
NXP USA Inc. - MSC8256TVT1000B Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC3850 Six Core
Interface	Ethernet, I ² C, PCI, RGMII, Serial RapidIO, SGMII, SPI, UART/USART
Clock Rate	1GHz
Non-Volatile Memory	ROM (96kB)
On-Chip RAM	576kB
Voltage - I/O	2.50V
Voltage - Core	1.00V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	783-BBGA, FCBGA
Supplier Device Package	783-FCPBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8256tvt1000b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Assignment

1 Pin Assignment

This section includes diagrams of the MSC8256 package ball grid array layouts and tables showing how the pinouts are allocated for the package.

1.1 FC-PBGA Ball Layout Diagram

The top view of the FC-PBGA package is shown in Figure 3 with the ball location index numbers.

Top View

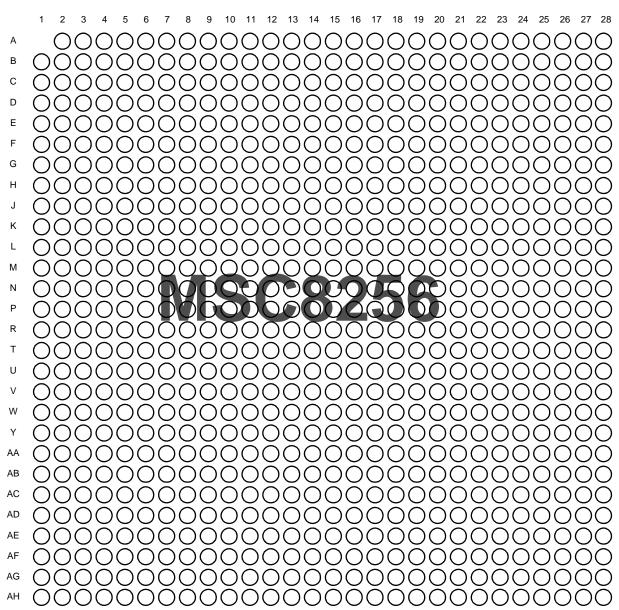


Figure 3. MSC8256 FC-PBGA Package, Top View

1.2 Signal List By Ball Location

Table 1 presents the signal list sorted by ball number. When designing a board, make sure that the power rail for each signal is appropriately considered. The specified power rail must be tied to the voltage level specified in this document if any of the related signal functions are used (active)

Note: The information in Table 1 and Table 2 distinguishes among three concepts. First, the power pins are the balls of the device package used to supply specific power levels for different device subsystems (as opposed to signals). Second, the power rails are the electrical lines on the board that transfer power from the voltage regulators to the device. They are indicated here as the reference power rails for signal lines; therefore, the actual power inputs are listed as N/A with regard to the power rails. Third, symbols used in these tables are the names for the voltage levels (absolute, recommended, and so on) and not the power supplies themselves.

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
A2	M2DQS3	I/O	GVDD2
A3	M2DQS3	I/O	GVDD2
A4	M2ECC0	I/O	GVDD2
A5	M2DQS8	I/O	GVDD2
A6	M2DQS8	I/O	GVDD2
A7	M2A5	0	GVDD2
A8	M2CK1	0	GVDD2
A9	M2CK1	0	GVDD2
A10	M2CS0	0	GVDD2
A11	M2BA0	0	GVDD2
A12	M2CAS	0	GVDD2
A13	M2DQ34	I/O	GVDD2
A14	M2DQS4	I/O	GVDD2
A15	M2DQS4	I/O	GVDD2
A16	M2DQ50	I/O	GVDD2
A17	M2DQS6	I/O	GVDD2
A18	M2DQS6	I/O	GVDD2
A19	M2DQ48	I/O	GVDD2
A20	M2DQ49	I/O	GVDD2
A21	VSS	Ground	N/A
A22	Reserved	NC	_
A23	SXPVDD1	Power	N/A
A24	SXPVSS1	Ground	N/A
A25	Reserved	NC	_
A26	Reserved	NC	_
A27	SXCVDD1	Power	N/A
A28	SXCVSS1	Ground	N/A
B1	M2DQ24	I/O	GVDD2
B2	GVDD2	Power	N/A
B3	M2DQ25	I/O	GVDD2
B4	VSS	Ground	N/A
B5	GVDD2	Power	N/A
B6	M2ECC1	I/O	GVDD2
B7	VSS	Ground	N/A
B8	GVDD2	Power	N/A

