E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f752-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	TABLE 2:	8-PIN ALLOCATION TABLE (PIC12F752/HV752)
--	----------	--

0/1	8-Pin PDIP/SOIC/DFN	ADC	Comparators	Timers	ССР	Interrupts	dn-IInd	Complementary Output Generator (COG)	Voltage Reference	Basic
RA0 ⁽⁴⁾	7	AN0	C1IN0+ C2IN0+	—		IOC	Y	COG1OUT1	DACOUT REFOUT	ICSPDAT
RA1	6	AN1	C1IN0- C2IN0-	—		IOC	Y	_	VREF+	ICSPCLK
RA2 ⁽⁴⁾	5	AN2	C1OUT C2OUT	TOCKI	CCP1	IOC INT	Y	COG1OUT0	—	—
RA3 ⁽¹⁾	4			T1G ⁽²⁾		IOC	Y(3)	COG1FLT ⁽²⁾		MCLR/VPP
RA4	3	AN3	C1IN1-	T1G		IOC	Y	COG1FLT COG1OUT1 ⁽²⁾	-	CLKOUT
RA5	2	_	C2IN1-	T1CKI	—	IOC	Y	COG1OUT0 ⁽²⁾		CLKIN
_	1	_	_	—		—	_	_		Vdd
—	8	_	_	—	_	_	_	—	_	Vss

Note 1: Input-only.

2: Alternate pin function via the APFCON register.

3: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

4: The port pins for the primary COG1OUTx pins have High-Power (HP) output drivers.

4.0 OSCILLATOR MODULE

4.1 Overview

The oscillator module has a variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 4-1 illustrates a block diagram of the oscillator module.

The oscillator module can be configured in one of two clock modes.

- 1. EC (External Clock)
- 2. INTOSC (Internal Oscillator)

Clock Source modes are configured by the FOSC bit in the Configuration Word register (CONFIG).

The internal oscillator module provides the following selectable System Clock modes:

- 8 MHz (HFINTOSC)
- 4 MHz (HFINTOSC Postscaler)
- 1 MHz (HFINTOSC Postscaler)
- 31 kHz (LFINTOSC)

FIGURE 4-2: OSCILLATOR ENABLE

4.5.1 OSCTUNE REGISTER

The oscillator is factory-calibrated, but can be adjusted in software by writing to the OSCTUNE register (Register 4-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 4-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			TUN<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

Т	UN<4:0>: Frequency Tuning bits
0	1111 = Maximum frequency
0	1110 =
•	
•	
٠	
0	0001 =
0	0000 = Oscillator module is running at the calibrated frequency.
1	1111 =
٠	
٠	
٠	

10000 = Minimum frequency

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—	—	IRCF	IRCF<1:0>		HTS	LTS	—	35
OSCTUNE	_	_	_			TUN<4:0>			36

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
 2: See Configuration Word register (Register 17-1) for operation of all register bits.

TABLE 4-3: SUMMARY OF CONFIGURATION WORD CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	DEBUG	CLKOUTEN	WRT	<1:0>	BOREN	N<1:0>	400
CONFIG	7:0		CP	MCLRE	PWRTE	WDTE	_		FOSC0	126

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by oscillator module.

5.5 Additional Pin Functions

Every PORTA pin on the PIC12F752 has an interrupt-on-change option and a weak pull-up option. The next three sections describe these functions.

5.5.1 ANSELA REGISTER

The ANSELA register (Register 5-8) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELA bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELA bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELA bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

REGISTER 5-5: ANSELA: PORTA ANALOG SELECT REGISTER

U-0	U-0	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-4	ANSA<5:4> : Analog Select Between Analog or Digital Function on Pin RA<5:4> bits 1 = Analog input. Pin is assigned as analog input ⁽¹⁾ . 0 = Digital I/O. Pin is assigned to port or special function.
bit 3	Unimplemented: Read as '0'
bit 2-0	 ANSA<2:0>:Analog Select Between Analog or Digital Function on Pin RA<2:0> bits 1 = Analog input. Pin is assigned as analog input.⁽¹⁾ 0 = Digital I/O. Pin is assigned to port or special function.
Note 1:	Setting a pin to an analog input automatically disables the digital input circuitry, weak pull-ups, and

interrupt-on-change if available. The corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

7.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 7-1 displays the Timer1 enable selections.

