

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	5
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12f752t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	TABLE 2:	8-PIN ALLOCATION TABLE (PIC12F752/HV752)
--	----------	--

0/1	8-Pin PDIP/SOIC/DFN	ADC	Comparators	Timers	ССР	Interrupts	dn-IInd	Complementary Output Generator (COG)	Voltage Reference	Basic
RA0 ⁽⁴⁾	7	AN0	C1IN0+ C2IN0+	—		IOC	Y	COG1OUT1	DACOUT REFOUT	ICSPDAT
RA1	6	AN1	C1IN0- C2IN0-	—		IOC	Y	_	VREF+	ICSPCLK
RA2 ⁽⁴⁾	5	AN2	C1OUT C2OUT	TOCKI	CCP1	IOC INT	Y	COG1OUT0	—	—
RA3 ⁽¹⁾	4			T1G ⁽²⁾		IOC	Y(3)	COG1FLT ⁽²⁾		MCLR/VPP
RA4	3	AN3	C1IN1-	T1G		IOC	Y	COG1FLT COG1OUT1 ⁽²⁾	-	CLKOUT
RA5	2	_	C2IN1-	T1CKI	—	IOC	Y	COG1OUT0 ⁽²⁾		CLKIN
_	1	_	_	—		—	_	_		Vdd
—	8	_	_	—	_	_	_	—	_	Vss

Note 1: Input-only.

2: Alternate pin function via the APFCON register.

3: RA3 pull-up is enabled when pin is configured as MCLR in Configuration Word.

4: The port pins for the primary COG1OUTx pins have High-Power (HP) output drivers.

	<u> </u>				1	1				N.L.	
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR/BOR Reset	Value on all other Resets ⁽¹⁾
Banl	k 0										
00h	INDF	Addressing	this location	uses content	is of FSR to a	address data	memory (not	a physical re	gister)	xxxx xxxx	xxxx xxxx
01h	TMR0	Holding reg	ister for the 8	-bit TMR0						xxxx xxxx	uuuu uuuu
02h	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
03h	STATUS	IRP	RP1	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR	Indirect Dat	a Memory Ad	Idress Pointe	÷r					xxxx xxxx	uuuu uuuu
05h	PORTA	— —	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
06h	—	Unimpleme	nted							_	_
07h		Unimpleme	nted							_	_
08h	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 00000	00 00000
09h		Unimpleme	nted							_	_
0Ah	PCLATH		_		Write buffer	for upper 5 b	oits of program	n counter		0 0000	0 0000
0Bh	INTCON	GIE	PEIE	T0IE	INTE	IOCIE	T0IF	INTF	IOCIF ⁽²⁾	0000 0000	0000 0000
0Ch	PIR1	TMR1GIF	ADIF				HLTMR1IF	TMR2IF	TMR1IF	00000	00000
0Dh	PIR2	_	_	C2IF	C1IF	_	COG1IF	_	CCP1IF	00 -0-0	00-0
0Eh	_	Unimpleme	nted							_	_
0Fh	TMR1L	Holding reg	ister for the L	east Signific	ant Byte of th	e 16-bit TMF	<u>۱</u>			xxxx xxxx	uuuu uuuu
10h	TMR1H	Holding reg	ister for the N	/lost Significa	ant Byte of the	e 16-bit TMR	1			xxxx xxxx	uuuu uuuu
11h	T1CON	TMR1C	CS<1:0>	T1CKP	'S<1:0>	Reserved	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
12h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS	S<1:0>	0000 0x00	uuuu uxuu
13h	CCPR1L	Capture/Co	mpare/PWM	Register1 Lc	ow Byte					xxxx xxxx	uuuu uuuu
14h	CCPR1H	Capture/Co	mpare/PWM	Register1 Hi	igh Byte					xxxx xxxx	uuuu uuuu
15h	CCP1CON	—	_	DC1E	3<1:0>		CCP1I	M<3:0>		00 0000	00 0000
16h to 1Bh	_	Unimpleme	nted							-	—
1Ch	ADRESL	Least Signif	icant 2 bits of	f the left shift	ed result or 8	bits of the ri	ght shifted res	sult		xxxx xxxx	uuuu uuuu
1Dh	ADRESH	Most Signifi	cant 8 bits of	the left shifte	ed A/D result	or 2 bits of ri	ght shifted rea	sult		xxxx xxxx	uuuu uuuu
1Eh	ADCON0	ADFM	VCFG		CHS	<3:0>		GO/DONE	ADON	0000 0000	0000 0000
1Fh	ADCON1	_		ADCS<2:0>		_	_	_	_	-000	-000

