E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f752-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
PMCON1	_	—	_	—	—	WREN	WR	RD	25
PMCON2	Program Memory Control Register 2								23*
PMADRL	PMADRL<7:0>							24	
PMADRH	_	_	_	_	—	_	PMADF	RH<1:0>	24
PMDATL				PMDA	TL<7:0>				24
PMDATH	_	_	PMDATH<5:0>						24
INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	15

TABLE 3-1: SUMMARY OF REGISTERS ASSOCIATED WITH FLASH PROGRAM MEMORY

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Flash program memory module. * Page provides register information.

TABLE 3-2: SUMMARY OF CONFIGURATION WORD WITH FLASH PROGRAM MEMORY

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	—	—	DEBUG	CLKOUTEN	WRT	<1:0>	BOREN	l<1:0>	100
CONFIG	7:0	_	CP	MCLRE	PWRTE	WDTE	_	—	FOSC0	120

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by Flash program memory.

5.4 **PORTA Control Registers**

REGISTER 5-2: PORTA: PORTA REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R-x/x	R/W-x/u	R/W-x/u	R/W-x/u	
—	-	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7							bit 0	
Legend:								
R = Readable bit V		W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unchar	nged	x = Bit is unknow	wn	-n/n = Value at	POR and BOR/Va	alue at all other F	Resets	
'1' = Bit is set	'1' = Bit is set '0' = B		ed					
bit 7-6	bit 7-6 Unimplemented: Read as '0'							
bit 5-0 RA<5:0>: PORTA I/O Value bits ⁽¹⁾		(1)						

 $1 = Port pin is \geq VIH$

 $0 = Port pin is \leq VIL$

Note 1: Writes to any PORTx register are written to the corresponding LATx register. Reads from any PORTx register, return the value present on that PORTx I/O pins.

REGISTER 5-3: TRISA: PORTA TRI-STATE REGISTER

U-0	U-0	R/W-1/1	R/W-1/1	R-1/1	R/W-1/1	R/W-1/1	R/W-1/1
—	—	TRISA5	TRISA4	TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **TRISA<5:0>:** PORTA Tri-State Control bits⁽¹⁾ 1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

Note 1: TRISA3 always reads '1'.

REGISTER 5-4: LATA: PORTA DATA LATCH REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	LATA5	LATA4	—	LATA2	LATA1	LATA0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-4 LATA<5:4>: PORTA Output Latch Value bits⁽¹⁾

bit 3 Unimplemented: Read as '0'

bit 2-0 LATA<2:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to any PORTx register are written to the corresponding LATx register. Reads from any PORTx register, return the value present on that PORTx I/O pins.

5.5.2 WEAK PULL-UPS

Each of the PORTA pins, except RA3, has an individually configurable internal weak pull-up. Control bits WPUx enable or disable each pull-up. Refer to Register 5-9. Each weak pull-up is automatically turned off when the port pin is configured as an output. The

pull-ups are disabled on a Power-on Reset by the RAPU bit of the OPTION_REG register). A weak pull-up is automatically enabled for RA3 when configured as MCLR and disabled when RA3 is an I/O. There is no software control of the MCLR pull-up.

REGISTER 5-6: WPUA: WEAK PULL-UP PORTA REGISTER ^(1,2)

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	WPU5	WPU4	WPU3 ⁽³⁾	WPU2	WPU1	WPU0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 WPU<5:0>: Weak Pull-up Control bits

- 1 = Pull-up enabled
 - 0 = Pull-up disabled
- **Note 1:** Global RAPU must be enabled for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRISA = 0).
 - **3:** The RA3 pull-up is enabled when configured as MCLR in the Configuration Word, otherwise it is disabled as an input and reads as '0'.

5.5.3 SLEW RATE CONTROL

Two of the PORTA pins (RA0 and RA2) are equipped with high current driver circuitry. The SLRCONA register provides reduced slew rate control to mitigate possible EMI radiation from these pins.

REGISTER 5-7: SLRCONA: SLEW RATE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0
—	—	—	_	—	SLRA2	—	SLRA0
bit 7							bit 0

Legend:					
R = Readable bit W = Writable bit		U = Unimplemented bit,	read as '0'		
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	
bit 7-3	Unimple	emented: Read as '0'			
bit 2	SLRA2:	Slew Rate Control bit			
	1 = Pin v	oltage slews at limited rate			

- 0 = Pin voltage slews at maximum rate
- bit 1 Unimplemented: Read as '0'
- bit 0 SLRA0: Slew Rate Control bit
 - 1 = Pin voltage slews at limited rate

