
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300c4s
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	667MHz
Co-Processors/DSP	Security; SEC 3.0
RAM Controllers	DDR, DDR2
Graphics Acceleration	No
Display & Interface Controllers	· ·
Ethernet	10/100/1000Mbps (2)
SATA	SATA 3Gbps (4)
USB	USB 2.0 + PHY (1)
Voltage - I/O	1.8V, 2.5V, 3.3V
Operating Temperature	-40°C ~ 125°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	689-BBGA Exposed Pad
Supplier Device Package	689-TEPBGA II (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8379ecvralg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.10 Serial ATA (SATA) Controllers

The serial ATA (SATA) controllers have the following features:

- Supports Serial ATA Rev 2.5 Specification
- Spread spectrum clocking on receive
- Asynchronous notification
- Hot Plug including asynchronous signal recovery
- Link power management
- Native command queuing
- Staggered spin-up and port multiplier support
- Port multiplier support
- SATA 1.5 and 3.0 Gb/s operation
- Interrupt driven
- Power management support
- Error handling and diagnostic features
 - Far end/near end loopback
 - Failed CRC error reporting
 - Increased ALIGN insertion rates
- Scrambling and CONT override

1.11 Enhanced Secured Digital Host Controller (eSDHC)

The enhanced SD host controller (eSDHC) has the following features:

- Conforms to SD Host Controller Standard Specification, Rev 2.0 with Test Event register support.
- Compatible with the MMC System Specification, Rev 4.0
- Compatible with the *SD Memory Card Specification, Rev 2.0*, and supports High Capacity SD memory cards
- Compatible with the SDIO Card Specification Rev, 1.2
- Designed to work with SD Memory, miniSD Memory, SDIO, miniSDIO, SD Combo, MMC, MMC*plus*, MMC 4x, and RS-MMC cards
- SD bus clock frequency up to 50 MHz
- Supports 1-/4-bit SD and SDIO modes, 1-/4-bit MMC modes
- Supports internal DMA capabilities

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the chip. The device is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

Core Frequency (MHz)	CSB/DDR Frequency (MHz)	Sleep Power at T _j = 65°C (W) 2	Typical Application at $T_j = 65^{\circ}C$ (W) ²	Typical Application at $T_j = 125^{\circ}C$ (W) ³	Max Application at $T_j = 125$ °C (W) ⁴
450	300	1.45	2.0	3.2	3.8
450	225	1.45	1.9	3.1	3.7
500	333	1.45	2.0	3.3	3.9
500	250	1.45	1.9	3.2	3.8
532	355	1.45	2.0	3.3	4.0
533	266	1.45	2.0	3.2	3.9
600	400	1.45	2.1	3.4	4.1
600	300	1.45	2.0	3.3	4.0
667	333	1.45	2.1	3.3	4.1
667	266	1.45	2.0	3.3	3.9
800	400	1.45	2.5	3.8	4.3

Table 5. Power Dissipation ¹ (continued)

Notes:

1. The values do not include I/O supply power (OV_{DD} , LV_{DD} , GV_{DD}) or AV_{DD} . For I/O power values, see Table 6. 2. Typical power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, and running a Dhrystone benchmark application.

3. Typical power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, and running a Dhrystone benchmark application.

4. Maximum power is based on a voltage of V_{DD} = 1.0 V for core frequencies \leq 667 MHz or V_{DD} = 1.05 V for core frequencies of 800 MHz, worst case process, and running an artificial smoke test.

4.2 AC Electrical Characteristics

The primary clock source for the device can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. This table provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the device.

Parameter	Symbol	Min	Typical	Max	Unit	Note
CLKIN/PCI_CLK frequency	fclkin	25	—	66.666	MHz	1, 6
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	40	ns	-
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	—	—	—	± 150	ps	4, 5

Table 8. CLKIN AC Timing Specifications

Notes:

- 1. **Caution:** The system, core and security block must not exceed their respective maximum or minimum operating frequencies.
- 2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 V and 2.7 V.
- 3. Timing is guaranteed by design and characterization.
- 4. This represents the total input jitter-short term and long term-and is guaranteed by design.
- 5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be < 500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.
- 6. Spread spectrum is allowed up to 1% down-spread on CLKIN/PCI_CLK up to 60 KHz.

4.3 eTSEC Gigabit Reference Clock Timing

This table provides the eTSEC gigabit reference clocks (EC_GTX_CLK125) AC timing specifications.