TABLE 2-2: PIC12F752/HV752 SPECIAL REGISTERS SUMMARY BANK 0

Legend: Note 1: 2:

— = Unimplemented locations read <u>as '0'</u>, <u>u</u> = unchanged, <u>x</u> = unknown, <u>q</u> = value depends on condition shaded = unimplemented <u>Other (non Power-up) Resets include MCLR Reset and Watchdog Timer Reset during normal operation.</u> <u>MCLR and WDT Reset does not affect the previous value data latch. The IOCIF bit will be cleared upon Reset but will set again if the mismatch exists.</u>

5.5.4 INTERRUPT-ON-CHANGE

All pins on all ports can be configured to operate as Interrupt-on-Change (IOC) pins. An interrupt can be generated by detecting a signal that has either a rising edge or a falling edge. Any individual pin or combination of pins can be configured to generate an interrupt. The interrupt-on-change module has the following features:

- Interrupt-on-Change Enable (Master Switch)
- Individual Pin Configuration
- Rising and Falling Edge Detection
- Individual Pin Interrupt Flags

Figure 14-1 is a block diagram of the IOC module.

5.5.4.1 Enabling the Module

To allow individual pins to generate an interrupt, the IOCIE bit of the INTCON register must be set. If the IOCIE bit is disabled, the edge detection on the pin will still occur, but an interrupt will not be generated.

5.5.4.2 Individual Pin Configuration

For each pin, a rising edge detector and a falling edge detector are present. To enable a pin to detect a rising edge, the associated bit of the IOCAP register is set. To enable a pin to detect a falling edge, the associated bit of the IOCAN register is set.

A pin can be configured to detect rising and falling edges simultaneously by setting the associated bits in both of the IOCAP and IOCAN registers.

5.5.4.3 Interrupt Flags

The bits located in the IOCAF registers are status flags that correspond to the interrupt-on-change pins of each port. If an expected edge is detected on an appropriately enabled pin, then the status flag for that pin will be set, and an interrupt will be generated if the IOCIE bit is set. The IOCIF bit of the INTCON register reflects the status of all IOCAF bits.

5.5.4.4 Clearing Interrupt Flags

The individual status flags (IOCAF register bits) can be cleared by resetting them to zero. If another edge is detected during this clearing operation, the associated status flag will be set at the end of the sequence, regardless of the value actually being written.

In order to ensure that no detected edge is lost while clearing flags, only AND operations masking out known changed bits should be performed. The following sequence is an example of what should be performed.

EXAMPLE 5-2: CLEARING INTERRUPT FLAGS (PORTA EXAMPLE)

MOVLW	0xff		
XORWF	IOCAF,	W	
ANDWF	IOCAF,	F	

5.5.4.5 Operation in Sleep

The interrupt-on-change interrupt will wake the device from Sleep mode, if the IOCIE bit is set.

If an edge is detected while in Sleep mode, the affected IOCAF register will be updated prior to the first instruction executed out of Sleep.

7.3 Timer1 Prescaler

Timer1 has four prescaler options allowing 1, 2, 4 or 8 divisions of the clock input. The T1CKPS bits of the T1CON register control the prescale counter. The prescale counter is not directly readable or writable; however, the prescaler counter is cleared upon a write to TMR1H or TMR1L.

7.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC of the T1CON register is set, the external clock input is not synchronized. The timer increments asynchronously to the internal phase clocks. If external clock source is selected, then the timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (see Section 7.4.1 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note: When switching from synchronous to asynchronous operation, it is possible to skip an increment. When switching from asynchronous to synchronous operation, it is possible to produce an additional increment.

7.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L while the timer is running from an external asynchronous clock will ensure a valid read, which is taken care of in hardware. However, the user should keep in mind that reading the 16-bit timer in two 8-bit values poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the TMR1H:TMR1L register pair.