Table 1. Signal List by Ball Number

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
G7	M2CKE0	0	GVDD2
G8	M2A11	0	GVDD2
G9	M2A7	0	GVDD2
G10	M2CK2	0	GVDD2
G11	M2APAR_OUT	0	GVDD2
G12	M2ODT1	0	GVDD2
G13	M2APAR_IN	I	GVDD2
G14	M2DQ43	I/O	GVDD2
G15	M2DM5	0	GVDD2
G16	M2DQ44	I/O	GVDD2
G17	M2DQ40	I/O	GVDD2
G18	M2DQ59	I/O	GVDD2
G19	M2DM7	0	GVDD2
G20	M2DQ60	I/O	GVDD2
G21	Reserved	NC	_
G22	Reserved	NC	_
G23	SXPVSS1	Ground	N/A
G24	SXPVDD1	Power	N/A
G25	SR1_IMP_CAL_TX	I	SXCVDD1
G26	SXCVSS1	Ground	N/A
G27	Reserved	NC	_
G28	Reserved	NC	
H1	GVDD2	Power	N/A
H2	VSS	Ground	N/A
H3	M2DQ18	I/O	GVDD2
H4	GVDD2	Power	N/A
H5	VSS	Ground	N/A
H6	M2DQ20	I/O	GVDD2
H7	GVDD2	Power	N/A
H8	VSS	Ground	N/A
H9	M2A15	0	GVDD2
H10	M2CK2	0	GVDD2
H11	M2MDIC0	I/O	GVDD2
H12	M2VREF		GVDD2
H13	M2MDIC1	I/O	GVDD2
H14	M2DQ46	I/O	GVDD2
H15	M2DQ47	I/O	GVDD2
H16	M2DQ45	I/O	GVDD2
H17	M2DQ41	I/O	GVDD2
H18	M2DQ62	I/O	GVDD2
H19	M2DQ63	I/O	GVDD2
H20	M2DQ61	I/O	GVDD2
H21	Reserved	NC	_
H22	Reserved	NC	
H23	SR1_TXD3/SG2_TX ⁴	0	SXPVDD1
H24	SR1_TXD3/SG2_TX ⁴	0	SXPVDD1

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
H25	SXCVSS1	Ground	N/A
H26	SXCVDD1	Power	N/A
H27	SR1_RXD3/SG2_RX ⁴	I	SXCVDD1
H28	SR1_RXD3/SG2_RX ⁴	I	SXCVDD1
J1	M2DQS1	I/O	GVDD2
J2	M2DQS1	I/O	GVDD2
J3	M2DQ10	I/O	GVDD2
J4	M2DQ11	I/O	GVDD2
J5	M2DQ14	I/O	GVDD2
J6	M2DQ23	I/O	GVDD2
J7	M2ODT0	0	GVDD2
J8	M2A12	0	GVDD2
J9	M2A14	0	GVDD2
J10	VSS	Ground	N/A
J11	GVDD2	Power	N/A
J12	VSS	Ground	N/A
J13	GVDD2	Power	N/A
J14	VSS	Ground	N/A
J15	GVDD2	Power	N/A
J16	VSS	Ground	N/A
J17	GVDD2	Power	N/A
J18	VSS	Ground	N/A
J19	GVDD2	Power	N/A
J20	Reserved	NC	_
J21	Reserved	NC	_
J22	Reserved	NC	_
J23	SXPVDD1	Power	N/A
J24	SXPVSS1	Ground	N/A
J25	SXCVDD1	Power	N/A
J26	SXCVSS1	Ground	N/A
J27	SXCVDD1	Power	N/A
J28	SXCVSS1	Ground	N/A
K1	VSS	Ground	N/A
K2	GVDD2	Power	N/A
K3	M2DM1	0	GVDD2
K4	VSS	Ground	N/A
K5	GVDD2	Power	N/A
K6	M2DQ0	I/O	GVDD2
K7	VSS	Ground	N/A
K8	GVDD2	Power	N/A
K9	M2DQ5	I/O	GVDD2
K10	VSS	Ground	N/A
K11	VDD	Power	N/A
K12	VSS	Ground	N/A
K13	VDD	Power	N/A
K14	VSS	Ground	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
U3	GVDD1	Power	N/A
U4	M1DQ15	I/O	GVDD1
U5	M1DQ1	I/O	GVDD1
U6	VSS	Ground	N/A
U7	GVDD1	Power	N/A
U8	M1DQ7	I/O	GVDD1
U9	M1DQ6	I/O	GVDD1
U10	VDD	Power	N/A
U11	VSS	Ground	N/A
U12	M3VDD	Power	N/A
U13	VSS	Ground	N/A
U14	VDD	Power	N/A
U15	VSS	Ground	N/A
U16	VDD	Power	N/A
U17	VSS	Ground	N/A
U18	VDD	Power	N/A
U19	VSS	Ground	N/A
U20	VSS	Ground	N/A
U21	VSS	Ground	N/A
U22	VSS	Non-user	N/A
U23	SR2_TXD0/PE_TXD0 ⁴	0	SXPVDD2
U24	SR2_TXD0/PE_TXD0 ⁴	0	SXPVDD2
U25	SXCVDD2	Power	N/A
U26	SXCVSS2	Ground	N/A
U27	SR2_RXD0/PE_RXD0 ⁴	I	SXCVDD2
U28	SR2_RXD0/PE_RXD0 ⁴	I	SXCVDD2
V1	M1DQ9	I/O	GVDD1
V2	M1DQ12	I/O	GVDD1
V3	M1DQ13	I/O	GVDD1
V4	M1DQS0	I/O	GVDD1
V5	M1DQS0	I/O	GVDD1
V6	M1DM0	0	GVDD1
V7	M1DQ3	I/O	GVDD1
V8	M1DQ2	I/O	GVDD1
V9	M1DQ4	I/O	GVDD1
V10	VSS	Ground	N/A
V11	VDD	Power	N/A
V12	VSS	Ground	N/A
V13	VDD	Power	N/A
V14	VSS	Ground	N/A
V15	VDD	Power	N/A
V16	VSS	Ground	N/A
V17	VDD	Power	N/A
V18	VSS	Ground	N/A
V19	VDD	Power	N/A
V20	NVDD	Power	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
Y11	GVDD1	Power	N/A
Y12	VSS	Ground	N/A
Y13	GVDD1	Power	N/A
Y14	VSS	Ground	N/A
Y15	GVDD1	Power	N/A
Y16	VSS	Ground	N/A
Y17	GVDD1	Power	N/A
Y18	VSS	Ground	N/A
Y19	GVDD1	Power	N/A
Y20	VSS	Ground	N/A
Y21	NVDD	Power	N/A
Y22	GPIO20/SPI_SL ^{5,8}	I/O	NVDD
Y23	GPIO17/SPI_SCK ^{5,8}	I/O	NVDD
Y24	GPIO14/DRQ0/IRQ14/RC14 ^{5,8}	I/O	NVDD
Y25	GPIO12/IRQ12/RC12 ^{5,8}	I/O	NVDD
Y26	GPIO8/IRQ8/RC8 ^{5,8}	I/O	NVDD
Y27	NVDD	Power	N/A
Y28	VSS	Ground	N/A
AA1	GVDD1	Power	N/A
AA2	VSS	Ground	N/A
AA3	M1DQ18	I/O	GVDD1
AA4	GVDD1	Power	N/A
AA5	VSS	Ground	N/A
AA6	M1DQ20	I/O	GVDD1
AA7	GVDD1	Power	N/A
AA8	VSS	Ground	N/A
AA9	M1A15	0	GVDD1
AA10	M1CK2	0	GVDD1
AA11	M1MDIC0	I/O	GVDD1
AA12	M1VREF	I	GVDD1
AA13	M1MDIC1	I/O	GVDD1
AA14	M1DQ46	I/O	GVDD1
AA15	M1DQ47	I/O	GVDD1
AA16	M1DQ45	I/O	GVDD1
AA17	M1DQ41	I/O	GVDD1
AA18	M1DQ62	I/O	GVDD1
AA19	M1DQ63	I/O	GVDD1
AA20	M1DQ61	I/O	GVDD1
AA21	VSS	Ground	N/A
AA22	GPIO21 ^{5,8}	I/O	NVDD
AA23	GPIO18/SPI_MOSI ^{5,8}	I/O	NVDD
AA24	GPIO16/RC16 ^{5,8}	I/O	NVDD
AA25	GPIO4/DDN1/IRQ4/RC4 ^{5,8}	I/O	NVDD
AA26	GPIO9/IRQ9/RC9 ^{5,8}	I/O	NVDD
AA27	GPIO6/IRQ6/RC6 ^{5,8}	I/O	NVDD
AA28	GPIO1/IRQ1/RC1 ^{5,8}	I/O	NVDD

