timer2 On bit                                   |               |                                    |        |                    |         |  |  |  |
|               | 1 = Timer2                 | 1 = Timer2 is on                                |               |                                    |        |                    |         |  |  |  |
|               | 0 = Timer2                 | is off                                          |               |                                    |        |                    |         |  |  |  |
| bit 1-0       | T2CKPS<1                   | :0>: Timer2 Cloc                                | k Prescale S  | elect bits                         |        |                    |         |  |  |  |
|               | 00 = Prescaler is 1        |                                                 |               |                                    |        |                    |         |  |  |  |
|               | 01 = Presca                | 01 = Prescaler is 4                             |               |                                    |        |                    |         |  |  |  |
|               | 1x = Presca                | aler is 16                                      |               |                                    |        |                    |         |  |  |  |

| Name   | Bit 7                                        | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2    | Bit 1  | Bit 0  | Register on<br>Page |
|--------|----------------------------------------------|-------|-------|-------|-------|----------|--------|--------|---------------------|
| INTCON | GIE                                          | PEIE  | T0IE  | INTE  | IOCIE | T0IF     | INTF   | IOCIF  | 15                  |
| PIE1   | TMR1GIE                                      | ADIE  | —     | —     | —     | HLTMR1IE | TMR2IE | TMR1IE | 16                  |
| PIR1   | TMR1GIF                                      | ADIF  | —     | —     | —     | HLTMR1IF | TMR2IF | TMR1IF | 18                  |
| PR2    | Timer2 Module Period Register                |       |       |       |       |          |        |        | 61*                 |
| TMR2   | Holding Register for the 8-bit TMR2 Register |       |       |       |       |          |        |        | 61*                 |
| T2CON  | TOUTPS<3:0> TMR2ON T2CKPS<1:0>               |       |       |       |       |          | 62     |        |                     |

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for Timer2 module. \* Page provides register information.

# 10.0 CAPTURE/COMPARE/PWM MODULES

The Capture/Compare/PWM modules is a peripheral which allows the user to time and control different events, and to generate Pulse-Width Modulation (PWM) signals. In Capture mode, the peripheral allows the timing of the duration of an event. The Compare mode allows the user to trigger an external event when a predetermined amount of time has expired. The PWM mode can generate Pulse-Width Modulated signals of varying frequency and duty cycle.

# 10.1 Capture Mode

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCP1 pin, the 16-bit CCPR1H:CCPR1L register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCP1M<3:0> bits of the CCP1CON register:

- Every Falling Edge
- Every Rising Edge
- Every 4th Rising Edge
- Every 16th Rising Edge

When a capture is made, the Interrupt Request Flag bit CCP1IF of the PIR2 register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPR1H, CCPR1L register pair is read, the old captured value is overwritten by the new captured value.

Figure 10-1 shows a simplified diagram of the Capture operation.

# 10.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the associated TRIS control bit.

| If the CCP1 pin is configured as an output, |  |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|--|
| a write to the port can cause a capture     |  |  |  |  |  |  |
|                                             |  |  |  |  |  |  |

#### FIGURE 10-1: CAPTURE MODE OPERATION BLOCK DIAGRAM



#### 10.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP1 module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 7.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

#### 10.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCP1IE interrupt enable bit of the PIE2 register clear to avoid false interrupts. Additionally, the user should clear the CCP1IF interrupt flag bit of the PIR2 register following any change in Operating mode.

| Note: | Clocking Timer1 from the system clock   |  |  |  |  |  |
|-------|-----------------------------------------|--|--|--|--|--|
|       | (Fosc) should not be used in Capture    |  |  |  |  |  |
|       | mode. In order for Capture mode to      |  |  |  |  |  |
|       | recognize the trigger event on the CCP1 |  |  |  |  |  |
|       | pin, Timer1 must be clocked from the    |  |  |  |  |  |
|       | instruction clock (Fosc/4) or from an   |  |  |  |  |  |
|       | external clock source.                  |  |  |  |  |  |

# 10.1.4 CCP1 PRESCALER

There are four prescaler settings specified by the CCP1M<3:0> bits of the CCP1CON register. Whenever the CCP1 module is turned off or the CCP1 module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCP1CON register before changing the prescaler. Example 10-1 demonstrates the code to perform this function.