7.5 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 gate count enable.

Timer1 gate can also be driven by multiple selectable sources.

7.5.1 TIMER1 GATE COUNT ENABLE

The Timer1 gate is enabled by setting the TMR1GE bit of the T1GCON register. The polarity of the Timer1 gate is configured using the T1GPOL bit of the T1GCON register.

When Timer1 Gate (T1G) input is active, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 gate input is inactive, no incrementing will occur and Timer1 will hold the current count. See Figure 7-3 for timing details.

TABLE 7-3:	TIMER1 GATE ENABLE
	SELECTIONS

T1CLK	T1GPOL	T1G	Timer1 Operation
\uparrow	0	0	Counts
\uparrow	0	1	Holds Count
\uparrow	1	0	Holds Count
\uparrow	1	1	Counts

PIC12F752/HV752

FIGURE 7-4: TIMER1 GATE TOGGLE MODE

10.2 Compare Mode

Compare mode makes use of the 16-bit Timer1 resource. The 16-bit value of the CCPR1H:CCPR1L register pair is constantly compared against the 16-bit value of the TMR1H:TMR1L register pair. When a match occurs, one of the following events can occur:

- Toggle the CCP1 Output
- Set the CCP1 Output
- Clear the CCP1 Output
- Generate a Special Event Trigger
- Generate a Software Interrupt

The action on the pin is based on the value of the CCP1M<3:0> control bits of the CCP1CON register. At the same time, the interrupt flag CCP1IF bit is set.

All Compare modes can generate an interrupt.

Figure 10-2 shows a simplified diagram of the Compare operation.

FIGURE 10-2: COMPARE MODE OPERATION BLOCK DIAGRAM

10.2.1 CCP1 PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the associated TRIS bit.

Note:	Clearing the CCP1CON register will force
	the CCP1 compare output latch to the
	default low level. This is not the PORT I/O
	data latch.

10.2.2 TIMER1 MODE RESOURCE

In Compare mode, Timer1 must be running in either Timer mode or Synchronized Counter mode. The compare operation may not work in Asynchronous Counter mode.

See Section 7.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

Note: Clocking Timer1 from the system clock (FOSC) should not be used in Compare mode. In order for Compare mode to recognize the trigger event on the CCP1 pin, Timer1 must be clocked from the instruction clock (FOSC/4) or from an external clock source.

10.2.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen (CCP1M<3:0> = 1010), the CCP1 module does not assert control of the CCP1 pin (see the CCP1CON register).

10.2.4 SPECIAL EVENT TRIGGER

When Special Event Trigger mode is chosen (CCP1M<3:0> = 1011), the CCP1 module does the following:

- It resets Timer1
- It starts an ADC conversion if ADC is enabled

The CCP1 module does not assert control of the CCP1 pin in this mode.

The Special Event Trigger output of the CCP1 occurs immediately upon a match between the TMR1H, TMR1L register pair and the CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the Timer1 clock. The Special Event Trigger output starts an A/D conversion (if the A/D module is enabled). This allows the CCPR1H, CCPR1L register pair to effectively provide a 16-bit programmable period register for Timer1.

TABLE 10-2: SPECIAL EVENT TRIGGER

CCP1
CCP1

Refer to Section 12.0 "Analog-to-Digital Converter (ADC) Module" for more information.

- Note 1: The Special Event Trigger from the CCP module does not set interrupt flag bit TMR1IF of the PIR1 register.
 2: Removing the match condition by
 - 2: Removing the match condition by changing the contents of the CCPR1H and CCPR1L register pair, between the clock edge that generates the Special Event Trigger and the clock edge that generates the Timer1 Reset, will preclude the Reset from occurring.

11.7 Phase Delay

It is possible to delay the assertion of the rising event. This is accomplished by placing a non-zero value in COGxPH register. Refer to Register 11-6 and Figure 11-3 for COG operation with CCP1 and phase delay. The delay from the input rising event signal switching to the actual assertion of the events is calculated the same as the dead-band and blanking delays. Please see Equation 11-1.

When the COGxPH value is '0', phase delay is disabled and the phase delay counter output is true, thereby, allowing the event signal to pass straight through to complementary output driver flop.