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
AB1	M1DQS2	I/O	GVDD1
AB2	M1DQS2	I/O	GVDD1
AB3	M1DQ19	I/O	GVDD1
AB4	M1DM2	0	GVDD1
AB5	M1DQ21	I/O	GVDD1
AB6	M1DQ22	I/O	GVDD1
AB7	M1CKE0	0	GVDD1
AB8	M1A11	0	GVDD1
AB9	M1A7	0	GVDD1
AB10	M1CK2	0	GVDD1
AB11	M1APAR_OUT	0	GVDD1
AB12	M1ODT1	0	GVDD1
AB13	M1APAR_IN	1	GVDD1
AB14	M1DQ43	I/O	GVDD1
AB15	M1DM5	0	GVDD1
AB16	M1DQ44	I/O	GVDD1
AB17	M1DQ40	I/O	GVDD1
AB18	M1DQ59	I/O	GVDD1
AB19	M1DM7	0	GVDD1
AB20	M1DQ60	I/O	GVDD1
AB21	VSS	Ground	N/A
AB22	GPIO31/I2C_SDA ^{5,8}	I/O	NVDD
AB23	GPIO27/TMR4/RCW_SRC0 ^{5,8}	I/O	NVDD
AB24	GPIO25/TMR2/RCW_SRC1 ^{5,8}	I/O	NVDD
AB25	GPIO24/TMR1/RCW_SRC2 ^{5,8}	I/O	NVDD
AB26	GPIO10/IRQ10/RC10 ^{5,8}	I/O	NVDD
AB27	GPIO5/IRQ5/RC5 ^{5,8}	I/O	NVDD
AB28	GPIO0/IRQ0/RC0 ^{5,8}	I/O	NVDD
AC1	VSS	Ground	N/A
AC2	GVDD1	Power	N/A
AC3	M1DQ16	I/O	GVDD1
AC4	VSS	Ground	N/A
AC5	GVDD1	Power	N/A
AC6	M1DQ17	I/O	GVDD1
AC7	VSS	Ground	N/A
AC8	GVDD1	Power	N/A
AC9	M1BA2	0	GVDD1
AC10	VSS	Ground	N/A
AC11	GVDD1	Power	N/A
AC12	M1A4	0	GVDD1
AC13	VSS	Ground	N/A
AC14	GVDD1	Power	N/A
AC15	M1DQ42	I/O	GVDD1
AC16	VSS	Ground	N/A
AC17	GVDD1	Power	N/A
AC18	M1DQ58	I/O	GVDD1