0 = Pin voltage slews at maximum rate

REGISTER	II-3. COG	ASD: COG	AU10-3HU		RUL REGISI	EK	
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
GxASDE	GxARSEN	GxASDL1	GxASDL0	GxASDSHLT	GxASDSC2	GxASDSC1	GxASDSFLT
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpleme	ented bit, read a	as 'O'	
u = Bit is unc	hanged	x = Bit is unkr	nown	-n/n = Value at	POR and BOR	Value at all oth	ner Resets
'1' = Bit is set	t	'0' = Bit is clea	ared	q = Value depe	ends on conditio	n	
bit 7	GxASDE: Au	ito-Shutdown E	vent Status bi	t			
	1 = COG is r 0 = COG is r	n the shutdowr not in the shutd	own state				
bit 6	GxARSEN: A	Auto-Restart Er	nable bit				
	1 = Auto-res	tart is enabled					
	0 = Auto-res	tart is disabled					
bit 5	GxASDL1: C	OGxOUT1 Au	to-shutdown C	verride Level bit	t.,,,,		
	$1 = A \log c$	l' is placed on	COGXOUT1 w COGXOUT1 w	hen a shutdown hen a shutdown	i input is true		
bit 4	GxASDL0: C	COGXOUT0 Aut	to-shutdown C	verride Level bit	t		
	$1 = A \log i c$ '1	L' is placed on	COGxOUT0 w	hen a shutdown	i input is true		
	0 = A logic '(o' is placed on	COGxOUT0 w	hen a shutdown	input is true		
bit 3	GxASDSHLT	COG Auto-sh	utdown Sourc	e Enable bit 3			
	1 = COG is s	shutdown wher 1 pip bas po of	n HLTMR equa	Is HLTPR is low			
hit 2		COG Auto-shi	itdown Source	Enable bit 2			
	1 = COG is s	shutdown wher	C2OUT is low	V			
	0 = C2OUT	pin has no effe	ct on shutdowi	า			
bit 1	GxASDSC1:	COG Auto-shu	utdown Source	Enable bit 1			
	1 = COG is s	shutdown wher	C1OUT is low	v			
h:+ 0		pin nas no effe		1 - Enchla bit 0			
DITU		: COG Auto-sh	COGVELT ni	e Enablé bit 0 bis low			
	0 = COG IS S	T pin has no e	ffect on shutdo)wn			

DECISTED 11-2 COCYASD. COC ALITO SHUTDOWN CONTROL BECISTER

12.3 ADC Control Registers

REGISTER 12-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG		CHS	6<3:0>		GO/DONE	ADON
bit 7							bit 0
1							
Legena:							
R = Readab			DIt		nented bit, rea	ad as '0'	
-n = value a	t POR	'1' = Bit is set		$0^{\circ} = Bit is cle$	ared	x = Bit is unkno	own
bit 7	ADFM: A/D 1 = Right ju: 0 = Left just	Conversion Res stified ified	ult Format Se	lect bit			
bit 6	VCFG: Volta 1 = VREF pir 0 = VDD	age Reference b ו	it				
bit 5-2	bit 5-2 CHS<3:0>: Analog Channel Select bits 0000 = Channel 00 (AN0) 0001 = Channel 01 (AN1) 0010 = Channel 02 (AN2) 0011 = Channel 03 (AN3) 0100 = Reserved. Do not use.						
	• 1101 = Res 1110 = Digi 1111 = Fixe	erved. Do not us tal-to-Analog Co d Voltage Refere	e. nverter (DAC ence (FVR)	output)			
bit 1	 it 1 GO/DONE: A/D Conversion Status bit 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress. 						ed.
bit 0	ADON: ADO 1 = ADC is 0 0 = ADC is 0	C Enable bit enabled disabled and cor	isumes no ope	erating current			

13.5 FVR Control Registers

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	
FVREN	FVRRDY	FVRBUFEN	FVRBUFSS	—	—	—	_	
bit 7						•	bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleared		q = Value depends on condition				
bit 7	FVREN: Fixe	ed Voltage Refe	rence Enable	bit				
0 = Fixed Voltage Reference is disabled								
	1 = Fixed Vc	ltage Reference	e is enabled					
bit 6 FVRRDY: Fixed Voltage Reference Ready Flag bit								
	0 = Fixed Vo	ltage Reference	e output is not	ready or not e	enabled bit			

	1 = Fixed Voltage Reference output is ready for use
bit 5	FVRBUFEN: Voltage Reference Output Pin Buffer Enable
	0 = Output buffer is disabled
	1 = Output buffer is enabled
bit 4	FVRBUFSS: Voltage Reference Pin Buffer Source Select bit
	0 = Bandgap (1.2V) is the input to the output voltage buffer
	1 = dac_out is the input to the output voltage buffer

bit 3-0 Unimplemented: Read as '0'