11.7.1 CUMULATIVE UNCERTAINTY

It is not possible to create more than one COG_clock of uncertainty by successive stages. Consider that the phase delay stage comes after the blanking stage, the dead-band stage comes after either the blanking or phase delay stages, and the blanking stage comes after the dead-band stage. When the preceding stage is enabled, the output of that stage is necessarily synchronous with the COG_clock, which removes any possibility of uncertainty in the succeeding stage.

EQUATION 11-1: PHASE, DEAD-BAND, AND BLANKING TIME CALCULATION

$T_{\min} = \frac{\text{Count}}{F_{COG_clock}}$
$T_{\max} = \frac{\text{Count} + 1}{F_{COG_\text{clock}}}$
$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$
Also: $T_{\text{uncertainty}} = \frac{1}{F_{COG_clock}}$

Where:

т	Count
Phase Delay	GxPH<3:0>
Rising Dead Band	GxDBR<3:0>
Falling Dead Band	GxDBF<3:0>
Rising Event Blanking	GxBLKR<3:0>
Falling Event Blanking	GxBLKF<3:0>

EXAMPLE 11-1: TIMER UNCERTAINTY

Given: Count = Ah = 10d $F_{COG_Clock} = 8MHz$ Therefore: $T_{uncertainty} = \frac{1}{F_{COG_clock}}$ $= \frac{1}{8MHz} = 125ns$

Proof:

$$T_{\min} = \frac{Count}{F_{COG_clock}}$$

= 125ns • 10d = 1.25µs
$$T_{\max} = \frac{Count + 1}{F_{COG_clock}}$$

= 125ns • (10d + 1)
= 1.375µs

Therefore:

$$T_{\text{uncertainty}} = T_{\text{max}} - T_{\text{min}}$$
$$= 1.375 \,\mu s - 1.25 \,\mu s$$
$$= 125 ns$$

11.9 Buffer Updates

Changes to the phase, dead band, and blanking count registers need to occur simultaneously during COG operation to avoid unintended operation that may occur as a result of delays between each register write. This is accomplished with the GxLD bit of the COGxCON0 register and double buffering of the phase, blanking, and dead-band count registers.

Before the COG module is enabled, writing the count registers loads the count buffers without need of the GxLD bit. However, when the COG is enabled, the count buffers updates are suspended after writing the count registers until after the GxLD bit is set. When the GxLD bit is set, the phase, dead band and blanking register values are transferred to the corresponding buffers synchronous with COG operation. The GxLD bit is cleared by hardware to indicate that the transfer is complete.

11.10 Alternate Pin Selection

The COGxOUT0, COGxOUT1 and COGxFLT functions can be directed to alternate pins with control bits of the APFCON register. Refer to Register 5-1.

Note: The default COG outputs have high drive strength capability, whereas the alternate outputs do not.

11.11 Operation During Sleep

The COG continues to operate in Sleep provided that the COG_clock, rising event and falling event sources remain active.

The HFINTSOC remains active during Sleep when the COG is enabled and the HFINTOSC is selected as the COG_clock source.

11.12 Configuring the COG

The following steps illustrate how to properly configure the COG to ensure a synchronous start with the rising event input:

- 1. Configure the desired COGxFLT input, COGxOUT0 and COGxOUT1 pins with the corresponding bits in the APFCON register.
- 2. Clear all ANSELA register bits associated with pins that are used for COG functions.
- Ensure that the TRIS control bits corresponding to COGxOUT0 and COGxOUT1 are set so that both are configured as inputs. These will be set as outputs later.
- 4. Clear the GxEN bit, if not already cleared.
- 5. Set desired dead-band times with the COGxDB register.
- 6. Set desired blanking times with the COGxBLK register.
- 7. Set desired phase delay with the COGxPH register.
- 8. Setup the following controls in COGxASD auto-shutdown register:
 - Select desired shutdown sources.
 - Select both output overrides to the desired levels (this is necessary, even if not using auto-shutdown because start-up will be from a shutdown state).
 - Set the GxASDE bit and clear the GxARSEN bit.
- Select the desired rising and falling event sources and input modes with the COGxCON1 register.
- 10. Configure the following controls in COGxCON0 register:
 - Select the desired clock source
 - Select the desired output polarities
 - Set the output enables of the outputs to be used.
- 11. Set the GxEN bit.
- 12. Clear TRIS control bits corresponding to COGxOUT0 and COGxOUT1 to be used thereby configuring those pins as outputs.
- 13. If auto-restart is to be used, set the GxARSEN bit and the GxASDE will be cleared automatically. Otherwise, clear the GxASDE bit to start the COG.