Ball Number	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
AF27	TDM2TDT/GE1_TX_CLK ³	I/O	NVDD
AF28	TDM3RSN/GE1_RD1 ³	I/O	NVDD
AG1	M1DQ24	I/O	GVDD1
AG2	GVDD1	Power	N/A
AG3	M1DQ25	I/O	GVDD1
AG4	VSS	Ground	N/A
AG5	GVDD1	Power	N/A
AG6	M1ECC1	I/O	GVDD1
AG7	VSS	Ground	N/A
AG8	GVDD1	Power	N/A
AG9	M1A13	0	GVDD1
AG10	VSS	Ground	N/A
AG11	GVDD1	Power	N/A
AG12	M1CS1	0	GVDD1
AG13	VSS	Ground	N/A
AG14	GVDD1	Power	N/A
AG15	M1DQ35	I/O	GVDD1
AG16	VSS	Ground	N/A
AG17	GVDD1	Power	N/A
AG18	M1DQ51	I/O	GVDD1
AG19	VSS	Ground	N/A
AG20	GVDD1	Power	N/A
AG21	NVDD	Power	N/A
AG22	TDM1TSN/GE2_TD1 ³	I/O	NVDD
AG23	TDM1RDT/GE2_TX_CLK ³	I/O	NVDD
AG24	TDM0TCK/GE2_GTX_CLK ³	I/O	NVDD
AG25	TDM1TDT/GE2_TD0 ³	I/O	NVDD
AG26	VSS	Ground	N/A
AG27	NVDD	Power	N/A
AG28	TDM3RDT/GE1_RD0 ³	I/O	NVDD
AH1	Reserved.	NC	_
AH2	M1DQS3	I/O	GVDD1
AH3	M1DQS3	I/O	GVDD1
AH4	M1ECC0	I/O	GVDD1
AH5	M1DQS8	I/O	GVDD1
AH6	M1DQS8	I/O	GVDD1
AH7	M1A5	0	GVDD1
AH8	M1CK1	0	GVDD1
AH9	M1CK1	0	GVDD1
AH10	M1CS0	0	GVDD1
AH11	M1BA0	0	GVDD1
AH12	M1CAS	0	GVDD1
AH13	M1DQ34	I/O	GVDD1
AH14	M1DQS4	I/O	GVDD1
AH15	M1DQS4	I/O	GVDD1
AH16	M1DQ50	I/O	GVDD1

Ball Numbe	er	Signal Name ^{1,2}	Pin Type ¹⁰	Power Rail Name
AH17		M1DQS6	I/O	GVDD1
AH18		M1DQS6	I/O	GVDD1
AH19		M1DQ48	I/O	GVDD1
AH20		M1DQ49	I/O	GVDD1
AH21		VSS	Ground	N/A
AH22		TDM0RCK/GE2_RD2 ³	I/O	NVDD
AH23		TDM0RDT/GE2_RD3 ³	I/O	NVDD
AH24		TDM0TSN/GE2_RD0 ³	I/O	NVDD
AH25		TDM1RCK/GE2_RD1 ³	I/O	NVDD
AH26		TDM3TDT/GE1_RD3 ³	I/O	NVDD
AH27		TDM3TCK/GE1_RD2 ³	I	NVDD
AH28		VSS	Ground	N/A
Notes: 1. 2. 3. 4. 5. 6. 7.	for Unc Sig Sel Sel Cha Ope	served signals should be disconnected for compatibility with future revisions of the manufacturing and test purposes only. The assigned signal name is used to indica connected (Reserved), pulled down (VSS), or pulled up (VDD). nal function during power-on reset is determined by the RCW source type. ection of TDM versus RGMII functionality is determined by the RCW bit values. ection of RapidIO, SGMII, and PCI Express functionality is determined by the RCW bit values. Fapter in the <i>MSC8256 Reference Manual</i> . en-drain signal.	ate whether the signa W bit values. or configuration deta	al must be ils, see the <i>GPIO</i>
8.	pro	signals with GPIO functionality, the open-drain and internal 20 K Ω pull-up resisto gramming. See the GPIO chapter of the MSC8256 Reference Manual for configure	ration details.	, ,
~	0.1		· · · · · · · · · · · · · · · · · · ·	and a factor that

Connect to power supply via external filter. See Section 3.2, *PLL Power Supply Design Considerations* for details.
 Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not connected.

2.5.1.3 DDR2/DDR3 SDRAM Capacitance

Table 8 provides the DDR controller interface capacitance for DDR2 and DDR3 memory.

Note: At recommended operating conditions (see Table 3) with V_{DDDDR} = 1.8 V for DDR2 memory or V_{DDDDR} = 1.5 V for DDR3 memory.

Parameter	Symbol	Min	Мах	Unit	
I/O capacitance: DQ, DQS, DQS	C _{IO}	6	8	pF	
Delta I/O capacitance: DQ, DQS, DQS	C _{DIO}	—	0.5	pF	
Note: Guaranteed by FAB process and micro-construction.					

Table 8. DDR2/DDR3 SDRAM Capacitance

2.5.1.4 DDR Reference Current Draw

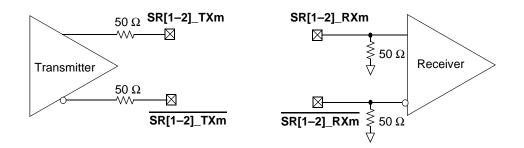
Table 9 lists the current draw characteristics for MV_{REF}.

Note: Values when used at recommended operating conditions (see Table 3).

