

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-VDFN Exposed Pad
Supplier Device Package	8-DFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f752t-i-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Flash Program Memory Control Registers

REGISTER 3-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PMDA	TL<7:0>			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknow	'n

bit 7-0 PMDATL<7:0>: Eight Least Significant Data bits to Write or Read from Program Memory

REGISTER 3-2: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PMADRL<7:0>								
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 PMADRL<7:0>: Eight Least Significant Address bits for Program Memory Read/Write Operation

REGISTER 3-3: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				PMDA	TH<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **PMDATH<5:0>**: Six Most Significant Data bits from Program Memory

REGISTER 3-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
			_	_	_	PMADR	RH<1:0>
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown

bit 7-2 Unimplemented: Read as '0'

bit 1-0 **PMADRH<1:0>**: Specifies the two Most Significant Address bits or High bits for Program Memory Reads.

4.5.1 OSCTUNE REGISTER

The oscillator is factory-calibrated, but can be adjusted in software by writing to the OSCTUNE register (Register 4-2).

The default value of the OSCTUNE register is '0'. The value is a 5-bit two's complement number.

When the OSCTUNE register is modified, the frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

REGISTER 4-2: OSCTUNE: OSCILLATOR TUNING REGISTER

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u
—	—	—			TUN<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 Unimplemented: Read as '0'

bit 4-0

Т	UN<4:0>: Frequency Tuning bits
0	1111 = Maximum frequency
0	1110 =
•	
•	
٠	
0	0001 =
0	0000 = Oscillator module is running at the calibrated frequency.
1	1111 =
٠	
٠	
٠	

10000 = Minimum frequency

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH CLOCK SOURCES

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—	—	IRCF	<1:0>	—	HTS	LTS	—	35
OSCTUNE	_	_	_			TUN<4:0>			36

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by oscillators.

Note 1: Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.
 2: See Configuration Word register (Register 17-1) for operation of all register bits.

TABLE 4-3: SUMMARY OF CONFIGURATION WORD CLOCK SOURCES

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	DEBUG	CLKOUTEN	WRT	<1:0>	BOREN	N<1:0>	400
CONFIG	7:0		CP	MCLRE	PWRTE	WDTE	_		FOSC0	126

Legend: — = unimplemented location, read as '1'. Shaded cells are not used by oscillator module.

9.1 HLT Operation

The clock input to the HLT module is the system instruction clock (Fosc/4). HLTMR1 increments on each rising clock edge.

A 4-bit counter/prescaler on the clock input provides the following prescale options:

- Direct Input
- Divide-by-4
- Divide-by-16

The prescale options are selected by the prescaler control bits, H1CKPS<1:0> of the HLT1CON0 register.

The value of HLTMR1 is compared to that of the Period register, HLTPR1, on each clock cycle. When the two values match, then the comparator generates a match signal as the HLTimer1 output. This signal also resets the value of HLTMR1 to 00h on the next clock rising edge and drives the output counter/postscaler (see **Section 9.2 "HLT Interrupt"**).

The time from HLT reset to the HLT output pulse is calculated as shown in Equation 9-1 below.

EQUATION 9-1: HLT OUTPUT

$$HLT Time = (HLTPR1 + 2) \bullet 4/Fosc$$

Unexpected operation may occur for HLT periods less than half the period of the expected external HLT Reset input.

The HLTMR1 and HLTPR1 registers are both directly readable and writable. The HLTMR1 register is cleared on any device Reset, whereas the HLTPR1 register initializes to FFh. Both the prescaler and postscaler counters are cleared on any of the following events:

- A Write to the HLTMR1 Register
- A Write to the HLT1CON0 Register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction.

Note: HLTMR1 is not cleared when HLT1CON0 is written.

9.2 HLT Interrupt

The HLT can also generate an optional device interrupt. The HLTMR1 output signal (HLTMR1-to-HLTPR1 match) provides the input for the 4-bit counter/ postscaler. The overflow output of the postscaler sets the HLTMR1IF bit of the PIR1 register. The interrupt is enabled by setting the HLTMR1 Match Interrupt Enable bit, HLTMR1IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, H10UTPS<3:0>, of the HLT1CON0 register.