13.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with 1.2V output level. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- Comparator 1 positive input (C1VP)
- Comparator 2 positive input (C2VP)
- REFOUT pin

On the PIC12F752, the FVR is enabled by setting the FVREN bit of the FVRCON register. The FVR is always enabled on the PIC12HV752 device.

13.1 Fixed Voltage Reference Output

The FVR output can be applied to the REFOUT pin by setting the FVRBUFSS and FVRBUFEN bits of the FVRCON register. The FVRBUFSS bit selects either the FVR or DAC output reference to the REFOUT pin buffer. The FVRBUFEN bit enables the output buffer to the REFOUT pin.

Enabling the REFOUT pin automatically overrides any digital input or output functions of the pin. Reading the REFOUT pin when it has been configured for a reference voltage output will always return a '0'.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference circuit to stabilize. Once the circuit stabilizes and is ready for use, the FVRRDY bit of the FVRCON register will be set. See **Section 20.0** "**Electrical Specifications**" for the minimum delay requirement.

13.3 Operation During Sleep

When the device wakes up from Sleep through an interrupt or a Watchdog Timer time-out, the contents of the FVRCON register are not affected. To minimize current consumption in Sleep mode, FVR the voltage reference should be disabled.

13.4 Effects of a Reset

A device Reset clears the FVRCON register. As a result:

- The FVR module is disabled
- The FVR voltage output is disabled on the REFOUT pin

14.8 DAC Control Registers

|--|

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	U-0	U-0		
DACEN	DACRNG	DACOE	—	—	DACPSS	—	—		
bit 7 bit									
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		
'1' = Bit is s	set	'0' = Bit is clea	ared						
bit 7	DACEN: DAG	C Enable bit							
1 = DAC is enabled									
	0 = DAC is disabled								
bit 6	bit 6 DACRNG: DAC Range Selection bit ⁽¹⁾								
	1 = DAC is operating in Full Range mode 0 = DAC is operating in Limited Range mode								
bit 5 DACOE: DAC Voltage Output Enable bit									
1 = DAC reference output is enabled to the DACOUT pin ⁽²⁾									
0 = DAC reference output is disabled									
bit 4-3 Unimplemented: Read as '0'									
bit 2 DACPSS: DAC Positive Source Select bits									
	0 = VDD	nin							
hit 1-0		pin Mad: Read as fi	ר י						
		ileu. Reau as	J						
Note 1:	Note 1: Refer to Equation 14-1.								
2:	2: The DACOUT pin configuration requires additional control bits in the FVRCON register (see Figure 14-3).								

REGISTER 14-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	DACR<4:0>					
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged		x = Bit is unkn	iown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 4-0 DACR<4:0>: DAC Voltage Output Select bits
1 1111 = DAC Voltage Maximum Output
•
•
•
•
0 0000 = DAC Voltage Minimum Output

Note 1: Refer to Equation 14-1 to calculate the value of the DAC Voltage Output.

17.2 Calibration Bits

The 8 MHz internal oscillator is factory calibrated. These calibration values are stored in fuses located in the Calibration Word (2008h). The Calibration Word is not erased when using the specified bulk erase sequence in the "*PIC12F752/HV752 Flash Memory Programming Specification*" (DS41561) and thus, does not require reprogramming.

17.3 Reset

The PIC12F752/HV752 device differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) WDT Reset during normal operation
- c) WDT Reset during Sleep
- d) MCLR Reset during normal operation
- e) MCLR Reset during Sleep
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on:

- Power-on Reset
- MCLR Reset
- MCLR Reset during Sleep
- WDT Reset
- Brown-out Reset (BOR)

WDT wake-up does not cause register resets in the same manner as a WDT Reset since wake-up is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 17-2. Software can use these bits to determine the nature of the Reset. See Table 17-4 for a full description of Reset states of all registers.

A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 17-1.