TABLE 7-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

7.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 7-2 displays the clock source selections.

TABLE 7-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source
11	Temperature Sense Oscillator
10	External Clocking on T1CKI Pin
01	System Clock (Fosc)
00	Instruction Clock (Fosc/4)

7.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc or Fosc/4 as determined by the Timer1 prescaler.

7.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter. When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI.

Note:	In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge (see Figure 7-2) after any one or more of the following conditions:				
	 Timer1 enabled after POR Reset 				
 Write to TMR1H or TMR1L 					
	 Timer1 is disabled 				
	 Timer1 is disabled (TMR1ON = 0) when T1CKI is high; then Timer1 is enabled (TMR1ON=1) when T1CKI is low. 				

7.2.3 TEMPERATURE SENSE OSCILLATOR

When the Temperature Sense Oscillator source is selected, the TMR1H:TMR1L register pair will increment on multiples of the Temperature Sense Oscillator as determined by the Timer1 prescaler. The Temperature Sense Oscillator operates at 16 kHz typical.

9.0 HARDWARE LIMIT TIMER (HLT) MODULE

The Hardware Limit Timer (HLT) module is a version of the Timer2-type modules. In addition to all the Timer2-type features, the HLT can be reset on rising and falling events from selected peripheral outputs.

The HLT primary purpose is to act as a timed hardware limit to be used in conjunction with asynchronous analog feedback applications. The external reset source synchronizes the HLTMR1 to an analog application.

In normal operation, the external reset source from the analog application should occur before the HLTMR1 matches the HLTPR1. This resets HLTMR1 for the next period and prevents the HLTimer1 Output from going active.

When the external reset source fails to generate a signal within the expected time, allowing the HLTMR1 to match the HLTPR1, then the HLTimer1 Output becomes active.

FIGURE 9-1: HLTMR1 BLOCK DIAGRAM

The HLT module incorporates the following features:

- 8-Bit Read-Write Timer Register (HLTMR1)
- 8-Bit Read-Write Period Register (HLTPR1)
- Software Programmable Prescaler
 - 1:1
 - 1:4
 - 1:16
- Software Programmable Postscaler:
 - 1:1 to 1:16, inclusive
- Interrupt on HLTMR1 Match with HLTPR1
- Eight Selectable Timer Reset Inputs (five reserved)
- Reset on Rising and Falling Event

Refer to Figure 9-1 for a block diagram of the HLT.

9.6 HLT Control Registers

U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	H1OUTPS<3:0> H1ON		H1CKF	°S<1:0>						
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	hit	U = Unimpler	mented bit read	d as '0'				
$u = \text{Bit is unchanged} \qquad x = \text{Bit is unknown} \qquad -n/n = Value at POR and BOR/Val$)R/Value at all	other Resets				
(1' = Bit is set)	at	(0) = Bit is clear	ared							
bit 7	Unimpleme	nted: Read as '	כי							
bit 6-3	H1OUTPS<	3:0>: Hardware	Limit Timer 1	Output Postsca	aler Select bits					
	0000 = 1:1	Postscaler								
	0001 = 1:2	0001 = 1:2 Postscaler								
	0010 = 1:3	0010 = 1:3 Postscaler								
	0011 = 1:4	0011 = 1:4 Postscaler								
	0100 = 1:5	0100 = 1:5 Postscaler								
	0101 = 1:6	Postscaler								
	0110 = 1.7	Postscaler								
	0111 = 1:8	Postscaler								
	1000 = 1.91									
	1001 = 1.10	001 = 1:10 Postscaler								
	1010 = 1.11 1011 = 1.12	1010 = 1:11 Postscaler								
	1100 = 1.12	1100 - 1.13 Postecaler								
	1100 = 1.10 1101 = 1.14	1101 = 1.13 Fostscaler								
	1110 = 1:15	5 Postscaler								
	1111 = 1:16	Postscaler								
bit 2	H1ON: Hard	dware Limit Time	r 1 On bit							
	1 = Timer is	son								
	0 = Timer is	s off								
bit 1-0	H1CKPS<1	:0>: Hardware L	imit Timer 1 C	lock Prescale S	Select bits					
	00 = Presca	ller is 1								
	01 = Presca	ller is 4								
	1x = Presca	ller is 16								