Table 9. EC_GTX_CLK125 AC Timing Specifications

At recommended operating conditions with LV_{DD} = 2.5 \pm 0.125 mV/ 3.3 V \pm 165 mV

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Note
EC_GTX_CLK125 frequency	t _{G125}	_	125	_	MHz	—
EC_GTX_CLK125 cycle time	t _{G125}	_	8	_	ns	—
EC_GTX_CLK rise and fall time $\label{eq:VDD} \begin{array}{l} \text{EC}_{\text{DD}} = 2.5 \text{ V} \\ \text{LV}_{\text{DD}} = 3.3 \text{ V} \end{array}$	t _{G125R} /t _{G125F}	_		0.75 1.0	ns	1
EC_GTX_CLK125 duty cycle 1000Base-T for RGMII, RTBI	t _{G125H} /t _{G125}	47	_	53	%	2
EC_GTX_CLK125 jitter	_	_	_	±150	ps	2

Notes:

- 1. Rise and fall times for EC_GTX_CLK125 are measured from 0.5 and 2.0 V for LV_{DD} = 2.5 V and from 0.6 and 2.7 V for LV_{DD} = 3.3 V.
- EC_GTX_CLK125 is used to generate the GTX clock for the eTSEC transmitter with 2% degradation. The EC_GTX_CLK125 duty cycle can be loosened from 47%/53% as long as the PHY device can tolerate the duty cycle generated by the eTSEC GTX_CLK. See Section 8.2.2, "RGMII and RTBI AC Timing Specifications," for the duty cycle for 10Base-T and 100Base-T reference clock.

Table 13. DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V (continued)

Parameter	Symbol	Min	Мах	Unit	Note
Output low current ($V_{OUT} = 0.3 V$)	I _{OL}	13.4		mA	—

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.
- 5. See AN3665, "MPC837xE Design Checklist," for proper DDR termination.

Table 14 provides the DDR2 capacitance when $GV_{DD}(typ) = 1.8$ V.

Parameter	Symbol	Min	Мах	Unit	Note
Input/output capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. $GV_{DD} = 1.8 \text{ V} \pm 0.090 \text{ V}$, f = 1 MHz, $T_A = 25^{\circ}C$, $V_{OUT} = GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

This table provides the recommended operating conditions for the DDR SDRAM component(s) when $GV_{DD}(typ) = 2.5 \text{ V}.$

Table 15	. DDR SDRAM I	OC Electrical Characte	ristics for GV _{DD} (typ) = 2.5 V
----------	---------------	------------------------	--

Parameter	Symbol	Min	Мах	Unit	Note
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2, 5
I/O termination voltage	V _{TT}	MV _{REF} - 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	_
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	_
Output leakage current	I _{OZ}	-50	50	μA	4
Output high current (V _{OUT} = 1.9 V)	I _{ОН}	-15.2	—	mA	—
Output low current (V _{OUT} = 0.38 V)	I _{OL}	15.2	—	mA	—

Notes:

1. GV_{DD} is expected to be within 50 mV of the DRAM GV_{DD} at all times.

- MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.
- V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.
- 4. Output leakage is measured with all outputs disabled, $0 V \le V_{OUT} \le GV_{DD}$.
- 5. See AN3665, "MPC837xE Design Checklist," for proper DDR termination.

Table 26. MII Transmit AC Timing Specifications (continued)

At recommended operating conditions with LV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol ¹	Min	Typical	Max	Unit
TX_CLK data clock rise (20%-80%)	t _{MTXR}	1.0	_	4.0	ns
TX_CLK data clock fall (80%-20%)	t _{MTXF}	1.0		4.0	ns

Note:

1. The symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state) (reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general, the clock reference symbol representation is based on two to three letters representing the clock of a particular functional. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

This figure shows the MII transmit AC timing diagram.

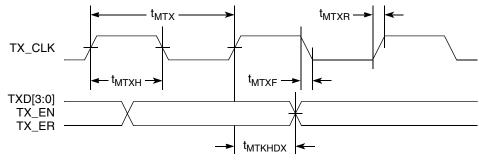


Figure 7. MII Transmit AC Timing Diagram

8.2.1.2 MII Receive AC Timing Specifications

This table provides the MII receive AC timing specifications.

Table 27. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD} of 3.3 V ± 5%.

Parameter	Symbol ¹	Min	Typical	Мах	Unit
Input low voltage	V _{IL}	—	—	0.7	V
Input high voltage	V _{IH}	1.9	_	—	V
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	_	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0		—	ns

This figure shows the RGMII and RTBI AC timing and multiplexing diagrams.