#### EXAMPLE 10-1: CHANGING BETWEEN CAPTURE PRESCALERS

| BANKSEL | CCP1CON     | ;Set Bank bits to point |
|---------|-------------|-------------------------|
|         |             | ;to CCP1CON             |
| CLRF    | CCP1CON     | ;Turn CCP1 module off   |
| MOVLW   | NEW_CAPT_PS | ;Load the W reg with    |
|         |             | ;the new prescaler      |
|         |             | ;move value and CCP1 ON |
| MOVWF   | CCP1CON     | ;Load CCP1CON with this |
|         |             | ;value                  |
|         |             |                         |

# 11.7 Phase Delay

It is possible to delay the assertion of the rising event. This is accomplished by placing a non-zero value in COGxPH register. Refer to Register 11-6 and Figure 11-3 for COG operation with CCP1 and phase delay. The delay from the input rising event signal switching to the actual assertion of the events is calculated the same as the dead-band and blanking delays. Please see Equation 11-1.

When the COGxPH value is '0', phase delay is disabled and the phase delay counter output is true, thereby, allowing the event signal to pass straight through to complementary output driver flop.

# 11.7.1 CUMULATIVE UNCERTAINTY

It is not possible to create more than one COG\_clock of uncertainty by successive stages. Consider that the phase delay stage comes after the blanking stage, the dead-band stage comes after either the blanking or phase delay stages, and the blanking stage comes after the dead-band stage. When the preceding stage is enabled, the output of that stage is necessarily synchronous with the COG\_clock, which removes any possibility of uncertainty in the succeeding stage.

#### EQUATION 11-1: PHASE, DEAD-BAND, AND BLANKING TIME CALCULATION

| $T_{\min} = \frac{\text{Count}}{F_{COG\_clock}}$             |
|--------------------------------------------------------------|
| $T_{\max} = \frac{\text{Count} + 1}{F_{COG\_\text{clock}}}$  |
| $T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$   |
| Also:<br>$T_{\text{uncertainty}} = \frac{1}{F_{COG\_clock}}$ |

Where:

| т                      | Count       |  |  |
|------------------------|-------------|--|--|
| Phase Delay            | GxPH<3:0>   |  |  |
| Rising Dead Band       | GxDBR<3:0>  |  |  |
| Falling Dead Band      | GxDBF<3:0>  |  |  |
| Rising Event Blanking  | GxBLKR<3:0> |  |  |
| Falling Event Blanking | GxBLKF<3:0> |  |  |

#### EXAMPLE 11-1: TIMER UNCERTAINTY

Given: Count = Ah = 10d  $F_{COG\_Clock} = 8MHz$ Therefore:  $T_{uncertainty} = \frac{1}{F_{COG\_clock}}$   $= \frac{1}{8MHz} = 125ns$ 

Proof:

$$T_{\min} = \frac{Count}{F_{COG\_clock}}$$
  
= 125ns • 10d = 1.25µs  
$$T_{\max} = \frac{Count + 1}{F_{COG\_clock}}$$
  
= 125ns • (10d + 1)  
= 1.375µs

Therefore:

$$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$$
$$= 1.375 \,\mu s - 1.25 \,\mu s$$
$$= 125 ns$$

# 12.1.6 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON0 register controls the output format.

Figure 12-4 shows the two output formats.





# 12.2 ADC Operation

#### 12.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

| Note: | The GO/DONE bit should not be set in the |  |  |  |  |  |
|-------|------------------------------------------|--|--|--|--|--|
|       | same instruction that turns on the ADC.  |  |  |  |  |  |
|       | Refer to Section 12.2.6 "A/D Conver-     |  |  |  |  |  |
|       | sion Procedure".                         |  |  |  |  |  |

#### 12.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF flag bit
- Update the ADRESH:ADRESL registers with new conversion result

#### 12.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH:ADRESL registers will not be updated with the partially complete Analog-to-Digital conversion sample. Instead, the ADRESH:ADRESL register pair will retain the value of the previous conversion. Additionally, a 2 TAD delay is required before another acquisition can be initiated. Following this delay, an input acquisition is automatically started on the selected channel.

| Note: | A device Reset forces all registers to their |  |  |  |  |  |  |
|-------|----------------------------------------------|--|--|--|--|--|--|
|       | Reset state. Thus, the ADC module is         |  |  |  |  |  |  |
|       | turned off and any pending conversion is     |  |  |  |  |  |  |
|       | terminated.                                  |  |  |  |  |  |  |

# 12.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

#### 12.2.5 SPECIAL EVENT TRIGGER

The CCP Special Event Trigger allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Section 10.0 "Capture/Compare/PWM Modules" for more information.