REGISTER 9-1: HLT1CON0: HLT1 CONTROL REGISTER 0

10.3.2 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP1 module for standard PWM operation:

- 1. Disable the CCP1 pin output driver by setting the associated TRIS bit
- 2. Load the PR2 register with the PWM period value
- 3. Configure the CCP1 module for the PWM mode by loading the CCP1CON register with the appropriate values
- Load the CCPR1L register and the DC1B<1:0> bits of the CCP1CON register, with the PWM duty cycle value
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIR1 register (see Note below)
 - Configure the T2CKPS bits of the T2CON register with the Timer prescale value
 - Enable the Timer by setting the TMR2ON bit of the T2CON register
- 6. Enable PWM output pin:
 - Wait until the Timer overflows and the TMR2IF bit of the PIR1 register is set. See Note below
 - Enable the CCP1 pin output driver by clearing the associated TRIS bit
- Note: In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

10.3.3 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 10-1.

EQUATION 10-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: If the PWM duty cycle = 0%, the pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer postscaler (see Section 8.1 "Timer2 Operation") is not used in the determination of the PWM frequency.

10.3.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to multiple registers: CCPR1L register and DC1B<1:0> bits of the CCP1CON register. The CCPR1L contains the eight MSbs and the DC1B<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register contain the two LSbs. CCPR1L and DC1B<1:0> bits of the CCP1CON register can be written to at any time. The duty cycle value is not latched into CCPR1H until after the period completes (i.e. a match between PR2 and TMR2 registers occurs). While using the PWM, the CCPR1H register is read-only.

Equation 10-2 is used to calculate the PWM pulse width.

Equation 10-3 is used to calculate the PWM duty cycle ratio.

EQUATION 10-2: PULSE WIDTH

$$Pulse Width = (CCPR1L:CCP1CON < 5:4>) \bullet$$

TOSC • (TMR2 Prescale Value)

EQUATION 10-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(CCPRxL:CCPxCON < 5:4>)}{4(PRx + 1)}$

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (FOSC), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

When the 10-bit time base matches the CCPR1H and 2-bit latch, then the CCP1 pin is cleared (see Figure 10-4).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—	ANSA5	ANSA4	—	ANSA2	ANSA1	ANSA0	41
APFCON	—	—	_	T1GSEL	—	COG1FSEL	COG101SEL	COG100SEL	38
COG1PH	—	—	—	—		G1PH<3:0>			87
COG1BLK		G1BLKR<3:0>				G1BLKF<3:0>			87
COG1DB		G1DBI	R<3:0>			G1DBF<3:0>			87
COG1CON0	G1EN	G1OE1	G1OE0	G1POL1	G1POL0	G1LD	G1CS1	G1CS0	84
COG1CON1	G1FSIM	G1RSIM		G1FS<2:0>			G1RS<2:0>	85	
COG1ASD	G1ASDE	G1ARSEN	G1ASDL1	G1ASDL0	G1ASDSHLT	G1ASDSC2	G1ASDSC1	G1ASDSFLT	86
INTCON	GIE	PEIE	TOIE	INTE	IOCIE	T0IF	INTF	IOCIF	15
LATA	—	_	LATA5	LATA4	—	LATA2	LATA1	LATA0	40
PIE2	_	—	C2IE	C1IE	—	COG1IE	—	CCP1IE	17
PIR2	—	—	C2IF	C1IF	—	COG1IF	—	CCP1IF	19
TRISA	_	_	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	40

TABLE 11-1: SUMMARY OF REGISTERS ASSOCIATED WITH COG

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by COG.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.