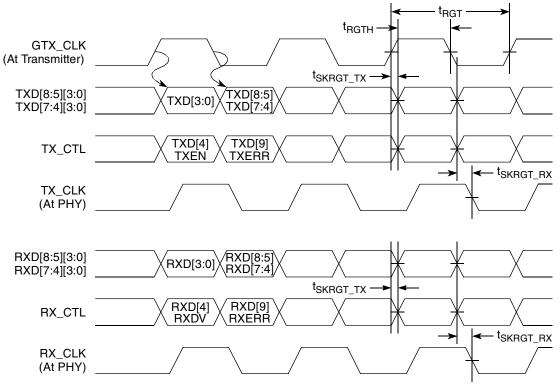


Figure 11. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.2.3 RMII AC Timing Specifications

This section describes the RMII transmit and receive AC timing specifications.

8.2.3.1 RMII Transmit AC Timing Specifications

This table shows the RMII transmit AC timing specifications.

Table 29. RMII Transmit AC Timing Specifications

At recommended operating conditions with LV_DD of 3.3 V \pm 5%.

Parameter	Symbol ¹	Min	Typical	Мах	Unit
REF_CLK clock period	t _{RMT}	15.0	20.0	25.0	ns
REF_CLK duty cycle	t _{RMTH}	35	50	65	%
REF_CLK peak-to-peak jitter	t _{RMTJ}	—	—	250	ps
Rise time REF_CLK (20%-80%)	t _{RMTR}	1.0	—	2.0	ns

This figures show the local bus signals.

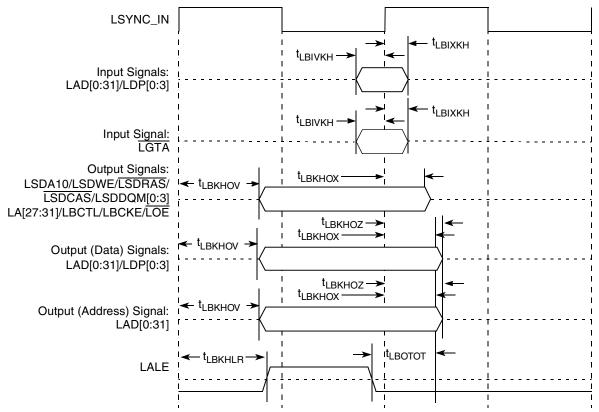


Figure 20. Local Bus Signals, Non-special Signals Only (PLL Enable Mode)

Table 42. eSDHC AC Timing Specifications for Full-Speed Mode (continued)

At recommended operating conditions OV_{DD} = 3.3 V \pm 165 mV.

Parameter	Symbol ¹	Min	Max	Unit	Note
Input hold times: SD_CMD, SD_DAT <i>x</i> , SD_CD to SD_CLK	t _{SFSIXKH}	0	—	ns	2
SD_CLK delay within device	t _{INT_CLK_DLY}	1.5	—	ns	4
Output valid: SD_CLK to SD_CMD, SD_DAT <i>x</i> valid	t _{SFSKHOV}	—	4	ns	2
Output hold: SD_CLK to SD_CMD, SD_DAT <i>x</i> valid	t _{SFSKHOX}	0	—	—	_
SD card input setup	t _{ISU}	5	—	ns	3
SD card input hold	t _{IH}	5	—	ns	3
SD card output valid	t _{ODLY}	—	14	ns	3
SD card output hold	t _{ОН}	0	—	ns	3

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first three letters of functional block)(signal)(state)} (reference)(state) for inputs and t_{(first three letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{SFSIXKH} symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also t_{SFSKHOV} symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

- 2. Measured at capacitive load of 40 pF.
- 3. For reference only, according to the SD card specifications.
- 4. Average, for reference only.

This figure provides the eSDHC clock input timing diagram.

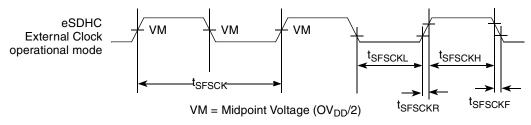
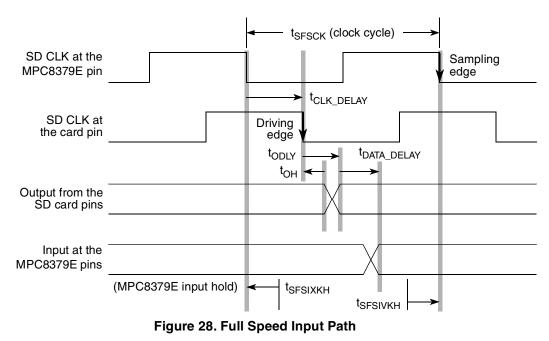