Table 9. Current Draw Characteristics for MV_{REF}

Parameter / Condition	Symbol	Min	Max	Unit
Current draw for MV _{REFn} • DDR2 SDRAM • DDR3 SDRAM	I _{MVREFn}		300 250	μΑ μΑ

2.5.2 High-Speed Serial Interface (HSSI) DC Electrical Characteristics


The MSC8256 features an HSSI that includes two 4-channel SerDes ports used for high-speed serial interface applications (PCI Express, Serial RapidIO interfaces, and SGMII). This section and its subsections describe the common portion of the SerDes DC, including the DC requirements for the SerDes reference clocks and the SerDes data lane transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the Reset Configuration Word High Register (RCWHR) SerDes Protocol selection fields (S1P and S2P). Specific AC electrical characteristics are defined in Section 2.6.2, "HSSI AC Timing Specifications."

2.5.2.1 Signal Term Definitions

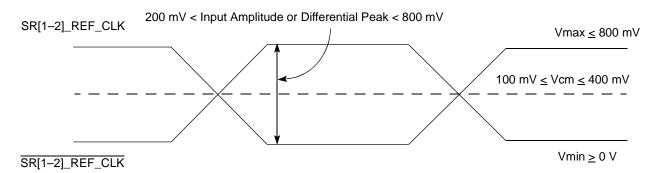
The SerDes interface uses differential signalling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 4 shows how the signals are defined. For illustration purposes only, one SerDes lane is used in the description. Figure 4 shows the waveform for either a transmitter output (SR[1–2]_TX and

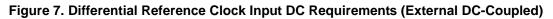
2.5.2.3 SerDes Transmitter and Receiver Reference Circuits

Figure 6 shows the reference circuits for SerDes data lane transmitter and receiver.

Note: The [1–2] indicates the specific SerDes Interface (1 or 2) and the m indicates the specific channel within that interface (0,1,2,3). Actual signals are assigned by the HRCW assignments at reset (see **Chapter 5**, *Reset* in the reference manual for details)

Figure 6. SerDes Transmitter and Receiver Reference Circuits


2.5.3 DC-Level Requirements for SerDes Interfaces


The following subsections define the DC-level requirements for the SerDes reference clocks, the PCI Express data lines, the Serial RapidIO data lines, and the SGMII data lines.

2.5.3.1 DC-Level Requirements for SerDes Reference Clocks

The DC-level requirement for the SerDes reference clock inputs is different depending on the signaling mode used to connect the clock driver chip and SerDes reference clock inputs, as described below:

- Differential Mode
 - The input amplitude of the differential clock must be between 400 mV and 1600 mV differential peak-peak (or between 200 mV and 800 mV differential peak). In other words, each signal wire of the differential pair must have a single-ended swing of less than 800 mV and greater than 200 mV. This requirement is the same for both external DC-coupled or AC-coupled connection.
 - For an external DC-coupled connection, the maximum average current requirements sets the requirement for average voltage (common mode voltage) as between 100 mV and 400 mV. Figure 7 shows the SerDes reference clock input requirement for DC-coupled connection scheme.

Parameter	Symbol	Min	Typical	Мах	Units	Notes
Differential input voltage	V _{IN}	200	—	1600	mVp-p	1
Notes: 1. Measured at receiver.						

Table 14. Serial RapidIO Receiver DC Specifications

2.5.3.4 DC-Level Requirements for SGMII Configurations

Note: Specifications are valid at the recommended operating conditions listed in Table 3

Table 15 describes the SGMII SerDes transmitter AC-coupled DC electrical characteristics. Transmitter DC characteristics are measured at the transmitter outputs ($SR[1-2]_TX[n]$ and $\overline{SR[1-2]_TX}[n]$) as shown in Figure 10.

Parameter	Symbol	Min	Тур	Max	Unit	Notes
Output high voltage	V _{OH}	_	_	$XV_{DD_SRDS-Typ}/2 + V_{OD} _{max}/2$	mV	1
Output low voltage	V _{OL}	$XV_{DD_SRDS-Typ}/2 - V_{OD} _{max}/2$	_		mV	1
Output differential	V _{OD}	323	500	725	mV	2,3,4
voltage (XV _{DD-Typ} at		296	459	665		2,3,5
1.0 V)		269	417	604		2,3,6
		243	376	545		2,3,7
		215	333	483		2,3,8
		189	292	424		2,3,9
		162	250	362		2,3,10
Output impedance R _O 40 (single-ended)		50	60	Ω	_	
 2. The V_{OE} equalization The MS) value shown ion setting in t B (bit 0) of the	DC-coupled SGMII. $XV_{DD_SRDS2-Typ}$ = in the table assumes full multitude b he XMITEQ AB (for lanes A and B) o e above bit field is set to zero (selecti	y setting s r XMITEC ng the full	EF (for lanes E and F) bit field of Co	ntrol Regi er up defa	

Table 15. SGMII DC Transmitter Electrical Characteristics

• The LSB (bit [1–3]) of the above bit field is set based on the equalization settings listed in notes 4 through 10.