2: See Configuration Word register (Register 17-1) for operation of all register bits.

12.3 ADC Control Registers

REGISTER 12-1: ADCON0: A/D CONTROL REGISTER 0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	VCFG		CHS	6<3:0>		GO/DONE	ADON
bit 7							bit 0
1							
Legena:							
R = Readab			DIt		nented bit, rea	ad as '0'	
-n = value a	t POR	'1' = Bit is set		$0^{\circ} = Bit is cle$	ared	X = Bit is unkno	own
bit 7	ADFM: A/D 1 = Right ju: 0 = Left just	Conversion Res stified ified	ult Format Se	lect bit			
bit 6	VCFG: Volta 1 = VREF pir 0 = VDD	age Reference b ו	it				
bit 5-2	CHS<3:0>: 0000 = Cha 0001 = Cha 0010 = Cha 0011 = Cha 0100 = Res	Analog Channel Innel 00 (AN0) Innel 01 (AN1) Innel 02 (AN2) Innel 03 (AN3) erved. Do not us	Select bits				
	• 1101 = Res 1110 = Digi 1111 = Fixe	erved. Do not us tal-to-Analog Co d Voltage Refere	e. nverter (DAC ence (FVR)	output)			
bit 1	GO/DONE: 1 = A/D con This bit 0 = A/D con	A/D Conversion version cycle in is automatically oversion complete	Status bit progress. Sett cleared by har ed/not in progr	ing this bit start dware when the ess	s an A/D con e A/D convers	version cycle. sion has complete	ed.
bit 0	ADON: ADO 1 = ADC is 0 0 = ADC is 0	C Enable bit enabled disabled and cor	isumes no ope	erating current			

15.2 Comparator Control

Each comparator has two control registers: CMxCON0 and CMxCON1.

The CMxCON0 registers (see Register 15-1) contain Control and Status bits for the following:

- Enable
- Output selection
- Output pin enable
- Output polarity
- Speed/Power selection
- Hysteresis enable
- Output synchronization

The CMxCON1 registers (see Register 15-2) contain Control bits for the following:

- Interrupt edge polarity (rising and/or falling)
- Positive input channel selection
- Negative input channel selection

15.2.1 COMPARATOR ENABLE

Setting the CxON bit of the CMxCON0 register enables the comparator for operation. Clearing the CxON bit disables the comparator resulting in minimum current consumption.

15.2.2 COMPARATOR OUTPUT SELECTION

The output of the comparator can be monitored by reading either the CxOUT bit of the CMxCON0 register or the MCxOUT bit of the CMOUT register. In order to make the output available for an external connection, the following conditions must be true:

- CxOE bit of the CMxCON0 register must be set
- · Corresponding TRIS bit must be cleared
- CxON bit of the CMxCON0 register must be set

Note 1:	The CxOE bit of the CMxCON0 register
	overrides the PORT data latch. Setting
	the CxON bit of the CMxCON0 register
	has no impact on the port override.

2: The internal output of the comparator is latched with each instruction cycle. Unless otherwise specified, external outputs are not latched.

15.2.3 COMPARATOR OUTPUT POLARITY

Inverting the output of the comparator is functionally equivalent to swapping the comparator inputs. The polarity of the comparator output can be inverted by setting the CxPOL bit of the CMxCON0 register. Clearing the CxPOL bit results in a non-inverted output.

Table 15-1 shows the output state versus input conditions, including polarity control.