# 12.2.6 A/D CONVERSION PROCEDURE

This is an example procedure for using the ADC to perform an Analog-to-Digital conversion:

- 1. Configure Port:
  - Disable pin output driver (See TRIS register)
  - Configure pin as analog
- 2. Configure the ADC module:
  - Select ADC conversion clock
  - Configure voltage reference
  - Select ADC input channel
  - · Select result format
  - Turn on ADC module
- 3. Configure ADC interrupt (optional):
  - Clear ADC interrupt flag
  - Enable ADC interrupt
  - Enable peripheral interrupt
  - Enable global interrupt<sup>(1)</sup>
- 4. Wait the required acquisition time<sup>(2)</sup>
- 5. Start conversion by setting the GO/DONE bit
- 6. Wait for ADC conversion to complete by one of the following:
  - Polling the GO/DONE bit
  - Waiting for the ADC interrupt (interrupts enabled)
- 7. Read ADC Result
- 8. Clear the ADC interrupt flag (required if interrupt is enabled)

**Note 1:** The global interrupt can be disabled if the user is attempting to wake-up from Sleep and resume in-line code execution.

2: See Section 12.4 "A/D Acquisition Requirements".

#### EXAMPLE 12-1: A/D CONVERSION

```
;This code block configures the ADC
; for polling, Vdd reference, Frc clock
;and RA0 input.
;Conversion start & polling for completion
; are included.
 BANKSEL TRISA
                    ;
 BSF TRISA,0 ;Set RA0 to input
                   ;
 BANKSEL ADCON1
 MOVLW B'01110000' ; ADC Frc clock,
 IORWF ADCON1 ; and RAO as analog
 BANKSEL ADCON0
                   ;
 MOVLW B'10000001' ;Right justify,
         ADCON0 ;Vdd Vref, AN0, On
 MOVWF
 CALL
         SampleTime ;Acquisiton delay
         ADCON0,GO ;Start conversion
 BSF
TEST AGAIN
 BTFSC ADCON0,GO ; Is conversion done?
         TEST AGAIN ;No, test again
 GOTO
 BANKSEL ADRESH
                   ;
 MOVF
         ADRESH,W ;Read upper 2 bits
         RESULTHI ;Store in GPR space
 MOVWF
 BANKSEL ADRESL
                    ;
 MOVF
         ADRESL,W
                   ;Read lower 8 bits
 MOVWF
         RESULTLO
                   ;Store in GPR space
```

# 14.8 DAC Control Registers

| R/W-0/0                                                                                                    | ) R/W-0/0                                     | R/W-0/0                 | U-0           | U-0                                                | R/W-0/0          | U-0             | U-0         |
|------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------|---------------|----------------------------------------------------|------------------|-----------------|-------------|
| DACEN                                                                                                      | DACRNG                                        | DACOE                   | —             | —                                                  | DACPSS           | —               | —           |
| bit 7                                                                                                      |                                               |                         |               |                                                    |                  |                 | bit 0       |
|                                                                                                            |                                               |                         |               |                                                    |                  |                 |             |
| Legend:                                                                                                    |                                               |                         |               |                                                    |                  |                 |             |
| R = Reada                                                                                                  | ble bit                                       | W = Writable bit        |               | U = Unimpler                                       | mented bit, read | l as '0'        |             |
| u = Bit is u                                                                                               | nchanged                                      | x = Bit is unkr         | nown          | -n/n = Value at POR and BOR/Value at all other Res |                  |                 | ther Resets |
| '1' = Bit is s                                                                                             | set                                           | '0' = Bit is clea       | ared          |                                                    |                  |                 |             |
|                                                                                                            |                                               |                         |               |                                                    |                  |                 |             |
| bit 7                                                                                                      | DACEN: DAG                                    | C Enable bit            |               |                                                    |                  |                 |             |
|                                                                                                            | 1 = DAC is e                                  | enabled                 |               |                                                    |                  |                 |             |
|                                                                                                            |                                               | lisabled                |               |                                                    |                  |                 |             |
| bit 6                                                                                                      |                                               | AC Range Sele           | Range mode    |                                                    |                  |                 |             |
|                                                                                                            | 0 = DAC is c                                  | perating in Lim         | ited Range m  | ode                                                |                  |                 |             |
| bit 5                                                                                                      | DACOE: DAG                                    | C Voltage Outp          | ut Enable bit |                                                    |                  |                 |             |
|                                                                                                            | 1 = DAC refe                                  | erence output is        | enabled to th | ne DACOUT pi                                       | n <sup>(2)</sup> |                 |             |
|                                                                                                            | 0 = DAC refe                                  | erence output is        | disabled      |                                                    |                  |                 |             |
| bit 4-3                                                                                                    | Unimplemen                                    | ted: Read as '          | כ'            |                                                    |                  |                 |             |
| bit 2                                                                                                      | bit 2 DACPSS: DAC Positive Source Select bits |                         |               |                                                    |                  |                 |             |
|                                                                                                            | 0 = VDD<br>1 - VREET                          | nin                     |               |                                                    |                  |                 |             |
| hit 1-0                                                                                                    |                                               | pin<br>Itad: Read as 'i | רי            |                                                    |                  |                 |             |
|                                                                                                            |                                               |                         | J             |                                                    |                  |                 |             |
| NOTE 1:                                                                                                    |                                               | 14-1.                   |               | nal control hit                                    | n in the EV/PCO  | N register (coo | $E_{i}$     |
| 2: The DACOUT pin configuration requires additional control bits in the FVRCON register (see Figure 14-3). |                                               |                         |               |                                                    |                  |                 |             |