3. The $|V_{OD}|$ value shown in the Typ column is based on the condition of $XV_{DD_SRDS2-Typ} = 1.0$ V, no common mode offset variation ($V_{OS} = 500$ mV), SerDes transmitter is terminated with 100- Ω differential load between

- 4. Equalization setting: 1.0x: 0000.
- 5. Equalization setting: 1.09x: 1000.
- 6. Equalization setting: 1.2x: 0100.
- 7. Equalization setting: 1.33x: 1100.
- 8. Equalization setting: 1.5x: 0010.
- 9. Equalization setting: 1.71x: 1010.
- 10. Equalization setting: 2.0x: 0110.
- 11. $|V_{OD}| = |V_{SR[1-2] TXn} V_{\overline{SR[1-2] TXn}}|$. $|V_{OD}|$ is also referred to as output differential peak voltage. $V_{TX-DIFFp-p} = 2^*|V_{OD}|$.

2.5.4 **RGMII and Other Interface DC Electrical Characteristics**

Table 17 describes the DC electrical characteristics for the following interfaces:

- RGMII Ethernet
- SPI
- TDM
- GPIO
- UART
- TIMER
- EE
- I²C
- Interrupts (IRQn, NMI_OUT, INT_OUT)
- Clock and resets (CLKIN, PORESET, HRESET, SRESET)
- DMA External Request
- JTAG signals

Table 17. 2.5 V I/O DC Electrical Characteristics

Characteristic	Symbol	Min	Max	Unit	Notes
Input high voltage	V _{IH}	1.7	_	V	1
Input low voltage	V _{IL}	—	0.7	V	1
Input high current (V _{IN} = V _{DDIO})	I _{IN}	—	30	μΑ	2
Output high voltage ($V_{DDIO} = min, I_{OH} = -1.0 mA$)	V _{OH}	2.0	VDDIO + 0.3	V	1
Output low voltage (V _{DDIO} = min, I _{OL} = 1.0 mA)	V _{OL}	GND – 0.3	0.40	V	1
 Notes: 1. The min V_{IL} and max V_{IH} values are based on the respective min and max V_{IN} values listed in Table 3. 2. The symbol V_{IN} represents the input voltage of the supply. It is referenced in Table 3. 					

Figure 13 shows the DDR SDRAM output timing diagram.

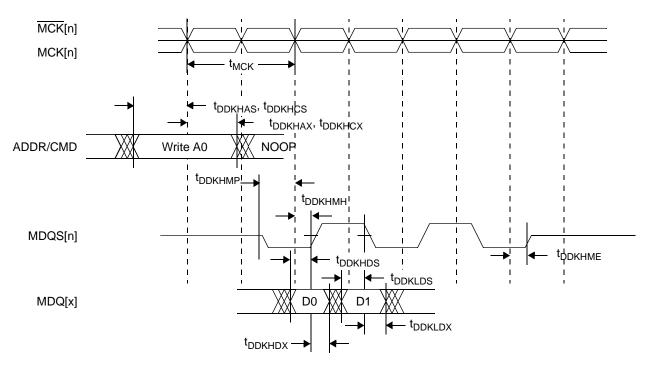


Figure 13. DDR SDRAM Output Timing

Figure 14 provides the AC test load for the DDR2 and DDR3 controller bus.

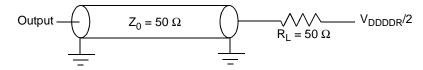


Figure 14. DDR2 and DDR3 Controller Bus AC Test Load

2.6.1.3 DDR2 and DDR3 SDRAM Differential Timing Specifications

This section describes the DC and AC differential timing specifications for the DDR2 and DDR3 SDRAM controller interface. Figure 15 shows the differential timing specification.

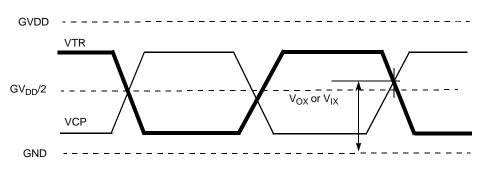


Figure 15. DDR2 and DDR3 SDRAM Differential Timing Specifications

Note: VTR specifies the true input signal (such as MCK or MDQS) and VCP is the complementary input signal (such as \overline{MCK} or \overline{MDQS}).

2.6.5 Ethernet Timing

This section describes the AC electrical characteristics for the Ethernet interface.

There are programmable delay units (PDU) that should be programmed differently for each interface to meet timing. There is a general configuration register 4 (GCR4) used to configure the timing. For additional information, see the *MSC8256 Reference Manual*.

2.6.5.1 Management Interface Timing

Table 33 lists the timer input Ethernet controller management interface timing specifications shown in Figure 24.

Table 33. Ethernet Controller Management Interface Tir	nina
--	------

Characteristics	Symbol	Min	Max	Unit
GE_MDC frequency	f _{MDC}	_	2.5	MHz
GE_MDC period	t _{MDC}	400	—	ns
GE_MDC clock pulse width high	t _{MDC_H}	160	_	ns
GE_MDC clock pulse width low	t _{MDC_L}	160	_	ns
GE_MDC to GE_MDIO delay ²	t _{mdkhdx}	10	70	ns
GE_MDIO to GE_MDC rising edge setup time	t _{MDDVKH}	20	_	ns
GE_MDC rising edge to GE_MDIO hold time	t _{mddxkh}	0	_	ns

Program the GE_MDC frequency (f_{MDC}) to a maximum value of 2.5 MHz (400 ns period for t_{MDC}). The value depends on the source clock and configuration of MIIMCFG[MCS] and UPSMR[MDCP]. For example, for a source clock of 400 MHz to achieve f_{MDC} = 2.5 MHz, program MIIMCFG[MCS] = 0x4 and UPSMR[MDCP] = 0. See the *MSC8256 Reference Manual* for configuration details.