TABLE 15-1: COMPARATOR OUTPUT STATE VS. INPUT CONDITIONS

Input Condition	CxPOL	CxOUT
CxVN > CxVP	0	0
CxVN < CxVP	0	1
CxVN > CxVP	1	1
CxVN < CxVP	1	0

15.2.4 COMPARATOR SPEED/POWER SELECTION

The trade-off between speed or power can be optimized during program execution with the CxSP control bit. The default state for this bit is '1' which selects the normal speed mode. Device power consumption can be optimized at the cost of slower comparator propagation delay by clearing the CxSP bit to '0'.

15.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 20.0 "Electrical Specifications**" for more information.

15.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 7.5 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

PIC12F752/HV752

Register	Address	Power-on Reset	MCLR Reset WDT Reset (Continued) Brown-out Reset ⁽¹⁾	Wake-up from Sleep through Interrupt Wake-up from Sleep through WDT Time-out
CM1CON0	9Dh	0000 0100	0000 0100	uuuu uuuu
CM1CON1	9Eh	00000	00000	uuuuu
CMOUT	9Fh	00	00	uu
LATA	105h	xx -xxx	uu -uuu	uu -uuu
IOCAN	108h	00 0000	00 0000	uu uuuu
WPUA	10Ch	00 0000	00 0000	uu uuuu
SLRCON0	10Dh	0-0	0-0	u-u
PCON	10Fh	dd		uu
TMR2	110h	0000 0000	0000 0000	սսսս սսսս
PR2	111h	1111 1111	1111 1111	սսսս սսսս
T2CON	112h	-000 0000	-000 0000	-uuu uuuu
HLTMR1	113h	0000 0000	0000 0000	uuuu uuuu
HLTPR1	114h	1111 1111	1111 1111	uuuu uuuu
HLT1CON0	115h	-000 0000	-000 0000	-uuu uuuu
HLT1CON1	116h	0 0000	0 0000	u uuuu
ANSELA	185h	11 -111	11 -111	uu -uuu
APFCON	188h	0 -000	0 -000	u -uuu
OSCTUNE	189h	0 0000	u uuuu	u uuuu
PMCON1	18Ch	000	000	uuu
PMCON2	18Dh			
PMADRL	18Eh	0000 0000	0000 0000	սսսս սսսս
PMADRH	18Fh	00	00	uu
PMDATL	190h	0000 0000	0000 0000	uuuu uuuu
PMDATH	191h	00 0000	00 0000	uu uuuu
COG1PH	192h	xxxx	uuuu	uuuu
COG1BLK	193h	xxxx xxxx	uuuu uuuu	uuuu uuuu
COG1DB	194h	xxxx xxxx	นนนน นนนน	นนนน นนนน
COG1CON0	195h	0000 0000	0000 0000	นนนน นนนน
COG1CON1	196h	00 0000	00 0000	uu uuuu
COG1ASD	197h	0000 0000	0000 0000	uuuu uuuu

TABLE 17-4: INITIALIZATION CONDITION FOR REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0', q = value depends on condition.

Note 1: If VDD goes too low, Power-on Reset will be activated and registers will be affected differently.

2: One or more bits in INTCON and/or PIRx will be affected (to cause wake-up).

3: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

4: See Table 17-5 for Reset value for specific condition.

5: If Reset was due to brown-out, then bit 0 = 0. All other Resets will cause bit 0 = u.

17.4.3 PORTA INTERRUPT-ON-CHANGE

An input change on PORTA sets the IOCIF bit of the INTCON register. The interrupt can be enabled/ disabled by setting/clearing the IOCIE bit of the INTCON register. Plus, individual pins can be configured through the IOC register.

Note: If a change on the I/O pin should occur when any PORTA operation is being executed, then the IOCIF interrupt flag may not get set.

FIGURE 17-7:	INTERRUPT LOGIC

17.8 Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out using $ICSP^{TM}$ for verification purposes.