#### REGISTER 14-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

| U-0                  | U-0 | U-0               | R/W-0/0                                                | R/W-0/0      | R/W-0/0          | R/W-0/0     | R/W-0/0 |
|----------------------|-----|-------------------|--------------------------------------------------------|--------------|------------------|-------------|---------|
| —                    | —   | —                 |                                                        |              | DACR<4:0>        |             |         |
| bit 7                |     |                   |                                                        |              |                  |             | bit 0   |
|                      |     |                   |                                                        |              |                  |             |         |
| Legend:              |     |                   |                                                        |              |                  |             |         |
| R = Readable b       | oit | W = Writable      | bit                                                    | U = Unimpler | mented bit, read | l as '0'    |         |
| u = Bit is unchanged |     | x = Bit is unkn   | own -n/n = Value at POR and BOR/Value at all other Res |              |                  | ther Resets |         |
| '1' = Bit is set     |     | '0' = Bit is clea | ared                                                   |              |                  |             |         |

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits
1 1111 = DAC Voltage Maximum Output
•
•
•
•
•
0 0000 = DAC Voltage Minimum Output

Note 1: Refer to Equation 14-1 to calculate the value of the DAC Voltage Output.

# PIC12F752/HV752

|                                                             | <b>D M M M</b>                                                                                                                                                                               | -                 | -                |                  |                  |                | -            |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------|------------------|------------------|----------------|--------------|
| R/W-0/0                                                     | R/W-0/0                                                                                                                                                                                      | R/W-0/0           | R/W-0/0          | U-0              | U-0              | U-0            | R/W-0/0      |
| CxINTP                                                      | CXINTN                                                                                                                                                                                       | CxPCI             | H<1:0>           | —                | —                | —              | CxNCH0       |
| bit 7                                                       |                                                                                                                                                                                              |                   |                  |                  |                  |                | bit 0        |
|                                                             |                                                                                                                                                                                              |                   |                  |                  |                  |                |              |
| Legend:                                                     |                                                                                                                                                                                              |                   |                  |                  |                  |                |              |
| R = Readable I                                              | bit                                                                                                                                                                                          | W = Writable      | bit              | U = Unimpler     | mented bit, read | d as '0'       |              |
| u = Bit is uncha                                            | anged                                                                                                                                                                                        | x = Bit is unkr   | nown             | -n/n = Value a   | at POR and BO    | R/Value at all | other Resets |
| '1' = Bit is set                                            |                                                                                                                                                                                              | '0' = Bit is clea | ared             |                  |                  |                |              |
|                                                             |                                                                                                                                                                                              |                   |                  |                  |                  |                |              |
| bit 7                                                       | CxINTP: Com                                                                                                                                                                                  | nparator Interru  | pt on Positive   | Going Edge E     | nable bit        |                |              |
|                                                             | 1 = The CxIF                                                                                                                                                                                 | interrupt flag    | will be set upor | n a positive goi | ing edge of the  | CxOUT bit      |              |
|                                                             | 0 = No interr                                                                                                                                                                                | upt flag will be  | set on a positi  | ve going edge    | of the CxOUT b   | bit            |              |
| bit 6                                                       | CxINTN: Con                                                                                                                                                                                  | nparator Interru  | pt on Negative   | e Going Edge I   | Enable bits      |                |              |
|                                                             | <ul> <li>1 = The CxIF interrupt flag will be set upon a negative going edge of the CxOUT bit</li> <li>0 = No interrupt flag will be set on a negative going edge of the CxOUT bit</li> </ul> |                   |                  |                  |                  |                |              |
| bit 5-4                                                     | CxPCH<1:0>: Comparator Positive Input Channel Select bits                                                                                                                                    |                   |                  |                  |                  |                |              |
|                                                             | 00 = CxVP co                                                                                                                                                                                 | onnects to CxII   | N+ pin           |                  |                  |                |              |
|                                                             | 01 = CxVP co                                                                                                                                                                                 | onnects to DAC    | C Voltage Refe   | rence (dac_ref   | ·)               |                |              |
| 10 = CxVP connects to FVR Voltage Reference (fvr_ref)       |                                                                                                                                                                                              |                   |                  |                  |                  |                |              |
|                                                             | 11 = CXVP connects to VSS                                                                                                                                                                    |                   |                  |                  |                  |                |              |
| bit 3-1                                                     | Unimplemented: Read as '0'                                                                                                                                                                   |                   |                  |                  |                  |                |              |
| bit 0 CxNCH0: Comparator Negative Input Channel Select bits |                                                                                                                                                                                              |                   |                  |                  |                  |                |              |
|                                                             | $0 = C \times V N c$                                                                                                                                                                         | onnects to CxII   | NO- pin          |                  |                  |                |              |
|                                                             | 1 = CXVN c                                                                                                                                                                                   | onnects to CXII   | N1- pin          |                  |                  |                |              |