Figure 26. eSDHC Clock Input Timing Diagram

t_{CLK_DELAY} + *t_{IH}* - *t_{SFSKHOX}* < *t_{SFSCKL}* + *t_{DATA_DELAY}*

This means that clock can be delayed versus data up to 15 ns (external delay line) in ideal case of $t_{SFSCLKL} = 20$ ns:

 $t_{CLK_DELAY} + 5 - 0 < 20 + t_{DATA_DELAY}$ $t_{CLK_DELAY} < 15 + t_{DATA_DELAY}$


11.2.1.3 Full-Speed Write Combined Formula

The following equation is the combined formula to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

```
t_{CLK\_DELAY} + t_{IH} - t_{SFSKHOX} < t_{SFSCKL} + t_{DATA\_DELAY} < t_{SFSCK} + t_{CLK\_DELAY} - t_{ISU} - t_{SFSKHOV} Eqn. 6
```

11.2.2 Full-Speed Input Path (Read)

This figure provides the data and command input timing diagram.

11.2.2.1 Full-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

$$t_{CLK_DELAY} + t_{DATA_DELAY} + t_{ODLY} + t_{SFSIVKH} < t_{SFSCK} Eqn. 7$$

$$t_{CLK_DELAY} + t_{DATA_DELAY} < t_{SFSCK} - t_{ODLY} - t_{SFSIVKH} - t_{INT_CLK_DLY} Eqn. 8$$

Eqn. 5

11.2.2.2 Full-Speed Read Meeting Hold (Minimum Delay)

There is no minimum delay constraint due to the full clock cycle between the driving and sampling of data.

t_{CLK_DELAY} + t_{OH} + t_{DATA_DELAY} > t_{SFSIXKH}

Eqn. 9

This means that Data + Clock delay must be greater than -2 ns. This is always fulfilled.

11.3 eSDHC AC Timing Specifications (High-Speed Mode)

This table provides the eSDHC AC timing specifications for high-speed mode as defined in Figure 30 and Figure 31.

Table 43. eSDHC AC Timing Specifications for High-Speed Mode

At recommended operating conditions OV_{DD} = 3.3 V \pm 165 mV.

Parameter	Symbol ¹	Min	Мах	Unit	Note
SD_CLK clock frequency—high speed mode	f _{sнscк}	0	50	MHz	—
SD_CLK clock cycle	t _{sнscк}	20	_	ns	_
SD_CLK clock frequency—identification mode	f _{SIDCK}	0	400	KHz	—
SD_CLK clock low time	^t sнsck∟	7	—	ns	2
SD_CLK clock high time	t _{sнscкн}	7	—	ns	2
SD_CLK clock rise and fall times	t _{SHSCKR/} t _{SHSCKF}	_	3	ns	2
Input setup times: SD_CMD, SD_DATx, SD_CD to SD_CLK	^t shsivkh	5	—	ns	2
Input hold times: SD_CMD, SD_DATx, SD_CD to SD_CLK	t _{SHSIXKH}	0	—	ns	2
Output delay time: SD_CLK to SD_CMD, SD_DATx valid	t _{SHSKHOV}		4	ns	2
Output Hold time: SD_CLK to SD_CMD, SD_DATx invalid	t _{SHSKHOX}	0	—	ns	2
SD_CLK delay within device	t _{INT_CLK_DLY}	1.5	—	ns	4
SD Card Input Setup	t _{ISU}	6	—	ns	3
SD Card Input Hold	t _{IH}	2	—	ns	3
SD Card Output Valid	t _{ODLY}	_	14	ns	3
SD Card Output Hold	t _{OH}	2.5	—	ns	3

Notes:

1. The symbols used for timing specifications herein follow the pattern of t_{(first three letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{SFSIXKH} symbolizes eSDHC full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also t_{SFSKHOV} symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O) going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Measured at capacitive load of 40 pF.

3. For reference only, according to the SD card specifications.

4. Average, for reference only.

Table 49. PCI AC Timing Specifications at 66 MHz (continued)

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, VIH = $0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Input hold from cock	t _{PCIXKH}	0.25	—	ns	2, 4, 6
Output clock skew	t _{РСКОЅК}	—	0.5	ns	5

Notes:

Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.

2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.

- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 1 ns skew for 66 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

This table shows the PCI AC timing specifications at 33 MHz.