Note:	The entire Flash program memory will be
	erased when the code protection is turned
	off. See the "PIC12F752/HV752 Flash
	Memory Programming Specification"
	(DS41561) for more information.

17.9 ID Locations

Four memory locations (2000h-2003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify mode. Only the Least Significant seven bits of the ID locations are reported when using MPLAB[®] IDE.

TABLE 20-2: SUPPLY CURRENT (IDD) ⁽¹	,2)
--	-----

PIC12F7	Standard Operating Conditions (unless otherwise stated)								
PIC12HV752									
Param.			_ .	Max.	Max.	Units	Conditions		
No.	Device Characteristics	MIN.	тур.т	85°C	125°C		Vdd	Note	
	Supply Current (IDD) ^(1, 2)								
D010			13	25	25	μA	2.0	Fosc = 31 kHz	
		_	19	29	29	μΑ	3.0	LFINTOSC mode	
		_	32	51	51	μΑ	5.0		
D010			160	230	230	μΑ	2.0	Fosc = 31 kHz	
			240	310	310	μA	3.0	LFINTOSC mode	
			280	400	400	μΑ	4.5		
D016		_	75	280	280	μΑ	2.0	Fosc = 1 MHz	
		_	155	320	320	μΑ	3.0	EC Oscillator mode	
		_	345	530	530	μΑ	5.0		
D016		_	215	310	310	μA	2.0	Fosc = 1 MHz	
		_	375	470	470	μΑ	3.0	EC Oscillator mode	
			570	650	650	μΑ	4.5		
D011		—	130	280	280	μA	2.0	Fosc = 1 MHz	
		_	175	320	320	μΑ	3.0	HFINTOSC mode	
		—	290	535	535	μΑ	5.0		
D011			195	296	296	μA	2.0	Fosc = 1 MHz	
		_	315	440	440	μΑ	3.0	HFINTOSC mode	
			425	650	650	μΑ	4.5		
D012		_	185	340	340	μΑ	2.0	Fosc = 4 MHz	
		_	325	475	475	μΑ	3.0	EC Oscillator mode	
			665	845	845	μΑ	5.0		
D012			330	475	475	μA	2.0	Fosc = 4 MHz	
		_	550	800	800	μΑ	3.0	EC Oscillator mode	
		—	850	1200	1200	μA	4.5		
* These parameters are characterized but not tested									

These parameters are characterized but not tested.

Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

PIC12F7	Standard Operating Conditions (unless otherwise stated)								
PIC12HV752									
Param.	Device Characteristics	Min.	Typ.†	Max. 85°C	Max. 125°C	Units	Conditions		
No.							Vdd	Note	
Supply Current (IDD) ^(1, 2)									
D013		_	245	340	340	μΑ	2.0	Fosc = 4 MHz	
		_	360	485	485	μA	3.0	HFINTOSC mode	
		—	620	845	845	μΑ	5.0		
D013		—	310	435	435	μΑ	2.0	Fosc = 4 MHz	
		_	500	700	700	μΑ	3.0	HFINTOSC mode	
			740	1100	1100	μΑ	4.5		
D014		—	395	550	550	μΑ	2.0	Fosc = 8 MHz	
		_	620	850	850	μΑ	3.0	HFINTOSC mode	
		—	1.2	1.6	1.6	mA	5.0		
D014		—	460	650	650	μA	2.0	Fosc = 8 MHz	
		—	750	1100	1100	μΑ	3.0	HFINTOSC mode	
		_	1.2	1.6	1.6	mA	4.5		
D015		—	1.9	2.6	2.6	mA	4.5	Fosc = 20 MHz	
		—	2.2	3	3	mA	5.0	EC Oscillator mode	
D015		_	2.1	3	3	mA	4.5	Fosc = 20 MHz EC Oscillator mode	

TABLE 20-2: SUPPLY CURRENT (IDD)^(1,2) (CONTINUED)

* These parameters are characterized but not tested.