#### REGISTER 15-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

#### REGISTER 15-3: CMOUT: COMPARATOR OUTPUT REGISTER

| U-0   | U-0 | U-0 | U-0 | U-0 | U-0 | R-0/0  | R-0/0  |
|-------|-----|-----|-----|-----|-----|--------|--------|
| _     | _   | —   | —   | —   | —   | MC2OUT | MC10UT |
| bit 7 |     |     |     |     |     |        | bit 0  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-2 Unimplemented: Read as '0'

- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

| Mnemonic,<br>Operands                  |      | Description                  | Cycles       |        | 14-Bit | Opcode | •    | Status   | Notos   |
|----------------------------------------|------|------------------------------|--------------|--------|--------|--------|------|----------|---------|
|                                        |      | Description                  |              | MSb    |        |        | LSb  | Affected | Notes   |
| BYTE-ORIENTED FILE REGISTER OPERATIONS |      |                              |              |        |        |        |      |          |         |
| ADDWF                                  | f, d | Add W and f                  | 1            | 00     | 0111   | dfff   | ffff | C, DC, Z | 1, 2    |
| ANDWF                                  | f, d | AND W with f                 | 1            | 00     | 0101   | dfff   | ffff | Z        | 1, 2    |
| CLRF                                   | f    | Clear f                      | 1            | 00     | 0001   | lfff   | ffff | Z        | 2       |
| CLRW                                   | -    | Clear W                      | 1            | 00     | 0001   | 0xxx   | xxxx | Z        |         |
| COMF                                   | f, d | Complement f                 | 1            | 00     | 1001   | dfff   | ffff | Z        | 1, 2    |
| DECF                                   | f, d | Decrement f                  | 1            | 00     | 0011   | dfff   | ffff | Z        | 1, 2    |
| DECFSZ                                 | f, d | Decrement f, Skip if 0       | 1 <b>(2)</b> | 00     | 1011   | dfff   | ffff |          | 1, 2, 3 |
| INCF                                   | f, d | Increment f                  | 1            | 00     | 1010   | dfff   | ffff | Z        | 1, 2    |
| INCFSZ                                 | f, d | Increment f, Skip if 0       | 1 <b>(2)</b> | 00     | 1111   | dfff   | ffff |          | 1, 2, 3 |
| IORWF                                  | f, d | Inclusive OR W with f        | 1            | 00     | 0100   | dfff   | ffff | Z        | 1, 2    |
| MOVF                                   | f, d | Move f                       | 1            | 00     | 1000   | dfff   | ffff | Z        | 1, 2    |
| MOVWF                                  | f    | Move W to f                  | 1            | 00     | 0000   | lfff   | ffff |          |         |
| NOP                                    | -    | No Operation                 | 1            | 00     | 0000   | 0xx0   | 0000 |          |         |
| RLF                                    | f, d | Rotate Left f through Carry  | 1            | 00     | 1101   | dfff   | ffff | С        | 1, 2    |
| RRF                                    | f, d | Rotate Right f through Carry | 1            | 00     | 1100   | dfff   | ffff | С        | 1, 2    |
| SUBWF                                  | f, d | Subtract W from f            | 1            | 00     | 0010   | dfff   | ffff | C, DC, Z | 1, 2    |
| SWAPF                                  | f, d | Swap nibbles in f            | 1            | 00     | 1110   | dfff   | ffff |          | 1, 2    |
| XORWF                                  | f, d | Exclusive OR W with f        | 1            | 00     | 0110   | dfff   | ffff | Z        | 1, 2    |
|                                        |      | BIT-ORIENTED FILE REGIST     | ER OPER      | RATION | IS     |        |      |          |         |
| BCF                                    | f, b | Bit Clear f                  | 1            | 01     | 00bb   | bfff   | ffff |          | 1, 2    |
| BSF                                    | f, b | Bit Set f                    | 1            | 01     | 01bb   | bfff   | ffff |          | 1, 2    |
| BTFSC                                  | f, b | Bit Test f, Skip if Clear    | 1 (2)        | 01     | 10bb   | bfff   | ffff |          | 3       |
| BTFSS                                  | f, b | Bit Test f, Skip if Set      | 1 <b>(2)</b> | 01     | 11bb   | bfff   | ffff |          | 3       |
|                                        |      | LITERAL AND CONTROL          | OPERAT       | IONS   |        |        |      |          |         |
| ADDLW                                  | k    | Add literal and W            | 1            | 11     | 111x   | kkkk   | kkkk | C, DC, Z |         |
| ANDLW                                  | k    | AND literal with W           | 1            | 11     | 1001   | kkkk   | kkkk | Z        |         |
| CALL                                   | k    | Call Subroutine              | 2            | 10     | 0kkk   | kkkk   | kkkk |          |         |
| CLRWDT                                 | -    | Clear Watchdog Timer         | 1            | 00     | 0000   | 0110   | 0100 | TO, PD   |         |
| GOTO                                   | k    | Go to address                | 2            | 10     | 1kkk   | kkkk   | kkkk |          |         |
| IORLW                                  | k    | Inclusive OR literal with W  | 1            | 11     | 1000   | kkkk   | kkkk | Z        |         |
| MOVLW                                  | k    | Move literal to W            | 1            | 11     | 00xx   | kkkk   | kkkk |          |         |
| RETFIE                                 | -    | Return from interrupt        | 2            | 00     | 0000   | 0000   | 1001 |          |         |
| RETLW                                  | k    | Return with literal in W     | 2            | 11     | 01xx   | kkkk   | kkkk |          |         |
| RETURN                                 | -    | Return from Subroutine       | 2            | 00     | 0000   | 0000   | 1000 |          |         |
| SLEEP                                  | -    | Go into Standby mode         | 1            | 00     | 0000   | 0110   | 0011 | TO, PD   |         |
| SUBLW                                  | k    | Subtract W from literal      | 1            | 11     | 110x   | kkkk   | kkkk | C, DC, Z |         |
| XORLW                                  | k    | Exclusive OR literal with W  | 1            | 11     | 1010   | kkkk   | kkkk | Z        |         |