TABLE 13-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	FVRBUFEN	FVRBUFSS		_			101

Legend: Shaded cells are not used with the Fixed Voltage Reference.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CM1CON0	C1ON	C1OUT	C1OE	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	113
CM1CON1	C1INTP	C1INTN	C1PCI	H<1:0>	—	—	_	C1NCH0	114
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	113
CM2CON1	C2INTP	C2INTN	C2PCI	H<1:0>	—	—	_	C2NCH0	114
CMOUT	—	—	—	—	—	—	MCOUT2	MCOUT1	114
DACCON0	DACEN	DACRNG	DACOE	_	_	DACPSS0	_	_	105
DACCON1	—	—	—			DACR<4:0>			105
FVRCON	FVREN	FVRRDY	FVR- BUFEN	FVR- BUFSS	—	—	—	—	101
INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF	15
PIE2	—	—	C2IE	C1IE	—	COG1IE	-	CCP1IE	17
PIR2	—	—	C2IF	C1IF	—	COG1IF	-	CCP1IF	19
TRISA	_	_	TRISA5	TRISA4	TRISA3 ⁽¹⁾	TRISA2	TRISA1	TRISA0	40
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	41

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

Note 1: TRISA3 always reads '1'.

RETFIE	Return from Interrupt	RETLW	Return with literal in W
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RETLW k
Operands:	None	Operands:	$0 \le k \le 255$
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$	Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None	Status Affected:	None
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE	Description:	The W register is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.
	(INTCON<7>). This is a 2-cycle	Words:	1
	Instruction.	Cycles:	2
Vvords: Cycles:	1 2	Example:	CALL TABLE;W contains ;table offset
<u>Lampe.</u>	After Interrupt PC = TOS GIE = 1	TABLE	GOTO DONE • • ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • •
			RETLW kn ;End of tabl

DONE

RETURN

Before Inst	ructio	n 0x07
After Instru	- ction	0.01
W	=	value of k8
Return from	n Sub	proutine
[Jabol] P		N

Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS\toPC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruc- tion				

17.3.1 POWER-ON RESET (POR)

The on-chip POR circuit holds the chip in Reset until VDD has reached a high enough level for proper operation. To take advantage of the POR, simply connect the MCLR pin through a resistor to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A maximum rise time for VDD is required. See **Section 20.0** "**Electrical Specifications**" for details. If the BOR is enabled, the maximum rise time specification does not apply. The BOR circuitry will keep the device in Reset until VDD reaches VBOR (see **Section 17.3.4** "**Brown-out Reset (BOR)**").

Note: The POR circuit does not produce an internal Reset when VDD declines. To re-enable the POR, VDD must reach Vss for a minimum of 100 μs.

When the device starts normal operation (exits the Reset condition), device operating parameters (i.e., voltage, frequency, temperature, etc.) must be met to ensure proper operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

For additional information, refer to Application Note AN607, *"Power-up Trouble Shooting"* (DS0000607).

17.3.2 MCLR

PIC12F752/HV752 has a noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

Voltages applied to the MCLR pin that exceed its specification can result in both MCLR Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the MCLR pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 17-2, is suggested.

An internal $\overline{\text{MCLR}}$ option is enabled by clearing the MCLRE bit in the Configuration Word register. When MCLRE = 0, the Reset signal to the chip is generated internally. When the MCLRE = 1, the $\overline{\text{MCLR}}$ pin becomes an external Reset input. In this mode, the $\overline{\text{MCLR}}$ pin has a weak pull-up to VDD.

FIGURE 17-2: RECOMMENDED MCLR CIRCUIT

17.3.3 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 64 ms (nominal) time-out on power-up only, from POR or Brown-out Reset. The Power-up Timer operates from an internal RC oscillator. For more information, see **Section 4.2.2** "**Internal Clock Mode**". The chip is kept in Reset as long as PWRT is active. The PWRT delay allows the <u>VDD to rise to an acceptable level. A Configuration bit, PWRTE</u>, can disable (if set) or enable (if cleared or programmed) the Power-up Timer. The Power-up Timer should be enabled when Brown-out Reset is enabled, although it is not required.

The Power-up Timer delay will vary from chip-to-chip due to:

- VDD variation
- Temperature variation
- · Process variation

See DC parameters for details (Section 20.0 "Electrical Specifications").

Note:	Voltage spikes below Vss at the MCLR
	pin, inducing currents greater than 80 mA,
	may cause latch-up. Thus, a series
	resistor of 50-100 Ω should be used when
	applying a "low" level to the MCLR pin,
	rather than pulling this pin directly to Vss.