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

PIC12F752/HV752

PIC12F752		Standard Operating Conditions (unless otherwise stated) Sleep mode							
PIC12H	V752								
Param. Device				Max.	Max.		Conditions		
No.	Characteristics	win.	тур.т	85°C	125°C	Units	Vdd	Note	
Power-down Base Current (IPD) ⁽²⁾									
D020			0.05	1.2	4.5	μA	2.0	WDT, BOR, Comparator, VREF and	
		_	0.15	1.6	5.5	μA	3.0	T1OSC disabled	
		_	0.35	2.1	9	μA	5.0		
D020		_	135	200	200	μA	2.0		
			210	280	280	μA	3.0		
		—	260	350	350	μA	4.5		
	Power-down Bas	e Curre	ent (IPD) ⁽²	2, 3)					
D021			0.5	1.5	5	μA	2.0	WDT Current ⁽¹⁾	
		_	2.5	4	8	μA	3.0		
		—	9.5	17	19	μA	5.0		
D021			135	200	200	μA	2.0		
			210	285	285	μA	3.0		
		—	265	360	360	μA	4.5		
D022		_	5	9	15	μA	3.0	BOR Current ⁽¹⁾	
		—	6	12	19	μA	5.0		
D022			215	285	285	μA	3.0		
		—	265	360	360	μA	4.5		
D023		_	160	235	245	μA	2.0	CxSP = 1, Comparator Current ⁽¹⁾ ,	
			180	270	280	μA	3.0	single comparator enabled	
		—	220	350	360	μA	5.0		
D023			280	415	415	μA	2.0		
			385	540	540	μA	3.0		
			455	735	735	μA	4.5		
D024			50	70	75	μA	2.0	CxSP = 0, Comparator Current ⁽¹⁾ ,	
			55	80	90	μA	3.0	single comparator enabled	
			70	90	120	μA	5.0		
D024			185	205	205	μA	2.0		
			265	315	315	μA	3.0		
		—	320	445	445	μA	4.5		

TABLE 20-3: POWER-DOWN CURRENTS (IPD) (1,2)

These parameters are characterized but not tested.

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The peripheral △ current can be determined by subtracting the base IPD current from this limit. Max values should be used when calculating total current consumption.

- 2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to Vss.
- 3: Shunt regulator is always on and always draws operating current.

20.4 AC Characteristics: PIC12F752/HV752 (Industrial, Extended)

TABLE 20-7: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	20	MHz	EC Oscillator mode
OS02	Tosc	External CLKIN Period ⁽¹⁾	50	_	8	ns	EC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc

Standard Operating Conditions (unless otherwise stated)

* These parameters are characterized but not tested.

† Data in "Typ." column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to CLKIN pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

FIGURE 21-32: VOH vs. IOH, RA0/RA2, OVER TEMPERATURE, VDD = 3.0V

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - <u>X</u> <u>/XX XXX</u>	Examples:
Device	Tape and Reel Temperature Package Pattern Option Range	a) PIC12F752T - I/MF 301 Tape and Reel, Industrial temperature, DFN 3x3 package,
Device:	PIC12F752 PIC12HV752	QTP pattern #301 b) PIC12F752 - E/P Extended temperature PDIP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	d) PIC12HV752 - E/SIN Extended temperature, SOIC package d) PIC12HV752 - E/MF
Temperature Range:	$ \begin{array}{rcl} I &=& -40^{\circ} C \ to & +85^{\circ} C & (Industrial) \\ E &=& -40^{\circ} C \ to & +125^{\circ} C & (Extended) \end{array} $	Extended temperature, DFN 3x3 package
Package:	P = Plastic DIP (PDIP) SN = 8-lead Small Outline (3.90 mm) (SOIC) MF = 8-lead Plastic Dual Flat, No Lead (3x3) (DFN)	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	with your Microchip Sales Office for package availability with the Tape and Reel option.