# TABLE 16-2: PIC12F752/HV752 INSTRUCTION SET

**Note 1:** When an I/O register is modified as a function of itself (e.g., MOVF PORTA, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

**3:** If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

# PIC12F752/HV752

| MOVF             | Move f                                                                                                                                                                                                                                                                                     |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVF f,d                                                                                                                                                                                                                                                                  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$                                                                                                                                                                                                                            |
| Operation:       | (f) $\rightarrow$ (dest)                                                                                                                                                                                                                                                                   |
| Status Affected: | Z                                                                                                                                                                                                                                                                                          |
| Description:     | The contents of register 'f' is<br>moved to a destination dependent<br>upon the status of 'd'. If $d = 0$ ,<br>destination is W register. If $d = 1$ ,<br>the destination is file register 'f'<br>itself. $d = 1$ is useful to test a file<br>register since Status flag Z is<br>affected. |
| Words:           | 1                                                                                                                                                                                                                                                                                          |
| Cycles:          | 1                                                                                                                                                                                                                                                                                          |
| Example:         | MOVF FSR, 0                                                                                                                                                                                                                                                                                |
|                  | After Instruction<br>W = value in FSR<br>register<br>Z = 1                                                                                                                                                                                                                                 |

| MOVWF            | Move W to f                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------|
| Syntax:          | [label] MOVWF f                                                                                   |
| Operands:        | $0 \le f \le 127$                                                                                 |
| Operation:       | $(W) \rightarrow (f)$                                                                             |
| Status Affected: | None                                                                                              |
| Description:     | Move data from W register to register 'f'.                                                        |
| Words:           | 1                                                                                                 |
| Cycles:          | 1                                                                                                 |
| Example:         | MOVW OPTION<br>F                                                                                  |
|                  | Before Instruction<br>OPTION = 0xFF<br>W = 0x4F<br>After Instruction<br>OPTION = 0x4F<br>W = 0x4F |

| MOVLW            | Move literal to W                                                                         |  |  |  |  |
|------------------|-------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [ <i>label</i> ] MOVLW k                                                                  |  |  |  |  |
| Operands:        | $0 \le k \le 255$                                                                         |  |  |  |  |
| Operation:       | $k \rightarrow (W)$                                                                       |  |  |  |  |
| Status Affected: | None                                                                                      |  |  |  |  |
| Description:     | The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's. |  |  |  |  |
| Words:           | 1                                                                                         |  |  |  |  |
| Cycles:          | 1                                                                                         |  |  |  |  |
| Example:         | MOVLW 0x5A                                                                                |  |  |  |  |
|                  | After Instruction<br>W = 0x5A                                                             |  |  |  |  |

| NOP              | No Operation |
|------------------|--------------|
| Syntax:          | [label] NOP  |
| Operands:        | None         |
| Operation:       | No operation |
| Status Affected: | None         |
| Description:     | No operation |
| Words:           | 1            |
| Cycles:          | 1            |
| Example:         | NOP          |