Table 50. PCI AC Timing Specifications at 33 MHz

PCI_SYNC_IN clock input levels are with next levels: VIL = $0.1 \times OV_{DD}$, $V_{IH} = 0.7 \times OV_{DD}$.

Parameter	Symbol ¹	Min	Мах	Unit	Note
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from clock	t _{PCKHOX}	2	-	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	-	ns	2, 4
Input hold from clock	t _{PCIXKH}	0.25	-	ns	2, 4, 6
Output clock skew	t _{PCKOSK}		0.5	ns	5

Notes:

- Note that the symbols used for timing specifications herein follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
- 2. See the timing measurement conditions in the PCI 2.3 Local Bus Specifications.
- 3. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.
- 5. PCI specifications allows 2 ns skew for 33 MHz but includes the total allowed skew, board, connectors, etc.
- 6. Value does not comply with the PCI 2.3 Local Bus Specifications.

15.2.1 Gen1i/1.5G Transmitter Specifications

This table provides the DC differential transmitter output DC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission.

Table 52. Gen1i/1.5G Transmitter (Tx) DC Specifications	
---	--

Parameter	Symbol	Min	Typical	Max	Units	Note
Tx differential output voltage	V _{SATA_TXDIFF}	400	500	600	mV _{p-p}	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	—

Note:

1. Terminated by 50 Ω load.

This table provides the differential transmitter output AC characteristics for the SATA interface at Gen1i or 1.5 Gbits/s transmission.

Table 53. Gen1i/1.5G Transmitter AC Specifications

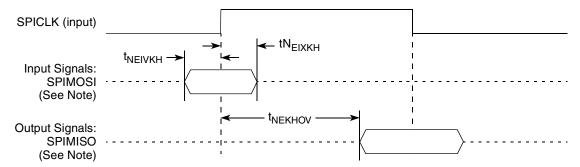
Parameter	Symbol	Min	Typical	Max	Units	Note
Channel speed	t _{CH_SPEED}	—	1.5	_	Gbps	—
Unit interval	T _{UI}	666.4333	666.667	670.2333	ps	—
Total jitter, data-data 5 UI	U _{SATA_TXTJ5UI}	—	—	0.355	UI _{p-p}	1
Total jitter, data-data 250 UI	U _{SATA_TXTJ250UI}	_	_	0.47	UI _{p-p}	1
Deterministic jitter, data-data 5 UI	U _{SATA_TXDJ5UI}	_	_	0.175	UI _{p-p}	1
Deterministic jitter, data-data 250 UI	U _{SATA_TXDJ250UI}	—	—	0.22	UI _{p-p}	1

Note:

1. Measured at Tx output pins peak to peak phase variation, random data pattern.

15.2.2 Gen2i/3G Transmitter Specifications

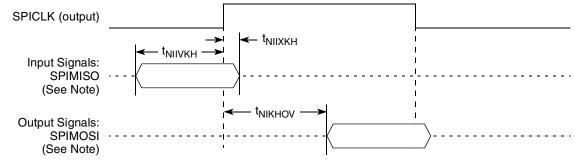
This table provides the differential transmitter output DC characteristics for the SATA interface at Gen2i or 3.0 Gbits/s transmission.


Table 54. Gen 2i/3G Transmitter DC Specifications

Parameter	Symbol	Min	Typical	Мах	Units	Note
Tx differential output voltage	V _{SATA_TXDIFF}	400	550	700	mV _{p-p}	1
Tx differential pair impedance	Z _{SATA_TXDIFFIM}	85	100	115	Ω	—

Note:

1. Terminated by 50 Ω load.


This figure shows the SPI timing in slave mode (external clock).

Note: The clock edge is selectable on SPI.

This figure shows the SPI timing in master mode (internal clock).

Note: The clock edge is selectable on SPI.

Figure 47. SPI AC Timing in Master Mode (Internal Clock) Diagram

20 High-Speed Serial Interfaces (HSSI)

This chip features two serializer/deserializer (SerDes) interfaces to be used for high-speed serial interconnect applications. See Table 1 for the interfaces supported.

This section describes the common portion of SerDes DC electrical specifications, which is the DC requirement for SerDes reference clocks. The SerDes data lane's transmitter and receiver reference circuits are also shown.

20.1 Signal Terms Definition

The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals.

Figure 48 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for description. The figure shows waveform for either a transmitter output (SD*n*_TX and $\overline{SDn}_T\overline{X}$) or a receiver input (SD*n*_RX and $\overline{SDn}_R\overline{X}$). Each signal swings between A volts and B volts where A > B.