2. The value depends on the source clock. For example, for a source clock of 267 MHz, the delay is 70 ns. For a source clock of 333 MHz, the delay is 58 ns.

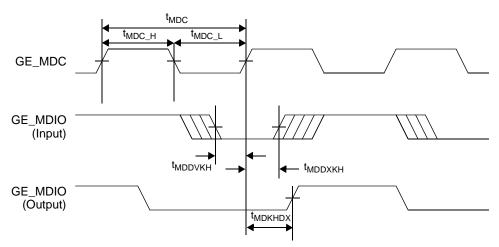


Figure 24. MII Management Interface Timing

3.1.2 Power-On Ramp Time

This section describes the AC electrical specification for the power-on ramp rate requirements for all voltage supplies (including GVDD/SXPVDD/SXCVDD/QVDD/GVDD/NVDD, all VDD supplies, MVREF, and all AVDD supplies). Controlling the power-on ramp time is required to avoid falsely triggering the ESD circuitry. Table 39 defines the power supply ramp time specification.

Table 39. Power Supply Ramp Rate

		Parameter	Min	Max	Unit
Required	Required ramp rate.			36000	V/s
Notes:	1. 2. 3. 4.	Ramp time is specified as a linear ramp from 10% to 90% of nominal voltage of the specific non-linear (for example, exponential), the maximum rate of change from 200 to 500 mV is th might falsely trigger the ESD circuitry. Required over the full recommended operating temperature range (see Table 3). All supplies must be at their stable values within 50 ms. The GVDD pins can be held low on the application board at powerup. If GVDD is not held low voltage level that depends on the board-level impedance-to-ground. If the impedance is high	e most critic	al because	this range to a

3.1.3 Power Supply Guidelines

Use the following guidelines for power-up sequencing:

• Couple M3VDD with the VDD power rail using an extremely low impedance path.

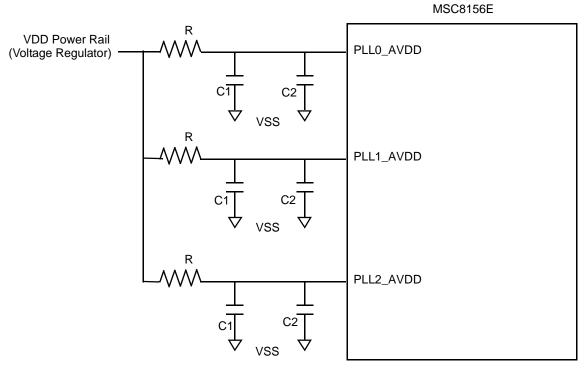
theoretically, GVDD can rise up close to the VDD levels.

- Couple inputs PLL1_AVDD, PLL2_AVDD and PLL3_AVDD with the VDD power rail using an RC filter (see Figure 37).
- There is no dependency in power-on/power-off sequence between the GVDD1, GVDD2, NVDD, and QVDD power rails.
- Couple inputs M1VREF and M2VREF with the GVDD1 and GVDD2 power rails, respectively. They should rise at the same time as or after their respective power rail.
- There is no dependency between RapidIO supplies: SXCVDD1, SXCVDD2, SXPVDD1 and SXPVDD2 and other MSC8256 supplies in the power-on/power-off sequence
- Couple inputs SR1_PLL_AVDD and SR2_PLL_AVDD with SXCVDD1 and SXCVDD2 power rails, respectively, using an RC filter (see Figure 38).

External voltage applied to any input line must not exceed the I/O supply voltage related to this line by more than 0.6 V at any time, including during power-up. Some designs require pull-up voltages applied to selected input lines during power-up for configuration purposes. This is an acceptable exception to the rule during start-up. However, each such input can draw up to 80 mA per input pin per MSC8256 device in the system during power-up. An assertion of the inputs to the high voltage level before power-up should be with slew rate less than 4 V/ns.

The device power rails should rise in the following sequence:

1. VDD (and all coupled supplies)


3.2 PLL Power Supply Design Considerations

Each global PLL power supply must have an external RC filter for the PLLn_AVDD input (see Figure 37) in which the following components are defined as listed:

- $R = 5 \Omega \pm 5\%$
- $C1 = 10 \ \mu\text{F} \pm 10\%$, 0603, X5R, with ESL $\leq 0.5 \ \text{nH}$, low ESL Surface Mount Capacitor.
- $C2 = 1.0 \ \mu\text{F} \pm 10\%$, 0402, X5R, with ESL $\leq 0.5 \ \text{nH}$, low ESL Surface Mount Capacitor.

Note: A higher capacitance value for C2 may be used to improve the filter as long as the other C2 parameters do not change.

All three PLLs can connect to a single supply voltage source (such as a voltage regulator) as long as the external RC filter is applied to each PLL separately. For optimal noise filtering, place the circuit as close as possible to its PLLn_AVDD inputs.