# 17.3.4 BROWN-OUT RESET (BOR)

The BOREN<1:0> bits in the Configuration Word register select one of three BOR modes. One mode has been added to allow control of the BOR enable for lower current during Sleep. By selecting BOREN<1:0> = 10, the BOR is automatically disabled in Sleep to conserve power and enabled on wake-up. See Register 17-1 for the Configuration Word definition.

A brown-out occurs when VDD falls below VBOR for greater than parameter TBOR (see **Section 20.0** "**Electrical Specifications**"). The brown-out condition will reset the device. This will occur regardless of VDD slew rate. A Brown-out Reset may not occur if VDD falls below VBOR for less than parameter TBOR.

On any Reset (Power-on, Brown-out Reset, Watchdog timer, etc.), the chip will remain in Reset until VDD rises above VBOR (see Figure 17-3). If enabled, the Power-up Timer will be invoked by the Reset and keep the chip in Reset an additional 64 ms.

| Note: | The Power-up Timer is enabled by the |
|-------|--------------------------------------|
|       | PWRTE bit in the Configuration Word  |
|       | register.                            |

If VDD drops below VBOR while the Power-up Timer is running, the chip will go back into a Brown-out Reset and the Power-up Timer will be re-initialized. Once VDD rises above VBOR, the Power-up Timer will execute a 64 ms Reset.

Table 17-3 summarizes the registers associated with BOR.



#### FIGURE 17-3: BROWN-OUT SITUATIONS

| TABLE 17-3: | SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET |
|-------------|------------------------------------------------------|
|-------------|------------------------------------------------------|

| Name   | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Register on<br>Page |
|--------|-------|-------|-------|-------|-------|-------|-------|-------|---------------------|
| PCON   | —     | —     |       | _     | _     | _     | POR   | BOR   | 20                  |
| STATUS | IRP   | RP1   | RP0   | TO    | PD    | Z     | DC    | С     | 13                  |

**Legend:** u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition. Shaded cells are not used by BOR.

**Note 1:** Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

# 20.0 ELECTRICAL SPECIFICATIONS

# Absolute Maximum Ratings<sup>(†)</sup>

| Ambient te | emperature under bias                                                                                                                                                       | 40° to +125°C                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Storage te | mperature                                                                                                                                                                   | 65°C to +150°C                                       |
| Voltage or | pins with respect to Vss                                                                                                                                                    |                                                      |
|            | on Vod pin                                                                                                                                                                  |                                                      |
|            | PIC12HV752                                                                                                                                                                  | 0.3V to +6.5V                                        |
|            | PIC12F752                                                                                                                                                                   | 0.3V to +6.5V                                        |
|            | on MCLR                                                                                                                                                                     | 0.3V to +13.5V                                       |
|            | on all other pins                                                                                                                                                           | 0.3V to (VDD + 0.3V)                                 |
| Maximum    | current                                                                                                                                                                     |                                                      |
|            | on Vss pin <sup>(1)</sup>                                                                                                                                                   |                                                      |
|            | -40°C $\leq$ Ta $\leq$ +85°C                                                                                                                                                | 95 mA                                                |
|            | -40°C $\leq$ TA $\leq$ +125°C                                                                                                                                               | 95 mA                                                |
|            | on Vod pin <sup>(1)</sup>                                                                                                                                                   |                                                      |
|            | -40°C $\leq$ Ta $\leq$ +85°C                                                                                                                                                | 95 mA                                                |
|            | -40°C $\leq$ TA $\leq$ +125°C                                                                                                                                               | 95 mA                                                |
|            | on RA1, RA4, RA5                                                                                                                                                            | 25 mA                                                |
|            | on RA0, RA2                                                                                                                                                                 | 50 mA                                                |
| Clamp cur  | rent, Ικ (VPIN < 0 or VPIN >VDD)                                                                                                                                            | ± 20 mA                                              |
| Note 1:    | Maximum current rating requires even load distribution across I/O pins. Maximu limited by the device package power dissipation characteristics. See Table 20-6 limitations. | m current rating may be to calculate device specific |