NOTE

Figure 53 to Figure 56 below are for conceptual reference only. Due to the fact that clock driver chip's internal structure, output impedance, and termination requirements are different between various clock driver chip manufacturers, it is very possible that the clock circuit reference designs provided by the clock driver chip vendor are different from what is shown below. They might also vary from one vendor to the other. Therefore, Freescale Semiconductor can neither provide the optimal clock driver reference circuits, nor guarantee the correctness of the following clock driver connection reference circuits. The system designer is recommended to contact the selected clock driver chip vendor for the optimal reference circuits with the device SerDes reference clock receiver requirement provided in this document.

This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It assumes that the DC levels of the clock driver chip is compatible with device SerDes reference clock input's DC requirement.

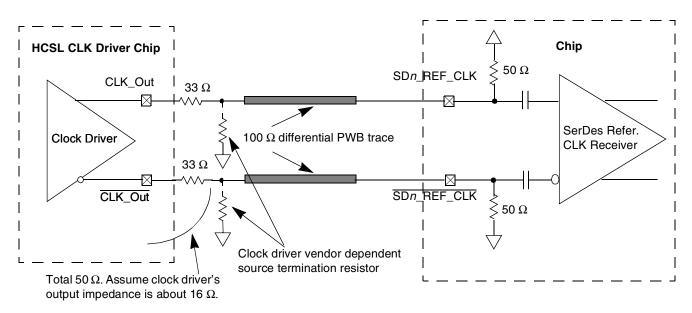
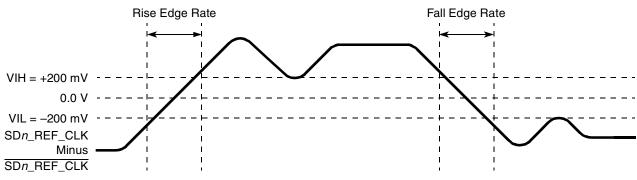


Figure 53. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)

This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver. Since LVDS clock driver's common-mode voltage is higher than the device SerDes reference clock input's allowed range (100 to 400 mV), AC-coupled connection scheme must be used. It assumes the LVDS

occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 Ω to match the transmission line and reduce reflections which are a source of noise to the system.

This table describes some AC parameters common to SATAprotocols


Table 68. SerDes Reference Clock Common AC Parameters

At recommended operating conditions with XV_{DD_SRDS} or $XV_{DD_SRDS} = 1.0 V \pm 5\%$.

Parameter	Symbol	Min	Max	Unit	Note
Rising Edge Rate	Rise Edge Rate	1.0	4.0	V/ns	2, 3
Falling Edge Rate	Fall Edge Rate	1.0	4.0	V/ns	2, 3
Differential Input High Voltage	V _{IH}	200	_	mV	2
Differential Input Low Voltage	V _{IL}	_	-200	mV	2
Rising edge rate (SD <i>n</i> _REF_CLK) to falling edge rate (SD <i>n</i> _REF_CLK) matching	Rise-Fall Matching	_	20	%	1, 4

Notes:

- 1. Measurement taken from single ended waveform.
- 2. Measurement taken from differential waveform.
- Measured from -200 mV to +200 mV on the differential waveform (derived from SDn_REF_CLK minus SDn_REF_CLK). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 57.
- 4. Matching applies to rising edge rate for SDn_REF_CLK and falling edge rate for SDn_REF_CLK. It is measured using a 200 mV window centered on the median cross point where SDn_REF_CLK rising meets SDn_REF_CLK falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of SDn_REF_CLK should be compared to the Fall Edge Rate of SDn_REF_CLK, the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 58.