9.3 Peripheral Resets

Resets driven from the selected peripheral output prevents the HLTMR1 from matching the HLTPR1 register and generating an output. In this manner, the HLT can be used as a hardware time limit to other peripherals.

In this device, the primary purpose of the HLT is to limit the COG PWM duty cycle. Normally, the COG operation uses analog feedback to determine the PWM duty cycle. The same feedback signal is used as an HLT Reset input. The HLTPR1 register is set to occur at the maximum allowed duty cycle. If the analog feedback to the COG exceeds the maximum time, then an HLTMR1-to-HLTPR1 match will occur and generate the output needed to limit the COG drive output.

The HLTMR1 can be reset by one of several selectable peripheral sources. Reset inputs include:

- CCP1 Output
- Comparator 1 Output
- · Comparator 2 Output

The Reset input is selected with the H1ERS<2:0> bits of the HLT1CON1 register.

HLTMR1 Resets are synchronous with the HLT clock, i.e. HLTMR1 is cleared on the rising edge of the HLT clock after the enabled Reset event occurs.

The Reset can be enabled to occur on the rising and falling input event. Rising and falling event enables are selected with the respective H1REREN and H1FEREN bits of the HLT1CON1 register. External Resets do not cause an HLTMR1 output event.

9.4 HLTimer1 Output

The unscaled output of HLTMR1 is available only to the COG module, where it is used as a selectable limit to the maximum COG period.

9.5 HLT Operation During Sleep

The HLT cannot be operated while the processor is in Sleep mode. The contents of the HLTMR1 register will remain unchanged while the processor is in Sleep mode.

11.7 Phase Delay

It is possible to delay the assertion of the rising event. This is accomplished by placing a non-zero value in COGxPH register. Refer to Register 11-6 and Figure 11-3 for COG operation with CCP1 and phase delay. The delay from the input rising event signal switching to the actual assertion of the events is calculated the same as the dead-band and blanking delays. Please see Equation 11-1.

When the COGxPH value is '0', phase delay is disabled and the phase delay counter output is true, thereby, allowing the event signal to pass straight through to complementary output driver flop.

11.7.1 CUMULATIVE UNCERTAINTY

It is not possible to create more than one COG_clock of uncertainty by successive stages. Consider that the phase delay stage comes after the blanking stage, the dead-band stage comes after either the blanking or phase delay stages, and the blanking stage comes after the dead-band stage. When the preceding stage is enabled, the output of that stage is necessarily synchronous with the COG_clock, which removes any possibility of uncertainty in the succeeding stage.

EQUATION 11-1: PHASE, DEAD-BAND, AND BLANKING TIME CALCULATION

$T_{\min} = \frac{\text{Count}}{F_{COG_clock}}$
$T_{\max} = \frac{\text{Count} + 1}{F_{COG_\text{clock}}}$
$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$
Also: $T_{\text{uncertainty}} = \frac{1}{F_{COG_clock}}$

Where:

т	Count
Phase Delay	GxPH<3:0>
Rising Dead Band	GxDBR<3:0>
Falling Dead Band	GxDBF<3:0>
Rising Event Blanking	GxBLKR<3:0>
Falling Event Blanking	GxBLKF<3:0>

EXAMPLE 11-1: TIMER UNCERTAINTY

Given: Count = Ah = 10d $F_{COG_Clock} = 8MHz$ Therefore: $T_{uncertainty} = \frac{1}{F_{COG_clock}}$ $= \frac{1}{8MHz} = 125ns$

Proof:

$$T_{\min} = \frac{Count}{F_{COG_clock}}$$

= 125ns • 10d = 1.25µs
$$T_{\max} = \frac{Count + 1}{F_{COG_clock}}$$

= 125ns • (10d + 1)
= 1.375µs

Therefore:

$$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$$
$$= 1.375 \,\mu s - 1.25 \,\mu s$$
$$= 125 ns$$

FIGURE 11-5: AUTO-SHUTDOWN WAVEFORM – CCP1 AS RISING AND FALLING EVENT INPUT SOURCE

12.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESL and ADRESH).