The MCLR Reset path has a noise filter to detect and ignore small pulses. See **Section 20.0** "**Electrical Specifications**" for pulse-width specifications.

FIGURE 17-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 20-4: I/O PORTS (CONTINUED)

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)						
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions		
		Capacitive Loading Specs on Output Pins							
D101*	COSC2	OSC2 pin	_	—	15	pF			
D101A*	CIO	All I/O pins		—	50	pF			

These parameters are characterized but not tested.

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: This specification applies to all weak pull-up pins, including the weak pull-up found on RA3/MCLR. When RA3/MCLR is configured as MCLR Reset pin, the weak pull-up is always enabled.

TABLE 20-5: MEMORY PROGRAMMING SPECIFICATIONS

Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	VIHH	Voltage on MCLR/VPP pin	10.0	—	13.0	V	(Note 1)
D112	VBE	VDD for Bulk Erase	4.5	—	VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	4.5		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	300	1000	μA	
		Program Flash Memory					
D121	Ер	Cell Endurance	10K	100K	—	E/W	-40°C ≤ TA ≤ +85°C (Note 2)
D121A	Eр	Cell Endurance	1K	10K	—	E/W	-40°C ≤ TA ≤ +125°C (Note 2)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	40	_		Year	Provided no other specifications are violated

Standard Operating Conditions (unless otherwise stated)

† Data in "Typ." column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Required only if single-supply programming is disabled.

2: Self-write and Block Erase.

PIC12F752/HV752

|--|

Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.		Characteristic		Min.	Typ.†	Max.	Units	Conditions
40*	T⊤0H	T0CKI High	Pulse Width	No Prescaler	0.5 Tcy + 20		—	ns	
				With Prescaler	10	_	—	ns	
41*	T⊤0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20	_	—	ns	
				With Prescaler	10	_	—	ns	
42*	Тт0Р	T0CKI Period	t. t		Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_	—	ns	
			Synchronous, with Prescaler		15	_	—	ns	
			Asynchronous		30	_	—	ns	
46*	46* T⊤1L T1CKI Low		Synchronous, No Prescaler		0.5 Tcy + 20	_	_	ns	
		Time	Synchronous, with Prescaler		15	_	—	ns	
			Asynchronous		30	_	—	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	_	—	ns	N = prescale value
			Asynchronous		60		_	ns	
49*	TCKEZT- MR1	Delay from E Increment	External Clock Edge to Timer		2 Tosc	—	7 Tosc		Timers in Sync mode
	* These parameters are characterized but not tested.								

Data in "Typ." column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are

not tested.

* †

PIC12F752/HV752

FIGURE 21-24: IPD, COMPARATOR, LOW-POWER MODE, CxSP = 0, PIC12F752 ONLY

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			2.40
Optional Center Pad Length				1.55
Contact Pad Spacing	C1		3.10	
Contact Pad Width (X8)	X1			0.35
Contact Pad Length (X8)	Y1			0.65
Distance Between Pads	G	0.30		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2062B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - <u>X</u> <u>/XX XXX</u>	Examples:
Device	Tape and Reel Temperature Package Pattern Option Range	a) PIC12F752T - I/MF 301 Tape and Reel, Industrial temperature, DFN 3x3 package,
Device:	PIC12F752 PIC12HV752	QTP pattern #301 b) PIC12F752 - E/P Extended temperature PDIP package
Tape and Reel Option:	Blank = Standard packaging (tube or tray) T = Tape and Reel ⁽¹⁾	d) PIC12HV752 - E/SIN Extended temperature, SOIC package d) PIC12HV752 - E/MF
Temperature Range:	$ \begin{array}{rcl} I &=& -40^{\circ} C \ to & +85^{\circ} C & (Industrial) \\ E &=& -40^{\circ} C \ to & +125^{\circ} C & (Extended) \end{array} $	Extended temperature, DFN 3x3 package
Package:	P = Plastic DIP (PDIP) SN = 8-lead Small Outline (3.90 mm) (SOIC) MF = 8-lead Plastic Dual Flat, No Lead (3x3) (DFN)	Note 1: Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	with your Microchip Sales Office for package availability with the Tape and Reel option.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-887-1

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983 Indianapolis

Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Pforzheim Tel: 49-7231-424750

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

01/27/15