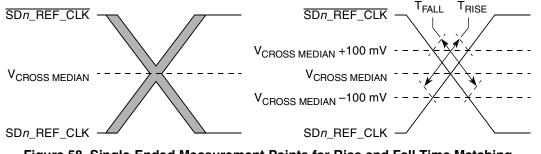


Figure 58. Single-Ended Measurement Points for Rise and Fall Time Matching

Signal	Package Pin Number	Pin Type	Power Supply	Note
MBA2	M3	0	GVDD	_
MCAS_B	W5	0	GVDD	
MCK_B0	H1	0	GVDD	
MCK_B1	К1	0	GVDD	
MCK_B2	V1	0	GVDD	
MCK_B3	W2	0	GVDD	
MCK_B4	AA1	0	GVDD	
MCK_B5	AB2	0	GVDD	
MCK0	J1	0	GVDD	
MCK1	L1	0	GVDD	
MCK2	V2	0	GVDD	
МСКЗ	W1	0	GVDD	
MCK4	Y1	0	GVDD	
MCK5	AB1	0	GVDD	
MCKE0	M4	0	GVDD	3
MCKE1	R5	0	GVDD	3
MCS_B0	W3	0	GVDD	
MCS_B1	P3	0	GVDD	
MCS_B2	T4	0	GVDD	
MCS_B3	R4	0	GVDD	
MDIC0	AH8	I/O	GVDD	9
MDIC1	AJ8	I/O	GVDD	9
MDM0	B6	0	GVDD	_
MDM1	B2	0	GVDD	
MDM2	E2	0	GVDD	
MDM3	E1	0	GVDD	_
MDM4	Y6	0	GVDD	_
MDM5	AC6	0	GVDD	_
MDM6	AE6	0	GVDD	_
MDM7	AJ4	0	GVDD	_
MDM8	L6	0	GVDD	_
MDQ0	A8	I/O	GVDD	11
MDQ1	A6	I/O	GVDD	11

Table 69. TePBGA II Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Note
L1_XCOREVSS	AG14, AG15, AG16, AH16, AG18, AG20	SerDes Core GND	_	_
L1_XPADVDD	AE16, AF16, AD18, AE19, AF19	SerDes I/O Power (1.0 or 1.05 V)		_
L1_XPADVSS	AF14, AE17, AF20	SerDes I/O GND	_	
	SerDes2 Interface			
L2_SD_IMP_CAL_RX	C19	I	L2_XPADVDD	
L2_SD_IMP_CAL_TX	C15	I	L2_XPADVDD	
L2_SD_REF_CLK	B17	I	L2_XPADVDD	
L2_SD_REF_CLK_B	A17	I	L2_XPADVDD	_
L2_SD_RXA_N	A19	I	L2_XPADVDD	_
L2_SD_RXA_P	B19	I	L2_XPADVDD	_
L2_SD_RXE_N	A15	I	L2_XPADVDD	
L2_SD_RXE_P	B15	I	L2_XPADVDD	
L2_SD_TXA_N	D18	0	L2_XPADVDD	
L2_SD_TXA_P	E18	0	L2_XPADVDD	
L2_SD_TXE_N	D15	0	L2_XPADVDD	
L2_SD_TXE_P	E15	0	L2_XPADVDD	
L2_SDAVDD_0	A16	SerDes PLL Power (1.0 or 1.05 V)		_
L2_SDAVSS_0	C17	SerDes PLL GND	_	
L2_XCOREVDD	A14, B14, D17, B18, B20	SerDes Core Power (1.0 or 1.05 V)		_
L2_XCOREVSS	C14, C16, A18, C18, A20, C20	SerDes Core GND	—	_
L2_XPADVDD	D14, E16, F18, D19, E19	SerDes I/O Power (1.0 or 1.05 V)		_
L2_XPADVSS	D16, E17, D20	SerDes I/O GND	—	_
	SPI Interface			
SPICLK/SD_CLK	AH9	I/O	OVDD	_

Table 69. TePBGA II Pinout Listing (continued)

			Input	(MHz) ²		
CFG_CLKIN_DIV at reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ¹	25	33.33	66.67	
			<i>csb_clk</i> Frequency (MHz)			
Low	0111	7 : 1	175	233		
Low	1000	8 : 1	200	267		
Low	1001	9 : 1	225	300		
Low	1010	10 : 1	250	333		
Low	1011	11 : 1	275	367		
Low	1100	12 : 1	300	400		
Low	1101	13 : 1	325			
Low	1110	14 : 1	350			
Low	1111	15 : 1	375			

Table 75. CSB Frequency Options for Agent Mode (continued)

Notes:

1. CFG_CLKIN_DIV doubles csb_clk if set high.

2. CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode.

22.2 Core PLL Configuration

RCWLR[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 76 shows the encodings for RCWLR[COREPLL]. COREPLL values that are not listed in Table 76 should be considered as reserved.

NOTE

Core VCO frequency = core frequency \times VCO divider VCO divider has to be set properly so that the core VCO frequency is in the range of 800–1600 MHz.

RCWLR[COREPLL]				VCO Divider ¹
0–1	2–5	6	<i>core_clk</i> : <i>csb_clk</i> Ratio	VCO Divider
nn	0000	0	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)
11	nnnn	n	n/a	n/a
00	0001	0	1:1	2
01	0001	0	1:1	4
10	0001	0	1:1	8
00	0001	1	1.5:1	2

Table 76. e300 Core PLL Configuration

This table shows the heat sink thermal resistance for TePBGA II package with heat sinks, simulated in a standard JEDEC environment, per JESD 51-6.