17.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- PWRT time-out is invoked after POR has expired
- OST is activated after the PWRT time-out has expired

The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 17-4, Figure 17-5 and Figure 17-6 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 17-5). This is useful for testing purposes or to synchronize more than one PIC12F752/HV752 device operating in parallel.

Table 17-5 shows the Reset conditions for some special registers, while Table 17-4 shows the Reset conditions for all the registers.

17.3.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 17.3.4 "Brown-out Reset (BOR)".

FIGURE 17-4: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1

17.5 Context Saving during Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W and STATUS registers). This must be implemented in software.

Temporary holding registers W_TEMP and STATUS_TEMP should be placed in the last 16 bytes of GPR (see Figure 2-1). These 16 locations are common to all banks and do not require banking. This makes context save and restore operations simpler. The code shown in Example 17-1 can be used to:

- Store the W register
- Store the STATUS register
- Execute the ISR code
- Restore the Status (and Bank Select Bit register)
- Restore the W register.

Note: The PIC12F752/HV752 does not require saving the PCLATH. However, if computed GOTOS are used in both the ISR and the main code, the PCLATH must be saved and restored in the ISR.

EXAMPLE 17-1: SAVING STATUS AND W REGISTERS IN RAM

MOVWF SWAPF	W_TEMP STATUS,W	;Copy W to TEMP register ;Swap status to be saved into W ;Swaps are used because they do not affect the status bits
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:(ISR) :		;Insert user code here
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W ;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

TABLE 17-7: WDT STATUS

Conditions	WDT
WDTE = 0	
CLRWDT Command	Cleared
Exit Sleep	

TABLE 17-8: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OPTION_REG	RAPU	INTEDG	TOCS	T0SE	PSA	PS<2:0>		49	

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 17-1 for operation of all Configuration Word register bits.

TABLE 17-9: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3 Bit 10/2		Bit 9/1	Bit 8/0	Register on Page	
	13:8	_	_	DEBUG	CLKOUTEN	WRT<1:0>		BOREN<1:0>		106	
CONFIG	7:0	_	CP	MCLRE	PWRTE	WDTE	_	_	FOSC0	120	

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by Watchdog Timer.

FIGURE 20-1: PIC12F752 VOLTAGE-FREQUENCY GRAPH, -40°C \leq Ta \leq +125°C

PIC12F752		Standard Operating Conditions (unless otherwise stated) Sleep mode								
PIC12H	V752									
Param. Device				Max.	Max.		Conditions			
No.	Characteristics	Min.	Тур.†	85°C	125°C	Units	Vdd	Note		
Power-down Base Current (IPD) ⁽²⁾										
D020			0.05	1.2	4.5	μA	2.0	WDT, BOR, Comparator, VREF and		
		_	0.15	1.6	5.5	μA	3.0	T1OSC disabled		
		_	0.35	2.1	9	μA	5.0			
D020		_	135	200	200	μA	2.0			
			210	280	280	μA	3.0			
		—	260	350	350	μA	4.5			
	Power-down Bas	e Curre	ent (IPD) ⁽²	2, 3)						
D021			0.5	1.5	5	μA	2.0	WDT Current ⁽¹⁾		
		_	2.5	4	8	μA	3.0			
		—	9.5	17	19	μA	5.0			
D021			135	200	200	μA	2.0			
			210	285	285	μA	3.0			
		—	265	360	360	μA	4.5			
D022		_	5	9	15	μA	3.0	BOR Current ⁽¹⁾		
		—	6	12	19	μA	5.0			
D022			215	285	285	μA	3.0			
		—	265	360	360	μA	4.5			
D023		_	160	235	245	μA	2.0	CxSP = 1, Comparator Current ⁽¹⁾ ,		
			180	270	280	μA	3.0	single comparator enabled		
		—	220	350	360	μA	5.0			
D023			280	415	415	μA	2.0			
			385	540	540	μA	3.0			
			455	735	735	μA	4.5			
D024			50	70	75	μA	2.0	CxSP = 0, Comparator Current ⁽¹⁾ ,		
			55	80	90	μA	3.0	single comparator enabled		
			70	90	120	μA	5.0			
D024			185	205	205	μA	2.0			
			265	315	315	μA	3.0			
		—	320	445	445	μA	4.5			

TABLE 20-3: POWER-DOWN CURRENTS (IPD) (1,2)

These parameters are characterized but not tested.

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max values should be used when calculating total current consumption.

- 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.
- 3: Shunt regulator is always on and always draws operating current.

FIGURE 21-24: IPD, COMPARATOR, LOW-POWER MODE, CxSP = 0, PIC12F752 ONLY