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

# 20.3 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

| Т                                     |                                      |     |                |  |  |
|---------------------------------------|--------------------------------------|-----|----------------|--|--|
| F                                     | Frequency                            | Т   | Time           |  |  |
| Lowerc                                | ase letters (pp) and their meanings: |     |                |  |  |
| рр                                    |                                      |     |                |  |  |
| сс                                    | CCP1                                 | OSC | OSC1           |  |  |
| ck                                    | CLKOUT                               | rd  | RD             |  |  |
| CS                                    | CS                                   | rw  | RD or WR       |  |  |
| di                                    | SDI                                  | SC  | SCK            |  |  |
| do                                    | SDO                                  | SS  | SS             |  |  |
| dt                                    | Data in                              | t0  | TOCKI          |  |  |
| io                                    | I/O Port                             | t1  | T1CKI          |  |  |
| mc                                    | MCLR                                 | wr  | WR             |  |  |
| Uppercase letters and their meanings: |                                      |     |                |  |  |
| S                                     |                                      |     |                |  |  |
| F                                     | Fall                                 | Р   | Period         |  |  |
| Н                                     | High                                 | R   | Rise           |  |  |
| I                                     | Invalid (High-Impedance)             | V   | Valid          |  |  |
| L                                     | Low                                  | Z   | High-Impedance |  |  |

#### FIGURE 20-3: LOAD CONDITIONS



#### TABLE 20-8: OSCILLATOR PARAMETERS

| Standard Operating Conditions (unless otherwise stated) |          |                                                                   |                    |      |       |      |                                                                                                       |                                                                                                                                       |
|---------------------------------------------------------|----------|-------------------------------------------------------------------|--------------------|------|-------|------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Param.<br>No.                                           | Sym.     | Characteristic                                                    | Freq.<br>Tolerance | Min. | Тур.† | Max. | Units                                                                                                 | Conditions                                                                                                                            |
| OS06                                                    | TWARM    | Internal Oscillator Switch when running                           | _                  |      |       | 2    | Tosc                                                                                                  |                                                                                                                                       |
| OS07 INTosc                                             | INTosc   | Internal Calibrated<br>INTOSC Frequency <sup>(1)</sup><br>(4 MHz) | ±1%                | 3.96 | 4.0   | 4.04 | MHz                                                                                                   | VDD = 3.5V, TA = 25°C                                                                                                                 |
|                                                         |          |                                                                   | ±2%                | 3.92 | 4.0   | 4.08 | MHz                                                                                                   | $\begin{array}{l} 2.5V \leq V \text{DD} \leq 5.5V, \\ 0^\circ\text{C} \leq \text{TA} \leq \textbf{+85}^\circ\text{C} \end{array}$     |
|                                                         |          | ±5%                                                               | 3.80               | 4.0  | 4.20  | MHz  | $2.0V \le VDD \le 5.5V$ ,<br>-40°C $\le$ TA $\le$ +85°C (Ind.),<br>-40°C $\le$ TA $\le$ +125°C (Ext.) |                                                                                                                                       |
| OS08 HFoso                                              | HFosc    | Internal Calibrated<br>HFINTOSC Frequency <sup>(1)</sup>          | ±1%                | 7.92 | 8     | 8.08 | MHz                                                                                                   | VDD = 3.5V, TA = 25°C                                                                                                                 |
|                                                         |          |                                                                   | ±2%                | 7.84 | 8     | 8.16 | MHz                                                                                                   | $\begin{array}{l} 2.5V \leq V \text{DD} \leq 5.5V, \\ 0^{\circ}\text{C} \leq \text{TA} \leq \texttt{+85}^{\circ}\text{C} \end{array}$ |
|                                                         |          |                                                                   | ±5%                | 7.60 | 8     | 8.40 | MHz                                                                                                   | $2.0V \le VDD \le 5.5V$ ,<br>-40°C $\le$ TA $\le$ +85°C (Ind.),<br>-40°C $\le$ TA $\le$ +125°C (Ext.)                                 |
| OS09                                                    | LFosc    | Internal LFINTOSC<br>Frequency                                    |                    |      | 31    |      | kHz                                                                                                   |                                                                                                                                       |
| OS10*                                                   | TIOSC ST | HFINTOSC Wake-up from                                             | _                  |      | 12    | 24   | μS                                                                                                    | $V\text{DD} = 2.0V \ \text{-}40^\circ C \leq T\text{A} \leq \text{+}85^\circ C$                                                       |
|                                                         |          | Sleep Start-up Time                                               |                    | —    | 7     | 14   | μs                                                                                                    | $VDD = 3.0V - 40^{\circ}C \le TA \le +85^{\circ}C$                                                                                    |
|                                                         |          |                                                                   |                    | _    | б     | 11   | μs                                                                                                    | $VDD = 5.0V - 40^{\circ}C \le 1A \le +85^{\circ}C$                                                                                    |

\* These parameters are characterized but not tested.

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

**Note 1:** To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

© 2011-2015 Microchip Technology Inc.