The ADC voltage reference is software selectable to either VDD or a voltage applied to the external reference pins.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake-up the device from Sleep.

Figure 12-1 shows the block diagram of the ADC.

Note:	The ADRESL and ADRESH registers are
	read-only.

FIGURE 12-1: ADC BLOCK DIAGRAM

12.4 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 12-4. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 12-4. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased.

After the analog input channel is selected (or changed), an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 12-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 12-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature = 50°C and external impedance of 10k
$$\Omega$$
 5.0V VDD

$$T_{ACQ} = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
= T_{AMP} + T_C + T_{COFF}
= 2\mu s + T_C + [(Temperature - 25°C)(0.05\mu s/°C)]
The value for T_C can be approximated with the following equations:
$$V_{APPLIED} \left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad :[1] V_{CHOLD} charged to within 1/2 lsb
V_{APPLIED} \left(1 - e^{\frac{-T_C}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to V_{APPLIED}
$$V_{APPLIED} \left(1 - e^{\frac{-T_C}{RC}}\right) = V_{CHOLD} \qquad :[2] V_{CHOLD} charge response to V_{APPLIED}
V_{APPLIED} \left(1 - e^{\frac{-T_C}{RC}}\right) = V_{APPLIED} \left(1 - \frac{1}{2047}\right) \qquad :combining [1] and [2]$$
Solving for T_C:

$$T_{C} = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/2047)$$

$$= -10pF(lk\Omega + 7k\Omega + 10k\Omega) \ln(0.0004885)$$

$$= 1.37\mu s$$
Therefore:

$$T_{ACQ} = 2\mu s + 1.37\mu s + [(50°C - 25°C)(0.05\mu s/°C)]$$

$$= 4.67\mu s$$$$$$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- **3:** The maximum recommended impedance for analog sources is $10 \text{ k}\Omega$. This is required to meet the pin leakage specification.

FIGURE 12-4: ANALOG INPUT MODEL

14.8 DAC Control Registers

|--|

R/W-0/0) R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	U-0	U-0
DACEN	DACRNG	DACOE	—	—	DACPSS	—	—
bit 7							bit 0
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is s	set	'0' = Bit is clea	ared				
bit 7	DACEN: DAG	C Enable bit					
	1 = DAC is e	enabled					
	0 = DAC is disabled						
bit 6 DACRNG: DAC Range Selection bit ¹							
0 = DAC is operating in Full Range mode							
bit 5 DACOE: DAC Voltage Output Enable bit							
1 = DAC reference output is enabled to the DACOUT pin ⁽²⁾							
0 = DAC reference output is disabled							
bit 4-3 Unimplemented: Read as '0'							
bit 2 DACPSS: DAC Positive Source Select bits							
	0 = VDD 1 - VREET	nin					
hit 1-0		pin Itad: Read as 'i	רי				
			J				
NOTE 1:		14-1.		nal control hit	n in the EV/PCO	N register (coo	E_{i}
Ζ:	The DACOUT pin	configuration re	equires addition	Juai control Dit		in register (see	rigule 14-3).

REGISTER 14-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DACR<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits
1 1111 = DAC Voltage Maximum Output
•
•
•
•
0 0000 = DAC Voltage Minimum Output

Note 1: Refer to Equation 14-1 to calculate the value of the DAC Voltage Output.

RLF	Rotate Left f through Carry				
Syntax:	[label] RLF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	RLF REG1,0				
	Before Instruction				
	REG1 = 1110 0110				
	C = 0				
	REGI = 1110 0110				
	C = 1				

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}}, \\ 0 \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, \overline{PD} is cleared. Time-out Status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RRF	Rotate Right f through Carry
Syntax:	[label] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
	C Register f

SUBLW	Subtract W from literal		
Syntax:	[label] SU	JBLW k	
Operands:	$0 \leq k \leq 255$		
Operation:	$k \text{-} (W) \rightarrow (W)$	V)	
Status Affected:	C, DC, Z		
Description:	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.		
	Result	Condition	

Result	Condition
C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	W<3:0> ≤ k<3:0>

17.3.5 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- PWRT time-out is invoked after POR has expired
- OST is activated after the PWRT time-out has expired

The total time-out will vary based on oscillator configuration and PWRTE bit status. For example, in EC mode with PWRTE bit erased (PWRT disabled), there will be no time-out at all. Figure 17-4, Figure 17-5 and Figure 17-6 depict time-out sequences.