		Thermal Resistance	
Heat Sink Assuming Thermal Grease	Air Flow	(°/W)	
AAVID 30 \times 30 \times 9.4 mm Pin Fin	Natural Convection	13.1	
	0.5 m/s	10.6	
	1 m/s	9.3	
	2 m/s	8.2	
	4 m/s	7.5	
AAVID 31 $ imes$ 35 $ imes$ 23 mm Pin Fin	Natural Convection	11.1	
	0.5 m/s	8.5	
	1 m/s	7.7	
	2 m/s	7.2	
	4 m/s	6.8	
AAVID 43× 41× 16.5mm Pin Fin	Natural Convection	11.3	
	0.5 m/s	9.0	
	1 m/s	7.8	
	2 m/s	7.0	
	4 m/s	6.5	
Wakefield, 53 $ imes$ 53 $ imes$ 25 mm Pin Fin	Natural Convection	9.7	
	0.5 m/s	7.7	
	1 m/s	6.8	
	2 m/s	6.4	
	4 m/s	6.1	

Heat sink vendors include the following:

Aavid Thermalloy www.aavidthermalloy.com

Alpha Novatech www.alphanovatech.com

International Electronic Research Corporation (IERC) www.ctscorp.com

Millennium Electronics (MEI) www.mei-thermal.com

Revision	Date	Substantive Change(s)
2	10/2009	 In Table 3, "Recommended Operating Conditions," added "Operating temperature range" values. In Table 5, "Power Dissipation ¹," corrected maximal application for 800/400 MHz to 4.3 W. In Table 5, "Power Dissipation ¹," added a column for "Typical Application at T_j = 65°C (W)". In Table 5, "Power Dissipation ¹," added a column for "Sleep Power at T_j = 65°C (W)". In Table 11, removed overbar from CFG_CLKIN_DIV. In Table 17, "Current Draw Characteristics for MV_{REF}," updated I_{MVREF} maximum value for both DDR1 and DDR2 to 600 and 400 μA, respectively. Also, updated Note 1 and added Note 2. In Table 20, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," column headings renamed to "Min" and "Max". Footnote 2 updated to state "T is the MCK clock period". In Table 20, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Input AC Timing Specifications," and Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," updated t_{RMTDX} to 2.0 ns. In Table 57, Gen 1i/1.5G Transmitter AC Specifications," and Table 59, Gen 2i/3G Transmitter AC Specifications," corrected titles from "Transmitter" to "Receiver". In Table 69, "TePBGA II Pinout Listing," removed pin THERM0; it is now Reserved. Also added 1.05 V to VDD pin. In Table 76, "e300 Core PLL Configuration," added 3.5:1 and 4:1 core_clk: csb_clk ratio options. In Table 76, "e300 Core PLL Configuration," added 3.5:1 and 4:1 core_clk: csb_clk ratio options. In Table 76, "e300 Core PLL Configuration," corrected t_{NIKHOX} and t_{NEKHOV} respectively.
1	02/2009	 In Table 3, "Recommended Operating Conditions," added two new rows for 800 MHz, and created two rows for SerDes. In addition, changed 666 to 667 MHz. In Table 5, "Power Dissipation ¹," added Notes 4 and 5. In addition, changed 666 to 667 MHz. In Table 13, "DDR2 SDRAM DC Electrical Characteristics for GV_{DD}(typ) = 1.8 V," Table 21, "DDR1 and DDR2 SDRAM Output AC Timing Specifications," and Table 69, "TePBGA II Pinout Listing," added footnote to references to MVREF, MDQ, and MDQS, referencing AN3665, <i>MPC837xE Design Checklist</i>. In Table 21, updated t_{DDKHCX} minimum value for 333 MHz to 2.40. In Table 69, "TePBGA II Pinout Listing," added footnote to USBDR_STP_SUSPEND and modified footnote 10 and added footnote 15. In Table 71, "Operating Frequencies for TePBGA II," changed 667 to 800 MHz for <i>core_clk</i>. In Table 77, "Example Clock Frequency Combinations," added 800 MHz cells for e300 core. Updated part numbering information in AF column in Table 81, "Part Numbering Nomenclature." In addition, modified extended temperature information in notes 1 and 4. In Table 82, "Available Parts (Core/DDR Data Rate)," added new row for 800/400 MHz.
0	12/2008	Initial public release.