Figure 37. PLL Supplies

Each SerDes PLL power supply must be filtered using a circuit similar to the one shown in Figure 38, to ensure stability of the internal clock. For maximum effectiveness, the filter circuit should be placed as closely as possible to the SRn_PLL_AVDD ball to ensure it filters out as much noise as possible. The ground connection should be near the SRn_PLL_AVDD ball. The 0.003 μ F capacitor is closest to the ball, followed by the two 2.2 μ F capacitors, and finally the 1 Ω resistor to the board supply plane. The capacitors are connected from SRn_PLL_AVDD to the ground plane. Use ceramic chip capacitors with the highest possible self-resonant frequency. All trances should be kept short, wide, and direct.

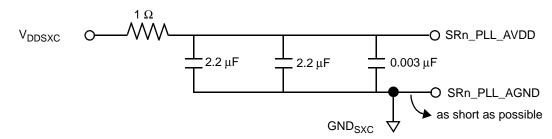


Figure 38. SerDes PLL Supplies

3.5 Connectivity Guidelines

Note: Although the package actually uses a ball grid array, the more conventional term pin is used to denote signal connections in this discussion.

First, select the pin multiplexing mode to allocate the required I/O signals. Then use the guidelines presented in the following subsections for board design and connections. The following conventions are used in describing the connectivity requirements:

- 1. GND indicates using a 10 k Ω pull-down resistor (recommended) or a direct connection to the ground plane. Direct connections to the ground plane may yield DC current up to 50 mA through the I/O supply that adds to overall power consumption.
- 2. V_{DD} indicates using a 10 k Ω pull-up resistor (recommended) or a direct connection to the appropriate power supply. Direct connections to the supply may yield DC current up to 50 mA through the I/O supply that adds to overall power consumption.
- 3. Mandatory use of a pull-up or pull-down resistor is clearly indicated as "pull-up/pull-down." For buses, each pin on the bus should have its own resistor.
- 4. NC indicates "not connected" and means do not connect anything to the pin.
- 5. The phrase "in use" indicates a typical pin connection for the required function.
- **Note:** Please see recommendations #1 and #2 as mandatory pull-down or pull-up connection for unused pins in case of subset interface connection.

3.5.1.2 DDR Interface Is Used With 32-Bit DDR Memory Only

Table 41 lists unused pin connection when using 32-bit DDR memory. The 32 most significant data lines are not used.

Table 41. Connectivity of DDR Related Pins When Using 32-bit DDR Memory Only

Signal Name	Pin Connection
MDQ[31-0]	in use
MDQ[63-32]	NC
MDQS[3-0]	in use
MDQS[7-4]	NC
MDQS[3-0]	in use
MDQS[7-4]	NC
MA[15-0]	in use
MCK[2-0]	in use
MCK[2-0]	in use
MCS[1-0]	in use
MDM[3-0]	in use
MDM[7-4]	NC
MBA[2-0]	in use
MCAS	in use
MCKE[1-0]	in use
MODT[1-0]	in use
MMDIC[1-0]	in use
MRAS	in use
MWE	in use
MVREF	in use
GVDD1/GVDD2	in use

2. For MSC8256 Revision 1 silicon, these pins were connected to GND (or VDD). For newer revisions of the MSC8256, connecting these pins to GND increases device power consumption.

3.5.1.3 ECC Unused Pin Connections

When the error code correction mechanism is not used in any 32- or 64-bit DDR configuration, refer to Table 42 to determine the correct pin connections.

	Signal Name	Pin connection		
MECC[7-0]		NC		
MDM8		NC		
MDQS8		NC		
MDQS8		NC		
Notes: 1. 2.				

	Signal Name	Pin Connection	
TDMnTCLK		GND	
TDMnT x DAT	Г	GND	
TDM n TSYN		GND	
V _{DDIO}		2.5 V	
	 x = {0, 1, 2,3} In case of subset of TDM interface usage please make sure to disable unused TDM modules. See <i>TDM</i> chapter in the <i>MSC8256 Reference Manual</i> for details. 		

3.5.5 Miscellaneous Pins

Table 49 lists the board connections for the pins not required by the system design. Table 49 assumes that the alternate function of the specified pin is not used. If the alternate function is used, connect that pin as required to support the selected function.

Table 49. Connectivity of Individual Pins When They Are Not Required

Signal Name	Pin Connection
CLKOUT	NC
EEO	GND
EE1	NC
GPIO[31–0]	NC
SCL	See the GPIO connectivity guidelines in this table.
SDA	See the GPIO connectivity guidelines in this table.
INT_OUT	NC
IRQ[15–0]	See the GPIO connectivity guidelines in this table.
NMI	V _{DDIO}
NMI_OUT	NC
RC[21–0]	GND
STOP_BS	GND
тск	GND
TDI	GND
TDO	NC
TMR[4–0]	See the GPIO connectivity guidelines in this table.
TMS	GND
TRST	See Section 3.1 for guidelines.
URXD	See the GPIO connectivity guidelines in this table.
UTXD	See the GPIO connectivity guidelines in this table.
DDN[1-0]	See the GPIO connectivity guidelines in this table.
DRQ[1-0]	See the GPIO connectivity guidelines in this table.
RCW_LSEL_0	GND
RCW_LSEL_1	GND
RCW_LSEL_2	GND
RCW_LSEL_3	GND
V _{DDIO}	2.5 V

Note: For details on configuration, see the *MSC8256 Reference Manual*. For additional information, refer to the *MSC815x* and *MSC825x DSP Family Design Checklist*.