Since the time-outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time-outs will expire. Then, bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 17-5). This is useful for testing purposes or to synchronize more than one PIC12F752/HV752 device operating in parallel.

Table 17-5 shows the Reset conditions for some special registers, while Table 17-4 shows the Reset conditions for all the registers.

17.3.6 POWER CONTROL (PCON) REGISTER

The Power Control register PCON (address 8Eh) has two Status bits to indicate what type of Reset occurred last.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$, indicating that a Brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (BOREN<1:0> = 00 in the Configuration Word register).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset, if POR is '0', it will indicate that a Power-on Reset has occurred (i.e., VDD may have gone too low).

For more information, see Section 17.3.4 "Brown-out Reset (BOR)".

FIGURE 17-4: TIME-OUT SEQUENCE ON POWER-UP (DELAYED MCLR): CASE 1

20.2 DC Characteristics

TABLE 20-1:SUPPLY VOLTAGE

PIC12F		Standard Operating Conditions (unless otherwise stated)								
PIC12HV752										
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions			
D001	Vdd	Supply Voltage								
			VDDMIN		VDDMAX					
			2.0	—	5.5	V	$FOSC \le 8 MHz$			
			3.0	—	5.5	V	$Fosc \le 10 MHz$			
			4.5	—	5.5	V	Fosc≤ 20 MHz			
D001			2.0	_	5.0	V	Fosc ≤ 8 MHz ⁽²⁾			
			3.0	—	5.0	V	Fosc ≤ 10 MHz ⁽²⁾			
			4.5	—	5.0	V	Fosc ≤ 20 MHz ⁽²⁾			
D002*	Vdr	RAM Data Retention Volta	ge ⁽¹⁾	•						
			1.5	—		V	Device in Sleep mode			
D002			1.5	_	_	V	Device in Sleep mode			
D003*	VPOR	VDD Start Voltage to ensur	tart Voltage to ensure internal Power-on Reset signal							
			—	1.6		V				
D003			—	1.6	_	V				
D004*	SVDD	DD Rise Rate to ensure VDD Rise Rate internal Power-on Reset signal								
			0.05			V/ms	See Table 17-1 for details.			

These parameters are characterized but not tested.

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: On the PIC12HV752, VDD is regulated by a Shunt Regulator and is dependent on series resistor (connected between the unregulated supply voltage and the VDD pin) to limit the current to 50 mA. See Section "" for design requirements.

TABLE 20-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)											
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions				
30	TMCL	MCLR Pulse Width (low)	2 5	—		μS μS	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C				
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10 10	20 20	30 35	ms ms	VDD = 5V, -40°C to +85°C VDD = 5V, -40°C to +125°C				
32*	TPWRT	Power-up Timer Period, PWRTE = 0 (No Prescaler)	40	65	140	ms					
33*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	-	_	2.0	μs					
34	VBOR	Brown-out Reset Voltage (1)	2	2.15	2.3	V					
35*	VHYST	Brown-out Reset Hysteresis		100		mV	$\text{-40°C} \leq \text{TA} \leq \text{+85°C}$				
36*	TBOR	Brown-out Reset DC Minimum Detection Period	100		_	μS	$VDD \leq VBOR$				

* These parameters are characterized but not tested.

† Data in "Typ." column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 21-8: IDD MAXIMUM, EXTERNAL CLOCK (EC), PIC12F752 ONLY

FIGURE 21-11: IDD, EXTERNAL CLOCK (EC), Fosc = 20 MHz, PIC12F752 ONLY

FIGURE 21-17: IPD FIXED VOLTAGE REFERENCE (FVR), PIC12HV752 ONLY

FIGURE 21-21: IPD, TIMER1 OSCILLATOR, Fosc = 32 kHz, PIC12HV752 ONLY

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-887-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.